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Hyperspectral and LiDAR Data
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Abstract—This article presents a deep residual network-based
fusion framework for hyperspectral and LiDAR data. In this
framework, three new fusion methods are proposed, which are the
residual network-based deep feature fusion (RNDFF), the resid-
ual network-based probability reconstruction fusion (RNPRF)
and the residual network-based probability multiplication fusion
(RNPMF). The three methods use extinction profile (EP), local
binary pattern (LBP), and deep residual network. Specifically, EP
and LBP features are extracted from two sources and stacked as
spatial features. For RNDFF, the deep features of each source are
extracted by a deep residual network, and then the deep features
are stacked to create the fusion features which are classified by
softmax classifier. For RNPRF, the deep features of each source are
input to the softmax classifier to obtain the probability matrices,
and then the probability matrices are fused by weighted addition to
producing the final label assignment. For RNPMF, the probability
matrices are fused by array multiplication. Experimental results
demonstrate that the classification performance of the proposed
methods significantly outperform existing methods in hyperspec-
tral and LiDAR data fusion.

Index Terms—Deep residual network, extinction profile,
Goddard ’s LiDAR, hyperspectral, hyperspectral and thermal (G-
LiHT) data, image fusion, local binary pattern (LBP), probability
fusion, light detection and ranging (LiDAR).
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I. INTRODUCTION

RBAN mapping is a challenging task in the field of remote
U sensing. The accuracy and efficiency of numerous classi-
fication methods for obtaining land-use information in urban are
insufficient to meet the requirements of real-world applications
such as land management and urban planning [1]. With the
development of sensor technologies, detailed information about
various objects on the urban area can be acquired from multi-
source images, e.g., hyperspectral images (HSI) with spectral
information, LiDAR data describing the 3-D information of ob-
ject surface. The fusion of HSI and LiDAR has great potential in
improving the accuracy of urban mapping. However, automatic
interpretation of these data remains difficult [2].

Hyperspectral imagers gather data from hundreds of narrow
spectral bands in infrared and visible portions of the electromag-
netic spectrum. HSI can present the spectral information of the
observed scenes. Hyperspectral system relies on the reflection of
sunlight to collect data and belongs to the passive sensing. Many
algorithms have been designed for hyperspectral applications
such as classification, feature extraction, and segmentation, etc.,
[3]-[12]. A LiDAR system uses the pulsed laser to measure
distances, which belongs to the active remote sensing. For a
LiDAR system, the coherent light pulses are transmitted, re-
flected by objects on the ground, and caught by a receiver.
LiDAR data products mainly contain LiDAR point cloud, digital
surface model (DSM), digital terrain model (DTM), and canopy
height model (CHM). LiDAR images provide shape and height
information of the scenes. LiDAR also has high precision and
flexibility because it is less sensitive to weather conditions, can
be operated at any time, and has adjustable system parameters
such as scan angle, flight speed/height, scan rate, and pulse rate.
Similarly, numerous algorithms have been proposed for LIDAR
applications such as feature extraction and object detection,
etc. [13]-[17]. Although algorithms are separately proposed
for LIDAR and HSI, no one type of sensor can always meet
the requirements of reliable image interpretation. For instance,
hyperspectral images cannot distinguish targets comprised of
the same material, such as roads and roofs with the same pitch
material. On the other hand, LiDAR data alone cannot be used to
discriminate targets with the same elevation, such as houses with
the same height but had concrete or solar panel roofs. Therefore,
it is necessary to jointly use the information in HST and LiDAR
images to provide more intelligent processing.
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HSI and LiDAR have been used in combination in a large
number of applications favorably, such as microclimate model-
ing [18], biomass estimation [19], fuel type mapping [20], and
mapping plant richness [21]. Besides, for HSI and LiDAR image
fusion classification [2], [22]-[29], the combined use of HSI and
LiDAR image can lead to higher classification accuracies and
better discrimination ability in urban and forests areas than using
each source separately. HSI and LiDAR image fusion methods
can be divided into feature-level fusion and decision-level fu-
sion. Feature-level fusion combines hyperspectral and LiDAR
features, and fusion features are classified to produce category
labels by classifiers. In feature level fusion, the traditional fusion
methods can be divided into direct stacking, extracting spatial
features and stacking, extracting spatial features and stacking,
and dimensionality reduction. The information extraction of the
direct stacking method is not sufficient, resulting in low classifi-
cation accuracy [29]. The extracting spatial features and stack-
ing fusion strategy overcomes the shortcomings of the direct
stacking fusion strategy and can extract sufficient information.
However, the stacked features tend to have high dimensions,
and with small samples in various real applications, the curse
of dimensionality problem is prone to occur, resulting in the
risk of overfitting the training data [23]. Thus, many work in the
literature include dimensionality reduction [23], [24], [27]-[29].
However the best dimension for dimensionality reduction is un-
known. For the decision-level fusion, features of hyperspectral
and LiDAR are classified individually, and classification results
are fused to produce category labels. In the decision level fusion,
the traditional fusion method is max voting fusion strategy [25],
but voting can result in rough results. Recently, the residual fu-
sion strategy of the collaborative representation-based classifier
is proposed [30], with two sensitive parameters adjusted during
the fusion process.

The deep residual network is an improved network of tra-
ditional convolutional neural networks (CNNs) [31], [32], and
it can alleviate the problem that classification accuracy of the
CNNs models decreases when the network becomes deeper [31],
[32]. Therefore, the deep residual network-based fusion frame-
work for hyperspectral and LiDAR data' is proposed. Using
the framework, we present one feature-level fusion method
called residual network-based deep feature fusion (RNDFF)
and two decision-level fusion methods named residual network-
based probability reconstruction fusion (RNPRF) and residual
network-based probability multiplication fusion (RNPMF). For
the feature-level fusion, the deep features fusion strategy is
utilized to extract high-level and low-dimensional features of
hyperspectral and LiDAR images. The fusion features can be
obtained by stacking of deep features [33], [34] or composite
kernels [35]. In RNDFF, the deep features of each source are
extracted by a deep residual network and are stacked to generate
fusion features which are classified by softmax classifier [36].
RNDFF fuses the features in the hidden layer of deep residual
networks, which is different from feature stack fusion strategy
in [29]. RNDFF can overcome the dimension selection problem
and offer better classification performance. For the probability
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fusion framework, the deep features of each source are input
to the softmax classifier to obtain the probability matrices. In
RNPREF, the probability matrices are fused by weighted addition
to produce the final label assignment. In RNPMF, the proba-
bility matrices are fused by array multiplication. RNPRF and
RNPMF can alleviate the shortcomings in traditional feature
and decision-level fusion methods and have no parameter to be
adjusted during the fusion process. Note that the RNPRF and the
RNPMF belong to probability fusion which is newly proposed
for HSI and LiDAR fusion classification.

