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Assisting UAV Localization Via Deep Contextual
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Abstract—In this article, we aim to explore the potential of
using onboard cameras and pre-stored geo-referenced imagery for
Unmanned Aerial Vehicle (UAV) localization. Such a vision-based
localization enhancing system is of vital importance, particularly in
situations where the integrity of the global positioning system (GPS)
is in question (i.e., in the occurrence of GPS outages, jamming, etc.).
To this end, we propose a complete trainable pipeline to localize
an aerial image in a pre-stored orthomosaic map in the context
of UAV localization. The proposed deep architecture extracts the
features from the aerial imagery and localizes it in a pre-ordained,
larger, and geotagged image. The idea is to train a deep learning
model to find neighborhood consensus patterns that encapsulate
the local patterns in the neighborhood of the established dense
feature correspondences by introducing semi-local constraints. We
qualitatively and quantitatively evaluate the performance of our
approach on real UAV imagery. The training and testing data is
acquired via multiple flights over different regions. The source
code along with the entire dataset, including the annotations of
the collected images has been made public.1 Up-to our knowledge,
such a dataset is novel and first of its kind which consists of 2052
high-resolution aerial images acquired at different times over three
different areas in Pakistan spanning a total area of around 2 km2.

Index Terms—Deep learning, neighborhood consensus
networks, remote sensing, SIFT, template matching, UAV,
vision-based localization.

I. INTRODUCTION

F INDING a template (source) patch in a relatively larger (tar-
get) image is a task of fundamental importance in numerous

computer vision applications including object detection, motion
estimation and tracking, image based retrieval in large database
systems, image registration/stitching, dense image matching for
3D reconstruction, and many others. It involves characterizing a
way to measure the similarity between the template − a known
reference pattern, i.e., representation of a patch or region of
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interest (ROI) in the source image − and the unknown test
patterns/regions in the target image via matching operation.

One particular application of template matching lies within
the domain of autonomous vision-based navigation where a
terrestrial (e.g., robots) [1] or an aerial (e.g., unmanned aerial
vehicles (UAVs) or drones) platform [2] [3] tries to localize
itself using visual cues. Specifically for UAV navigation, it
is of vital importance in situations where the integrity of the
global positioning system (GPS) is in question (i.e., the GPS
signals may get corrupted or become unavailable due to mul-
tipath reflections when operating close to obstacles, jamming,
or any other unforeseen reason). Consequently, the navigation
gets dependent solely on the inertial navigation system (INS)
based state estimation which in turn is subject to drifting be-
havior in time i.e., the localization error accumulates over time
which renders the estimation prone to errors and hence quickly
becomes unusable after a few seconds. Thus, the UAVs whose
localization estimation blindly relies on GPS signals are quite
exposed to malevolent activities and therefore need an alternate
autonomous navigation solution that is able to robustly cope
with long- and short-term GPS signal losses.

Since every UAV is equipped with an onboard vision sensor,
a viable solution is to extend the UAV localization capability
by searching the current video frame (source template) within
a pre-stored large map of orthomosaics (i.e., ortho-rectified
photo mosaics). The problem can be easily framed as a template
matching procedure where the naive implementations based on
normalized cross-correlation [4][5] could be used to localize
source image patches in the target orthomosaic map. However,
such an (aerial) image matching procedure is not that simple as
the template is often subject to complex deformations such as il-
lumination and viewpoint changes, variations in the background,
partial occlusions, and nonrigid deformations of the objects ap-
pearing in the scene. This makes the image matching procedure
highly challenging and therefore simple representations based
on intensity values alone have practical limitations.

More advanced representations based on mathematical trans-
forms (e.g., wavelet [6], Fourier [7], [8], annulus projec-
tion transformations [9]), or scale and rotation invariant fea-
ture descriptors (e.g., histogram of dominant gradients [10],
SIFT [11], SURF [12], ORB [13], BRISK [14], adaptive ra-
dial ring code [15] etc.) have been proposed. These invariant
descriptions encompassing the local and spatial context are
in turn used for feature matching by establishing correspon-
dences between them. The matching is often performed using
approximate nearest neighbor search based algorithms followed
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Fig. 1. Overview of UAV localization pipeline: The imagery from air-bound drone acts as an input to the system which is then matched through the presented
algorithm and projected to the pre-ordained orthomosaic. The projected pixel coordinates are then used to extract GPS coordinates from the geo-tagged orthomosaic
and these GPS coordinates in turn, aid in localization of UAV over the geographical map.

by post-processing strategies to enforce certain geometric con-
straints [16], [17]. However, these nearest neighbor approaches
may result in inaccurate matching in the absence of local texture.
To cope with such issues, few researchers have recently proposed
deep trainable architectures to extract robust features and estab-
lish correspondences for matching by analyzing relatively larger
context of the illuminated scene [18]–[23]. Such deep learning
based architectures improve matching accuracy in comparison to
handcrafted based approaches by directly learning meaningful
features for localization of the template image as its training
objective.