In the proposed fusion methods, the spatial features of hy-
perspectral and LiDAR images are first extracted. For HSI, it
has been proven that spatial context information is helpful to
improve classification accuracy of HSI [37]. For LiDAR images,
shape and texture information are extracted by spatial feature
extraction algorithms. Here, extinction profile (EP) and local
binary pattern (LBP) are extracted as spatial features due to
their effectiveness [30]. Recently, the spectral-spatial residual
network (SSRN) is proposed for HSI classification [38]. The
network structure of the SSRN is utilized because it can extract
excellent high-level features from 3D data and be more robust
and deeper than traditional 3D CNN used in [39]. In order to
make our proposed fusion frameworks for actual data (G-LiHT
data), calibration method [40] is used because it includes five
kinds of data, i.e., hyperspectral images (I m), Google Earth
RGB (0.25 m), LiDAR CHM (1 m), LiDAR DTM (1 m), and
LiDAR slope (1 m).

The main contributions of this article are listed as follows.

1) This article proposes three novel methods for the fusion
of HSI and LiDAR image based on the EP, LBP, resid-
ual network, and probability fusion. The proposed fusion
algorithms, i.e., RNPRF, RNDFF, and RNPMEF, have no
additional parameters to choose, easy implementation, and
excellent classification performance for the LiDAR and
HSI fusion.

2) A deep residual network-based fusion framework for HSI
and LiDAR data is proposed.

3) The proposed fusion frameworks can be extended to any
spatial features and any deep learning network structures
for multisensor data fusion.

The rest of the article is organized as follows. Section II
presents the methodology. Section III introduces experiment
data, the experiment setup, and experimental results. Section IV
concludes this article.

II. METHODOLOGY

Fig. 1 illustrates the proposed residual network-based fusion
framework for classification of HSI and LiDAR images.

Fig. 2 shows the proposed probability reconstruction strategy
for RNPRF and RNPMF. All data are separated into three
datasets, which is a training sample set, validation sample set,
and testing sample set. The framework has two parts: The
training part and the testing part.

In the training part, spatial features are first extracted from
hyperspectral images and LiDAR images. EP features and LBP
features are stacked as the spatial features, which are abbreviated
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Fig. 1. Proposed residual network-based fusion framework.

as EPLBP. Then we have three input sources: HSI, HSI_EPLBP,
and LiDAR_EPLBP. For each source, the training samples and
their ground-truth labels update the parameters of the SSRN
model through multiple iterations. In each iteration, an interim
model is produced, and the validation samples and their cor-
responding labels are used to supervise the training process
by calculating the classification accuracy of interim models on
the validation set. Finally, the interim model with the highest
classification accuracy for the validation set is selected as the
final model. At the end of the training part, three final models
are obtained.

In the testing part, the testing samples of HSI, HSI_EPLBP,
LiDAR_EPLBP are input into three final models. The probabil-
ity matrix of each source is obtained. Then three probability
matrices are reconstructed by weighted addition. The recon-
struction parameters are calculated by validation samples and
validation labels. To produce the reconstruction parameters, the
validation samples of HSI, HSI_EPLBP, LiDAR_EPLBP are
input into three final models. Three probability matrices of the
validation set are obtained and are fitted to the ground-truth
label of the validation set by weighted addition. The weighted
parameters are used for the reconstruction of three testing prob-
ability matrices. Finally, the reconstructed probability matrix of
the testing set is utilized to produce the final label assignment.

Fig. 3 shows the proposed deep feature fusion strategy
of RNDFF. HSI samples, HSI_EPLBP samples, and Li-
DAR_EPLBP samples are the input of the network. For each
source, deep features are extracted by SSRN. Then deep features
of three sources are stacked as the fusion feature. Finally, the
fusion feature is the input of dense softmax to produce the
probability matrix. In the deep feature fusion strategy, features
are fused in the hidden layer of the deep learning network.
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A. Spatial Features

The spatial features of HSI contain texture and shape informa-
tion, and the spatial features of LiDAR data contain elevation,
texture, and shape information, which benefit to the classifica-
tion task. Since DTM and CHM are images in the form of 2D
matrices, deep feature extraction cannot be performed using a
3D residual network on LiDAR images. The spatial features of
HST are also extracted as one data source for the deep residual
network because the spatial contexture information benefit to
improve the classification accuracy of HSI [37]. EP and LBP
are selected as spatial feature extraction algorithms.

1) Extinction Profile: The extinction profile (EP) [41], [42]
is made up of a sequence of thickening and thinning transforms
acquired by a set of extinction filters (EFs) which preserve the
relative image extrema. The EP for the input grayscale image H
is described as [41]

EP(H) = {¢™ (H),¢"2(H), - ¢"s (H),H

thickening profile

yPrs (H),vPs-1 (H), - - yP (H)} ()

thinning profile

where the terms v and ¢ are thinning and thickening transforms,
and P, : {P,}(i=1,...,5), a set of S ordered predicates
(ie., P, € P, ,i < k) which determine the number of extrema
in EP.

To obtain the EP features from HSI, independent component
analysis (ICA) is used to extract relatively independent and
the most informative components at first. Then, three indepen-
dent components (ICs) are used as base images to create the
EP [41]: EP(H) = {EP(IC,),EP(IC3), EP(IC5)}. EP(IC)
contains multiple attributes (e.g., volume, height, diagonal of
bounding box, area, and standard deviation).

In order to obtain the EP features from the DTM and the CHM,
EP with multiple attributes are directly extracted from the CHM
and the DTM.

2) Local Binary Pattern: LBP [43] is one of the grayscale
and rotation-invariant texture operators. LBP features which
are unlike the EP features focus on the texture information.
LBP features can virtually be utilized for the classification of
HSTI [44]. Therefore, LBP features are used together with EP
features as spatial features.