Inspired by the idea of end-to-end feature learning and match-
ing, this article presents a complete trainable pipeline to local-
ize an aerial image in a pre-stored given orthomosaic map in
the context of UAV localization as illustrated by Fig. 1. The
proposed deep architecture extracts features from the aerial
imagery and localizes it in a pre-ordained, larger and geo-tagged
image. The idea is essentially based on the concept of trainable
neighborhood consensus [20], [24], [25] which analyzes the
local patterns in the neighborhood of the established dense
feature correspondences by introducing semi-local constraints.
Such methods, however, have the following three drawbacks: 1)
they utilize local features at same scale which renders matching
of image pairs with large scale variances ineffective; 2) Some of
them (e.g., [20]) require (interactive) provision of pre-selected
key points in the source image to be matched in the target
image; 3) Lastly, particularly to UAV localization use-case, they
have limitation of not dealing with varying source and target
image dimensions. The proposed approach deals with all these

limitations and provides a complete framework for extracting
point to point correspondences between the two images. Fur-
ther to enable localization, the proposed method incorporates
certain stochastic constraints to find the best matches and uses
fully-connected layers to extract correspondences via regression
between the source template and the target orthomosaics of
varying dimensions. In the context to the proposed approach,
the following are the significant contributions.
� A complete end-to-end trainable architecture has been pro-

posed which simultaneously performs the feature learning
and template localization by imposing the probabilistic
constraints on the densely correlated feature maps of vary-
ing dimensions.

� The performance of the developed approach has been
quantitatively and qualitatively demonstrated on real UAV
imagery where the training and the testing data is acquired
via multiple flights over different regions.

� All the dataset including the annotations of the collected
imagery has been made public. Up-to our knowledge, such
a dataset is novel and first of its kind and consists of 2052
high resolution aerial images acquired at different times
over three different areas in Pakistan spanning a total area
of around 2 km2.

II. RELATED WORK

Several researchers have addressed the problem of template
matching in aerial images using scale invariant feature descrip-
tors based techniques. For instance, Shan et al. [2] studied the
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problem of UAV localization in GPS denied environments and
utilized optical flow to determine the UAV position. They used
inter-frame translation for pose-tracking and histogram of ori-
ented gradient features for registration on the Google maps and
later employed particle filtering for more refined localization.
Moreover, Canhoto et al. [26] designed a template matching
system to automate image sequence processing for autonomous
aerial navigation by employing the extracted SIFT features from
aerial imagery to estimate the UAV displacement for navigation.
Koch et al. [27] also explored SIFT features as a solution to the
problem of image matching for UAV. However, they concluded
that the scale-invariant features are not an efficient approach
to match aerial scenes. From image registration perspective,
Lin and Medioni [28] employed iterative frame-to-frame and
frame-to-map registration by exploiting mutual information to
find correspondences to match a frame in a UAV acquired image
sequence onto a reference high resolution map image. Similarly,
Solbrig et al. [29] also performed video frames registration
onto the prestored orthophoto. They first registered the first
video frame to the orthophoto and later used image mosiacking
to register subsequent frames using SIFT based key point de-
scriptors. Usually, these descriptive features are combined with
approximate nearest neighbor based approach [16] [9] to draw
matches between high-dimensional feature representations of
the images and obtain point-to-point correspondences between
images. However, all of these feature representations are not
descriptive enough to localize and match aerial imagery onto
the orthomosaics due to larger variance in local context and
illumination conditions [30]. Hence, employing deep feature
representations learned using deep neural network based algo-
rithms, which contain rich features encompassing larger context
of aerial scene via layers of representational learning may be
beneficial in developing robust solution towards the task of
template localization over the orthomosaic.

A few deep learning based template aerial matching ap-
proaches have been recently proposed in the literature. For
instance, Marcu et al. [31] proposed a cascaded deep learning
based semantic segmentation and regression framework for
vision-based location map prediction. Ahmad Nassar et al. [32]
used a deep convolution neural network based method for aerial
image matching and utilized it for localization of UAV. They
exploited semantic shape matching and U-Net based segmen-
tation to localize the current UAV frame onto a satellite map.
Zhuo et al. [33] presented a way of registering UAV imagery
by extracting dense and uniformly distributed features. They
proposed a one-to-many matching scheme with pixel distances
used as a global geometric constraint to verify whether the
matching is correct or not. Chen et al. [34] presented an ap-
proach that uses local deep hashing based matching of aerial
images. Altwaijry et al. [35] utilized attention mechanism in
deep networks and framed the task of aerial image matching as a
classification task. Noh et al. [36] have also proposed deep atten-
tive local feature (DELF) descriptors for image verification. Tian
et al. [37] proposed a siamese network based model to match
cross-view image pairs for localization in urban environments
using image pixels/patches belonging to buildings. Buniatyan
et al. [38] have improved template matching algorithm based

on normalized cross-correlation by using siamese convolutional
neural networks to maximize the difference between true and
false matches.