For a center pixel y., a binary value is assigned to each
neighbor of y. in a local window. If the coordinate of
ye is (0,0), the coordinates of m neighbors {y;}7' are
(—rsin(2wi/m), r cos(2mi/m)).

The LBP is an m-bit binary code obtained by thresholding the
neighbors {y; }7 " as

m—1
LBPmJ‘(yC) = Z U(yi — ye) x 2! 2
=0
where y; —y. >0, U(y; —y.) =1and y; —y. <0, U(y; —

ye) = 0.

To extract the LBP features for HSI, principal component
analysis (PCA) [45] is first utilized to hyperspectral images.
Next 2 is applied to the principal components of HSI. Since the
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Classification map

Framework of the proposed probability reconstruction fusion strategy applies to G-LiHT real data. The framework shows a testing sample of the fourth

class, which was misclassified by three classifiers utilizing each single source, but correctly classified by the fusion method.

CHM and the DTM have only one band, 2 is applied to the CHM
and DTM to calculate the LBP code. After calculating the LBP
code, an occurrence histogram is acquired as a nonparametric
statistical estimate on the local patch. Then, a binning procedure
isrequired to guarantee that the histogram features have the same
dimension. Finally, LBP features are stacked with EP features.
Fig. 2 shows that HSI_EPLBP is the stacked features of
the EP and the LBP features for HSI, while LiDAR_EPLBP
is also the stacked features which can be described as
[CHM_EP;CHM_LBP;DTM_EP;DTM_LBP].

B. Residual Network

A part of Fig. 3 in the yellow block shows the network
structure of the SSRN. SSRN continuously extracts the z-axis
features and the xy-axis features for the 3D input data. For HSI,
the z-axis features represent spectral features and the zy-axis
features represent spatial features. For EPLBP features, the
z-axis feature represents the spatial features of different at-
tributes under the same block, and the xy-axis feature represents
the spatial features of the data block under the same attribute.
SSRN is applied to extract useful features of the 3D data for
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Fig. 3. Framework of the SSRN-based deep feature fusion.

classification automatically [38]. We take the 3D samples of
the G-LiHT HSI with a size of 7 x 7 x 114 as an example to
illustrate the SSRN which is shown in the top yellow block of
the Fig. 3.

For the z-axis feature learning, 24 1 x 1 x 7 kernels with a
subsampling stride of (1, 1,2) convolve the input tensor of HSI
to produce 24 7 x 7 x 54 feature cubes in the first convolutional
layer. Because the raw input data with high dimension has
redundant information, the purpose of this layer is to remove
some of the redundant information. Then, two consecutive resid-
ual blocks learn the deep z-axis feature. Each residual block
contains two convolutional layers and one identity mapping
with 24 1 x 1 x 7 vector kernels. Padding is utilized in the
residual block to ensure that the output cubes are the same
size as the input data. In order to maintain the discriminative
spectral features, 128 1 x 1 x 54 vector kernels are used, and
the resulting 7 x 7 x 128 cube is utilized as the input to extract
the xy-axis features.

l I 3x3x1,24

[j] Ly
CONVBN. [ﬁ] CONVBNI [ﬁ] (‘Oh\BV' [ﬁ] CONVBN' @ cohvBV. [ﬁ]

5x5x1.24 |

Addition

Deep Feature
3x3x1,24
(1 11

veragePooling
phreragePooing Ly 2y

—tp —>/

For the xy-axis feature learning, to extract low-level xy-axis
features, 24 3 x 3 x 128 kernels with a subsampling stride of
(1,1, 1) convolve the input data to produce 24 5 x 5 x 1 feature
cubes in the first convolutional layer. Next, similar to their z-
axis counterparts, two residual blocks are used to learn deep
xy-axis features. For each convolutional in the residual block,
24 3 x 3 x 1 kernels and padding are used. Finally, an average
pooling layer converts the extracted 24 5 x 5 x 1 deep feature
toa24 1 x 1 x 1 feature. Through the flatten layer, deep 1 x 24
features for classification are obtained.

C. Fusion Strategies

Three fusion strategies based on residual networks are pro-
posed, which is probability reconstruction, deep feature fusion,
and probability multiplication.

1) Probability Reconstruction: For the deep residual net-
work, an obtained deep feature is input into the dense softmax



GE et al.: DEEP RESIDUAL NETWORK-BASED FUSION FRAMEWORK FOR HYPERSPECTRAL AND LIDAR DATA

layer to obtain the probability vector. In the probability vector,
the category corresponding to the maximum value is the cate-
gory that the sample most likely belongs to. Therefore, we use
probability reconstruction to fuse the probability matrix from
HSI, HSI_EPLBP, and LiDAR_EPLBP. Such a fusion strategy
draws on the ideas in [46] and [30], because the probability and
the residual can also represent categories indirectly.

Letp(y) = [p1(y), p2(¥)s-- - 2u(y), - - -, pc(y)] represent the
probability vector for a testing sample y, where C' stands for the
total number of the classes and p;(y) is the output of the dense
softmax layer and indicates the probability that the sample y
belongs to the [ class. The probability reconstruction is described
as

p(y;) = abpusi(y;) +b(1 — a)pusi_errer(Y;)
+ (1 —=b)pripar eprrer(y;) €))

where pHSI(yZ‘), pHSI_EPLBP(yi), and TLiDAR_EPLBP(yi)
stand for the probability vectors from HSI spectral features,
stacked EP and LBP features of HSI, and stacked EP and LBP
features of LiIDAR, respectively. The parameters a and b control
weights of three probability vectors. Finally, category label is
computed using

1 ) = ).
class(y;) = arg max _(p(y;)) (4)

The weighting parameters a and b can be calculated by the
validation set and the fused probability vector can be obtained
as

p(vi) = abprsr(vi) +0(1 — a)pasr_eprer(Vi)
+ (1 =b)pripar_eprrer(Vi) (3)

where v; is the ith sample in the validation set, prgr(v;),
pusr_epLBp(Vi),and 7ripar_pprpp(vi) stand for the prob-
ability vectors from HSI, HSI_EPLBP, and LiDAR_EPLBP, re-
spectively. The prediction label of the validation set is calculated
as

class(v;) = arg l:mg?fc(p(vl)). (6)

Because the ground-truth label of the validation set is known,
all the values of a, b in steps of 0.01 from O to 1 can be traversed
to find the max OA for the validation set. The parameter a, b
corresponding to the max OA is used in (3). As shown in Fig. 2,
a testing sample of the fourth class which was misclassified
by three classifiers utilizing each single source, but correctly
classified by the fusion method.

2) Deep Feature Fusion: Fig. 3 displays the network of the
proposed deep feature fusion strategy. The testing samples of
HSI, HSI_EPLBP, and LiDAR_EPLBP are the input into the
SSRN network. Then, deep features of each source are extracted.
The size of the deep feature is 1 x 24. The three kinds of deep
features are stacked to obtain the fusion features whose size is
1 x 72. In the end, the fusion features are input into the dense
softmax layer to obtain the probability matrix. The probability
matrix can be converted to the labels by (4). No additional
parameters are required for the deep feature fusion strategy.
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3) Probability Multiplication: Inspired by the Bayesian soft
fusion [47], we proposed the probability multiplication fusion.
The advantage of the probability multiplication fusion is that
no additional parameters are needed in the fusion process, and
the probability multiplication fusion does not require an addi-
tional validation set compared to the probability reconstruction
method.

Assume that the corresponding labels of the testing sample y
under the HSI, HSI_EPLBP, and LiDAR_EPLBP features are
W;, V;, and Q;. The ideal classification result is

P(W:. V. O: .

Since the HSI, HSI_EPLBP spatial features, and Li-
DAR_EPLBP spatial features belong to different types of fea-
tures or different image sources, the probability of the three clas-
sification labels for the same coordinate y; point is independent.
Thus, the fusion equations can be designed as

P(W;, Vi, Qily,y,y) = P(Wily) - P(Vily) - P(Qily)  (8)
P(y;) = Pusi(yi)- * Pusr_eprep(Y:)
% Pripar_eprrr(Yi)- 9)

Finally, class label is assigned according to (4).

III. EXPERIMENTAL RESULTS

In the experimental part, two HSI and LiDAR datasets were
used. The parameter selection process of our methods and the
compared methods were introduced. The proposed methods
were evaluated by visual comparison and classification metrics
like average accuracy (AA), overall accuracy (OA), and Kappa
coefficient.

A. Data

1) 2012 Houston Data: 2012 Houston data contain HSI and
LiDAR DSM data which were gathered on June 2012 across
the University of Houston campus and the neighboring urban
area. The data can be downloaded via the web page.” The
hyperspectral image consists of 349 x 1905 pixels and has 144
spectral bands with a wavelength range of 380 to 1050 nm.
The corresponding DSM data consist of 349 x 1905 pixels. The
spatial resolution of DSM and HSI is 2.5 m. The HSI was
gathered on June 23, 2012, between 17:37:10 and 17:39:50
UTC with 5500 feet the average height of the sensor. The
LiDAR data were gathered on June 22, 2012, between 14:37:55
and 15:38:10 UTC with 2000 feet the average height of the
sensor. 2012 Houston data include 15 classes which were set
by the DFTC via photointerpretation. Table I gives the number
of training, validation, and testing samples. In the experiment,
training samples and testing samples are standard and given, and
validation samples are randomly chosen from testing samples in
order to supervise the network and select parameters. Fig. 4
displays HSI, LIDAR DSM, and the areas of the training and

2 [Online]. Available: http:/openremotesensing.net/knowledgebase/matlab-
codes-for-fusion-of-hyperspectral-and-lidar-data/
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TABLE I
2012 HOUSTON: NUMBER OF TRAINING AND TESTING SAMPLES

Class Number of Samples
No  Name Training  Validation  Testing
1 Grass Healthy 198 100 1053
2 Grass Stressed 190 100 1064
3 Grass Synthetis 192 100 505
4 Tree 188 100 1056
5 Soil 186 100 1056
6 Water 182 100 143
7 Residential 196 100 1072
8 Commercial 191 100 1053
9 Road 193 100 1059
10 Highway 191 100 1036
11 Railway 181 100 1054
12 Parking Lot 1 192 100 1041
13 Parking Lot 2 184 100 285
14 Tennis Court 181 100 247
15  Running Track 187 100 473
Total 2832 1500 12197

Bl Grass Healthy Grass Stressed Grass Synthetis [l Tree I Soil
Water I Residential I Commercial Road Highway
Railway Parking Lot 1 Parking Lot2 [l Tennis Court [l Running Track

Fig. 4. 2012 Houston data—From top to bottom: The HSI utilizing bands 30,
40, and 60, as blue, green, and red respectively; LIDAR DSM image; labeled
training samples; labeled testing samples; and the legend of different classes.

testing samples. It is worth noting that there is a cloudy area on
the right side of the Houston data, which poses a challenge to
the fusion algorithm design.

2) Wertheim Data: Wertheim data come from Goddard’s
LiDAR, Hyperspectral, and Thermal (G-LiHT) data. The G-
LiHT Airborne Imager [48] supplies coregistered LIDAR DTM,
LiDAR CHM, LiDAR Point Cloud, hyperspectral reflectance
image at 1-m spatial resolution, and Google Earth overlay by
keyhole markup language (KML) at 0.25-m spatial resolution.
The G-LiHT data can be downloaded for free via the web page.’

Experiments are conducted on the HSI, CHM, and DTM
data which were collected on June 2016 across the Wertheim
region (the geographical coordinate is at 40°46/30" latitude,
—72°52'48" longitude). The hyperspectral image has 114 bands

3[Online]. Available: https://glihtdata.gsfc.nasa.gov
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TABLE II
WERTHEIM: NUMBER OF TRAINING, VALIDATION, AND TESTING SAMPLES

Class Number of samples
No Name Training  Validation  Testing
1 Tree 811 969 177163
2 Sea 182 224 10416
3 Sand 130 135 4548
4 Commercial 96 95 1024
5 Pool/Water 50 44 191
6 Major thoroughfares 334 382 4604
7 Bare soil 326 328 6230
8 Road 372 370 6893
9 Parking lot 191 163 1458
10 Grass 296 303 2890
11 Residential grey 116 119 725
12 Residential coffee 144 144 1271
13 Solar panel 30 30 95
14 Car 116 113 420
15  Electric wire 138 140 1052
Total 3332 3559 218980

Validation set

Testing set

Ground-truth

Fig.5. Wertheim—The HSI data utilizing bands 20, 30, and 40, as blue, green,
and red respectively; LIDAR CHM image; LIDAR DTM image; Ground-truth;
labeled training samples; labeled validation samples; labeled testing samples;
and the legend of different classes.

with spectral range of 420 to 950 nm. The spatial resolution
of HSI, CHM, and DTM is 1 m. The dataset of the entire
scene contains 501 x 1523 pixels. According to the calibration
method [40], ground-truth is obtained and 15 categories are
in the Wertheim data. After obtaining the ground-truth, we
manually select the samples from some regions in ground-truth
as training and validation sets. Since training samples of the
2012 Houston data were selected by regions, we follow the
same way. Table II shows these categories and the corresponding
number of training, validation, and testing samples. Fig. 5 gives
HSI, CHM, DTM, the labeled ground-truth, the positions of the
training samples, the positions of the validation samples, the
positions of the testing samples, and legend of 15 categories.

B. Comparison of Methods

HSI, HSI_EPLBP, LiDAR_EPLBP present the clas-
sification accuracies of HSI, HSI_EPLBP, LiDAR_EPLBP di-
rectly using SSRN in the experiment. Four fusion methods are
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used for comparison due to their popularity, which are briefly
described as follows.

Stacking means the direct stacked feature of HSI and
LiDAR data. For Houston data, the direct stacked fea-
ture is HSI+DSM. For Wertheim, the stacked feature is
HSI+CHM+DTM. CHM+DTM has better classification per-
formance than DSM [40], but Houston data only provides
DSM. Feature stacking (FS) means the stacked feature of HSI,
HSI_EPLBP, LiDAR_EPLBP. The generalized graph-based fu-
sion (GGF) [23] algorithm is utilized as a comparison algorithm.
Max voting (MV) means HSI, HSI_EPLBP, LiDAR_EPLBP are
fused by 10, where Ly g;(x;) means the category label of HSI
sample, Lirs; gpprpp(x;) is the category label of HST_EPLBP
sample, and Ly;par rprpp(x;) is the category label of Li-
DAR_EPLBP sample. When the three labels are inconsistent,
the label of HSI is selected as

Lysi pprepr(x;)
Lusr eprer(®:i) = Lripar_ eprep(2:)
Lysi(x;) else.

L =

(10)
It is worth noting that the validation set is still used to supervise
the training process. Therefore, the validation set cannot be used
as additional samples of training for the MV strategy.

The four proposed methods to be investigated are: Residual
network-based probability reconstruction fusion (RNPRF) using
the framework shown in Fig. 2, residual network-based deep
feature fusion (RNDFF) using the framework shown in Fig. 3,
and residual network-based probability multiplication fusion
(RNPMF) using the probability multiplication fusion strategy.
Compared with RNPRF, RNPMF does not require additional
parameters. RNPRF.*RNDFF is that the probability matrices of
the RNPRF are combined with the probability matrices of the
RNDFF by array multiplication as

P(y;) = Penprr(Yi). * PRnDFF (Yi)- (11)

C. Parameter Settings

For parameter selection for generating EP features, « is set
to 5, and s is set to 7 according to [29], [42]. For LBP features,
the parameters (m,r) is selected as (8, 1) and the size of the
local patch is selected as 21 x 21 according to [43]. For the
2012 Houston data, the HSI_EPLBP has 225 EP features and
590 LBP features, and LiIDAR_EPLBP has 75 EP features and
59 LBP features. For Wertheim data, the HSI_EPLBP has 225
EP features and 590 LBP features, and LIDAR_EPLBP has 150
EP features and 118 LBP features.

There are four parameters to be set for the residual network:
The learning rate, the spatial size of the input cubes, the kernel
number of convolutional layers, and the number of residual
blocks, which control the training process and classification
accuracy of the trained network. Since the training set is small,
the batch size is set to 16. In the training process, the models
with the highest classification performance in the validation set
are retained, and all the results are generated by these optimal
models. In each training process, 200 epochs are sufficient for
the SSRN to converge [38].
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TABLE III
OA (%) OF THE RESIDUAL NETWORK WITH DIFFERENT INPUT SIZES

OA Input Size HSI HSI_EPLBP LiDAR_EPLBP

3x3 87.24 85.75 57.56

5x5 87.55 86.37 61.23

Houston 7x7 88.18 87.19 63.33
9x9 87.58 87.76 62.39

11x11 88.98 87.77 66.29

3x3 98.58 99.19 97.83

5x5 98.70 99.31 98.12

Wertheim 7x7 99.19 99.46 98.19
9x9 99.39 99.34 98.26

11x11 99.05 99.30 98.48

TABLE IV

OA (%) OF THE RESIDUAL NETWORK WITH DIFFERENT KERNEL NUMBERS

OA Kernel Numbers ~ HSI  HSI_EPLBP  LiDAR_EPLBP

8 86.37 78.25 47.00

Houston 16 90.75 87.81 61.74
24 88.98 87.77 66.29

32 89.11 88.16 67.63

8 98.89 97.04 97.46

Wertheim 16 99.39 98.93 97.99
24 99.39 99.46 98.48

32 99.25 99.35 97.14

The learning rate controls convergence speed. In particu-
lar, inappropriate learning rate settings will result in diver-
gence or slow convergence. In the experiment, the grid search
method is used, and the optimal learning rates are selected from
{0.01,0.003,0.001,0.0003,0.0001,0.00 003} for each dataset.
According to the classification result, the learning rates of
Houston HSI and HSI_EPLBP are selected to be 0.0003, and
the learning rates of Houston LiDAR_EPLBP is set to 0.0001.
For Wertheim data, the learning rates are selected to be 0.0003
for all three features.

Table III shows OA (%) of the residual network with different
input sizes. For Houston data, as the sample size increases, the
classification accuracy increases. For Wertheim data, the input
size of HSI with the highest classification accuracy is 9 x 9,
the input size of HSI_EPLBP with the highest classification
accuracy is 7 x 7, and the input size of LIDAR_EPLBP with
the highest classification accuracy is 11 x 11. A larger sample
input size may not guarantee higher classification accuracy,
because larger input samples may increase interference from
other classes of samples.

Fig. 3 shows that the SSRN has the same kernel numbers
in each convolutional layer of the residual blocks. In Table IV,
the classification accuracy of the residual network under three
features is tested, where the kernel number is from 8 to 32, with
an interval of 8. In Table IV, for the Houston data, the models
with 16 kernels in each convolutional layer of the residual blocks
offer the highest classification accuracy for HSI, and the models
with 32 kernels produce the highest classification accuracy for
HSI_ELPBP and LiDAR_EPLBP. For the Wertheim data, the
models with 24 kernels achieve the best performance for the
three features.

The number of residual blocks represents the depth of the
residual network and describes the representation capability of
the residual network. Table IV shows the OA (%) of the residual
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Houston TABLE V
OA (%) OF THE RESIDUAL NETWORK WITH DIFFERENT NUMBERS OF
RESIDUAL BLOCKS. THE a+3 MEANS AN SSRN USING « Z-AXIS RESIDUAL

7095 BLOCKS AND 3 X-AXIS AND Y-AXIS RESIDUAL BLOCKS
I
=1
g 09
< OA Residual Block Numbers  HSI  HSI_EPLBP  LIDAR_EPLBP
Eoss T+1 87.56 86.79 67.11
3 142 89.74 87.83 67.46
2 08 2+1 88.72 88.28 67.23
k| Houston 242 90.75 88.16 67.63
Sors 342 87.23 89.46 70.42
g 2+3 90.10 86.69 67.72
3 07, 343 88.51 86.81 66.88
1 T+1 99.20 99.18 98.19
142 99.31 99.14 97.74
2+1 99.17 99.28 98.12
Wertheim 242 99.39 99.46 98.48
342 99.36 99.30 98.47
243 99.13 99.54 97.94
343 98.69 99.51 98.37
1
e TABLE VI

) ‘\‘ i
\”wmu”mmm

H”HHH i HOUSTON DATA: CLASSIFICATION RESULT OF HSI, HSI_EPLBP, AND
1 LIDAR_EPLBP ACHIEVED BY THE SSRN
I ””\H‘””‘”w\‘\‘f\‘\‘\‘\wm““

\ \

e

”””HHHH\H m‘\‘\‘\‘\N‘MWW\MU HST HSI_EPLBP LiDAR_EPLBP
1

Overall Classification Accuracy

1 82.24 79.39 27.35
2 85.15 84.87 65.70
3 99.80 98.61 84.55
4 93.09 96.21 68.56
5 100.00 100.00 88.73
b 00 T oa 6 95.80 100.00 79.02
7 85.26 91.70 79.38
Fig. 6. Parameter a and b selection result for RNPRF. 8 84.14 83.29 84.71
9 88.57 83.95 53.82
10 91.80 100.00 74.23
network with different numbers of residual blocks. Table IV i; gggg 27 gg 150903)80
shows that for Houston’s HSI, HSI_EPLBP, LiDAR_EPLBP 13 88: 0 80270 72:63
features, the models with the highest classification accuracy 14 100.00 100.00 100.00
contain 2 4 2, 3 4 2, 3 4 2 residual blocks, respectively. For 15 97.67 94.93 41.44
Wertheim’s HSI, HSI_EPLBP, LiDAR_EPLBP features, the OA 90.75 89.46 7042
models with the highest classification accuracy contain 2 + 2, K[;ﬁ) . 09 fl$§9996 093'87507 07 é'79954
2 + 3, 2 + 2 residual blocks, respectively. The model with the - - -
highest classification accuracy of HSI_EPLBP features requires
more residual blocks than that of HSI because the dimension of TABLE VII
HSI_EPLBP features (815) is higher than the dimension of HSI WERTHEIM DATA: CLASSIFICATION RESULT OF HSI, HSI_EPLBP, AND
(114). LIDAR_EPLBP ACHIEVED BY THE SSRN
For the RNPRF, Fig. 6 describes the parameter selection
process for (5) and (6). For Houston data, the parameter a and HSI HSI_EPLBP LiDAR_EPLBP
b are selected by validation set as 0.61 and 0.72, respectively, 1 99.98 99.92 99.87
while for Wertheim data, they are 0.65 and 0.51, respectively. 2 99.90 100.00 98.17
For the GGF, the numbers of nearest neighbors of features i 16(1&050 16010.;?30 gg;g
were selected as 150. For Wertheim data, EP+LBP CHM fea- 5 100.00 100.00 100.00
tures and EP+LBP DTM features are stacked as one of the 6 96.31 98.07 88.12
inputs to the GGF. The GGF uses the support vector machine 7 100.00 100.00 97.67
(SVM) classifier, whose parameters (i.e., ¢ and g) are tuned via 8 93.75 99.33 89.37
S . . 9 99.04 94.17 77.30
cross-validation. For Houston data, after the GGF, the dimension 10 99.69 99.97 69.97
of the fusion features with the highest classification accuracy is 11 87.17 98.21 94.76
38. For Wertheim data, the dimension of the fusion features with 12 100.00 100.00 100.00
the highest classification accuracy is 74. 13 100.00 100.00 100.00
14 93.81 95.48 99.52
15 81.84 79.09 97.62
D. Experimental Results and Discussion OA 99.39 99.54 98.48
AA 94.40 95.04 92.80
Tables VI and VII show the classification result of HSI, Kappa  0.9820 0.9865 0.9553

HSI_EPLBP, and LiDAR_EPLBP achieved by the SSRN for



GE et al.: DEEP RESIDUAL NETWORK-BASED FUSION FRAMEWORK FOR HYPERSPECTRAL AND LIDAR DATA 2467
TABLE VIII TABLE IX
HOUSTON DATA: CLASSIFICATION RESULTS ACHIEVED BY EIGHT WERTHEIM DATA: CLASSIFICATION RESULTS ACHIEVED BY
FUSION METHODS EIGHT FUSION METHODS
Stacking FS MV GGF Stacking FS MV GGF
1 82.15 78.73 78.63 81.48 1 99.97 100.00 99.99 99.97
2 85.15 85.15 85.15 84.21 2 100.00 100.00 100.00 97.89
3 99.01 97.82 98.61 100.00 3 100.00 100.00 100.00 100.00
4 98.77 92.61 93.09 92.80 4 70.41 98.93 73.24 87.01
5 100.00 100.00 100.00 97.63 5 100.00 100.00 100.00 90.05
6 95.80 100.00 95.80 95.80 6 97.81 97.74 98.96 99.44
7 82.00 98.97 90.21 92.72 7 100.00 100.00 100.00 100.00
8 95.54 79.01 87.08 90.12 8 96.69 94.47 98.24 97.40
9 95.00 99.15 91.69 87.82 9 94.44 76.95 96.57 95.82
10 63.90 90.93 95.66 67.08 10 99.72 99.62 99.72 99.86
11 98.67 100.00 96.30 95.45 11 98.90 100.00 97.38 92.00
12 90.59 92.51 99.23 94.04 12 99.84 100.00 100.00 94.41
13 90.18 74.74 89.82 78.95 13 91.58 100.00 100.00 96.84
14 100.00 100.00 100.00 100.00 14 94.76 99.52 96.67 97.62
15 100.00 99.58 97.25 99.58 15 94.20 99.90 86.22 99.81
OA 90.35 92.15 92.36 89.39 OA 99.60 99.61 99.68 99.62
AA 91.78 92.61 93.24 90.51 AA 95.89 97.81 96.47 96.54
Kappa 0.8954 0.9147 0.9171 0.8848 Kappa 0.9883 0.9886 0.9906 0.9887
RNPMF RNPRF RNDFF RNPRF.«* RNDFF RNPMF RNPRF RNDFF RNPRF.«* RNDFF
1 78.63 78.63 79.39 79.49 1 100.00 100.00 100.00 100.00
2 84.96 85.15 82.61 85.06 2 100.00 100.00 99.99 100.00
3 91.68 98.42 98.02 98.22 3 100.00 100.00 100.00 100.00
4 95.27 95.93 92.52 93.37 4 81.64 80.27 91.50 84.28
5 100.00 100.00 100.00 100.00 5 100.00 100.00 100.00 100.00
6 100.00 100.00 93.01 95.80 6 99.57 99.04 98.33 99.13
7 91.79 91.70 91.79 95.24 7 100.00 100.00 100.00 100.00
8 93.83 95.54 84.24 90.22 8 99.25 98.16 96.84 98.42
9 81.78 95.66 83.76 89.24 9 97.05 93.07 99.38 99.52
10 96.33 97.68 91.12 97.30 10 99.41 97.44 99.86 99.93
11 100.00 100.00 98.01 100.00 11 99.17 98.76 98.90 99.72
12 85.59 99.42 99.62 100.00 12 100.00 100.00 100.00 100.00
13 85.61 89.82 73.68 89.12 13 100.00 100.00 100.00 100.00
14 100.00 100.00 100.00 100.00 14 97.14 98.57 98.33 98.81
15 95.56 97.25 100.00 100.00 15 83.08 90.68 95.82 96.20
OA 91.20 94.36 90.83 93.55 OA 99.76 99.70 99.79 99.83
AA 92.07 95.01 91.18 94.20 AA 97.09 97.07 98.60 98.40
Kappa 0.9045 0.9388 0.9004 0.9299 Kappa 0.9930 0.9911 0.9939 0.9951

the Houston data and the Wertheim data, respectively. The clas-
sification accuracy of Wertheim data is higher than the Houston
data because in the Wertheim testing samples, the tree samples
are the majority and tree samples in three features are easily
recognized by the classifiers. Therefore, for Wertheim data, AA
is much lower than OA. In addition, the spatial resolution of
Wertheim data is 1 m and the spatial resolution of Houston data
is 2.5 m. Therefore, Wertheim’s sample is less likely to contain
multiple objects and easy to be classified.

Table VIII shows the per-class accuracy, AA, OA, and Kappa
coefficient of our proposed methods and the compared methods
for the Houston data. As we can see, F'S offers higher accu-
racy than Stacking, which means that the EP+LBP features
are valid for the used deep residual network. The performance
of RNPRF is higher than MV because RNPRF fuses the
probability matrices, not the category labels, and even if the
results of the three classifiers are wrong, RNPRF can correct
the result, but the MV method cannot. Therefore, RNPRF can
achieve more accurate decision-level fusion. The GGF method
is a typical representative algorithm for stacking plus dimension
reduction fusion strategy. The RNPRE.*RNDFF is the combina-
tion of the RNPRF and the RNDFF. In Table VIII, the proposed
RNPRF, RNDFF, RNPMF, and RNPRF.« RNDFF
outperform the benchmark methods Stacking and GG F', which
demonstrates the effectiveness of proposed methods.

Table IX lists the accuracy of each class, AA, OA, and Kappa
coefficient of our proposed methods and the compared methods
for the Wertheim data. The classification accuracy of F'S' is
higher than Stacking for Wertheim data, which means that the
EP+LBP features are valid for the deep residual network. The
proposed RNPRE, RNDFF, and RNPMF again outper-
form the compared methods Stacking, F'S, MV, and GGF'.
As shown in Table IX, RNPRF.* RNDFF offers better
performance than RN PRF and RN DFF, which means that
the combination of proposed fusion frameworks may further
improve classification performance.

To show statistical significance in performance improvement,
we apply the nonparametric McNemar test [49], [50] to evaluate
Kappa accuracy improvement with the proposed methods for
Wertheim data. For two methods to be compared, f15 denotes
the number of samples that the first method misclassifies but
the second method can correctly classify. fsq is the number of
samples that the second method misclassifies but the first method
can correctly classify. Then, the McNemar’s test for two methods
can be defined as

5 = f127f21 (12)

Vi + fo

For a 5% level of significance, the corresponding z value is 1.96.
If z value is greater than 1.96, the second method is better than the
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Fig. 7. Comparison of the mapping results of Houston data.

TABLE X
z VALUES (AND SIGNIFICANCE) IN THE McNemar’s TEST FOR WERTHEIM
DATA (THE 5% LEVEL OF SIGNIFICANCE IS SELECTED)

RNPMF RNPRF RNDFF RNPRF.x RNDFF
Stacking  12.25(Yes)  6.84(Yes)  12.70(Yes) 17.11(Yes)
FS 9.58(Yes) 5.81(Yes) 12.35(Yes) 15.46(Yes)
MV 9.61(Yes) 1.86(No) 8.60(Yes) 14.45(Yes)
GGF 8.85(Yes) 4.75(Yes)  10.89(Yes) 14.10(Yes)
TABLE XI

7 VALUES (AND SIGNIFICANCE) IN THE MCNEMAR’S TEST FOR 2012 HOUSTON
DATA (THE 5% LEVEL OF SIGNIFICANCE IS SELECTED)

RNPMF RNPRF RNDFF RNPRF.* RNDFF
Stacking 2.99(Yes) 16.27(Yes) 1.60(No) 11.92(Yes)
FS -3.87(No) 10.42(Yes)  -5.56(No) 6.78(Yes)
MV -5.19(No) 14.33(Yes)  -6.67(No) 6.83(Yes)
GGF 4.91(Yes) 14.53(Yes)  3.96(Yes) 11.99(Yes)

first method, and the two methods have significant performance
discrepancy. Table X shows the z values when the Stacking,
FS, MV, and GGF methods are set as the location of the first
method and the newly proposed RNPMF, RNPRF, RNDFF, and
RNPRFE.*RNDFF methods are set as the location of the second
method in fi5 and fo; For Wertheim data. The performance of
the newly proposed methods is statistically better than bench-
marking methods, except that the discrepancy between RNPRF
and MV in the Wertheim data is statistically insignificant. For the
2012 Houston data in Table XI, RNPRF and RNPRFE.*RNDFF
perform the best.

Figs. 7 and 8 show the comparison of the mapping results of
Houston data and Wertheim data, together with the false-color
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Parking Lot 2 [l Tennis Court IBMRunning Track [ &
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image of HSI, LiDAR data, and the colors of the corresponding
category labels. Due to the limited number of testing samples, the
evaluation results may be incomplete. Therefore, it is necessary
to perform a full-image classification to more comprehensively
compare the classification performance of the fusion methods
especially for the unlabeled areas.

In Fig. 7, visual comparison between different methods is
in agreement with quantitative comparison in Tables VI and
VIII. As shown in Fig. 7, the GGF generated classification
map includes high level of great noise for Houston data. Fig. 7
shows that the proposed RNPRF, RNDFF, RNPMF produce
more accurate and smooth classification maps than GGF because
the SSRN can fully extract information of the sample tensors,
and the fusion strategies fully integrate the information in HSI
and LiDAR features. In Fig. 7, for the cloudy area in Hous-
ton, the RNDFF and the corresponding combination algorithm
RNPRFE.*RNDFF generate more accurate classification maps.

In Fig. 8, the visual comparison between different methods
matches the quantitative comparison in Tables VII and IX. As
shown in Fig. 8, the GGF generated classification map includes
obvious misclassification in the beach area, for instance, it
misclassifies some sea samples as trees. However, our proposed
method RNPRE, RNDFF, RNPMEF, and their combination algo-
rithms have more accurate and smooth classification maps than
GGF.

For the fusion classification of LiDAR and HSI data, some
methods have been proposed in recent years. But, many fusion
algorithms are very complex. Since the 2012 Houston dataset
is the standard dataset and given training and testing set, al-
gorithm comparisons are convenient. In Table XII, compared
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Fig. 8. Comparison of the mapping results of Wertheim data.

RNPRF.*RNDFF

TABLE XII
HOUSTON DATA: CLASSIFICATION RESULTS ACHIEVED BY SOME EXISTING METHODS AND RNPRF

Image-to-Image CNN[51]  PToP CNN[52] = CNN+ELM[53] H+L CNN[54] Proposed RNPRF
OA 86.81 92.48 92.57 87.98 94.36
AA 87.20 93.55 92.48 90.11 95.01
Kappa 0.8576 0.9187 0.9193 0.8698 0.9388

Table XII doesn’t need the bold entities because it is not for result comparison and just show the classification accuracy of each data source.

with the results of image-to-image CNN [51], PToP CNN [52],
CNN+ELM [53], H+L CNN [54] in their papers, our proposed
method RNPRF has higher classification accuracy in the 2012
Houston data.

Table XIII provides the training and testing time of the residual
network in various methods. We carried out all experiments on

an Intel Xeon E5-1620 v4 central processing unit and NVIDIA
2080 graphics processing unit machine with 64 GB of random
access memory. It is worth noting that the proposed RNPRF
and RNPMF methods can simultaneously use the SSRN to train
the HSI, HSI_EPLBP, and LiDAR_EPLBP features, which can
greatly save training time. In Table XIII, the slowest training
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TABLE XIII
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TRAINING AND TESTING TIME OF USING DIFFERENT METHODS

HSI HSI_EPLBP LiDAR_EPLBP  Stacking ES RNDFF  RNPRF  RNPMF

Houston Training Time(s)  2793.74 9563.04 2842.56 3526.13 891690  4969.12  9563.04  9563.04
Testing Time(s) 21.37 45.10 9.38 38.05 49.59 15.78 45.10 45.10

Wertheim Training Time(s)  2658.78 4616.27 3965.53 247242  8891.67 6600.07 461627  4616.27
Testing Time(s) 129.93 126.23 118.32 139.09 260.68 31.54 129.93 129.93

and testing time of HSI, HSI_EPLBP, and LiDAR_EPLBP
represent the training and testing time of RNPRF and RNPMF.
Fortunately, the support of GPUs has greatly reduced the extra
computational cost and shortened the training time.

It was noted that the selection of the validation samples is
important for the performance of the proposed methods because
both the model selection and the parameter selection of RNPRF
depend on the validation samples.

IV. CONCLUSION

A new framework is proposed for the fusion of hyperspectral
and LiDAR data based on EP, LBP, and deep residual net-
work. Specifically, EP and LBP features are extracted from two
sources. Then, the deep features of each source are extracted by
SSRN and fused by RNDFF. While for probability fusion, the
deep features of each source are extracted by the SSRN, and
probability matrices can be got through the softmax classifier.
Reconstruction probability matrices are fused by RNPRF and
RNPMF to generate the final classification map. The proposed
fusion algorithms, i.e., RNPRF, RNDFF, and RNPMF, have no
additional parameters to tune, and offer good universality and
excellent classification performance for the LiDAR and HSI
fusion and can be used for actual G-LiHT data. Our proposed
probability fusion strategy has been first applied to the fusion
classification of HSI and LiDAR images in the field of remote
sensing, and it is superior to some existing methods in perfor-
mance.
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