In the context of trainable template matching, Cheng et al. [19]
have applied deep neural network based bottom-up pattern
matching (BUPM) for spatial image localization. They have
also introduced a quality-aware template matching (QATM)
algorithm [18] which can also serve as trainable layer in deep
neural networks. They have used a soft-ranking among all
matching pairs between the deep features of an image to deal
with various template localization scenarios. Rocco et al. [20]
also proposed a trainable deep learning based method of extract-
ing point to point correspondences between the images using
neighborhood consensus network which takes two images i.e.
template and main image and extracts dense features from using
a deep learning-based feature extractor. The extracted features
are then refined using soft mutual nearest neighbor filtering to
build a correlation tensor which in turn is used to compute
the matches between the source and target images of similar
dimensions.

Most of the aforementioned algorithms, specifically the ones
which rely on deep learning, focus on aerial image matching
but do not include template localization over the target image
which needs a different approach. To this end, we have proposed
a matching and localization scheme by extracting dense features
between the source template and the larger pre-stored geo-coded
orthomosaic. For extraction of dense feature correspondences,
we have adapted the neighborhood consensus network [20]
trained on PASCAL-VOC [39] and InLoc [40] datasets to work
over the problem of aerial image matching. The adaptations
are necessary to enable scale invariant feature extraction as
well as to cope with varying sizes of the two images (i.e,
the source template and the large target orthomosaic). This is
achieved by incorporating the softmax based constraints over the
correlation matrix. This enables scale invariance as well as bet-
ter point-to-point correspondences by employing the strongest
feature matches between the differently sized images for better
localization. The details of the developed approach are presented
next in the following sections.

III. METHODOLOGY

Fig. 2 illustrates the proposed pipeline of the aerial image
localization network which is essentially based on feature point
learning using neighborhood consensus strategy that refines the
matches in the template image and the pre-stored orthomosaic.
This is achieved by exploiting the correlation information be-
tween the convolutional features of two images and subsequently
imposing probabilistic constraints to obtain the point-to-point
correspondences between them. To elaborate, the convolutional
features are extracted from the images by processing them
through a deep feature extractor. Subsequently, these feature
maps, which embody the local and global information, are used
to build a correlation matrix to encapsulate the feature matches
for each extracted feature point. The correlation matrix is then
processed through a trainable network that learns to establish
more reliable correspondences. Furthermore, the probabilistic
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Fig. 2. Proposed Algorithm: Template Image IT and orthomosaic IM act as two inputs to the pipeline as they are processed by the convolutional feature extractor.
The resulting feature maps ξM and ξT are then used in calculation of correlation tensor α. Subsequently, α is processed by 4D convolutional network and by
applying probablistic constraints over the processed correlation matrix α′, points of strongest feature matches are calculated. These points are then used to predict
point-to-point correspondance between IT and IM , which are further utilized for projection of template over orthomosaic. The blocks, i.e., “Application of Soft
Constraints” and “Clustering Using Highest Correlation” are detailed in Figs. 3 and 4.

constraints are added to these established correspondences to
associate each feature point in the source image with the feature
points of the orthomosaic. Similarly, the same is repeated for
the orthomosaic feature points. Later, using the generated prob-
ability maps, the soft-argmax layer is incorporated to extract the
indices of the best matches which are in turn passed through
a fully-connected network (acting as a regressor) to estimate
the point-to-point correspondences between the source and the
target images. All components of the pipeline are differentiable
and hence, the network is trained in an end-to-end fashion. In the
following subsections, we present further details of the proposed
pipeline.

A. Generating Refined Correlation Maps

Let us assume that the source (template) image IT and the
target image IM having dimensions 224 × 336 and 896 ×
896 respectively are processed by a fully convolutional neural
network (e.g., ResNet [41] in our case) to extract features maps.
The resulting feature maps ξT and ξM have downsized dimen-
sions of 1/32 of the respective image dimensions. These dense
feature maps are then used to compute the exhaustive pairwise
cosine similarities to get a 4D tensor α which represents the
correlation between each feature of ξT and ξM . The tensor α
has dimensions hT × wT × hM × wM , where hT and wT are
height and width of ξT while hM and wM are the height and
width of ξM . The pairwise cosine similarities are computed as
follows:

αijlm =
(ξTij , ξ

M
lm)

||ξTij ||2||ξMlm||2 (1)

where ijlm is the index of correlation between the features that
are in the local neighborhoods of ξTij and ξMlm. The generated cor-
relation tensor is subsequently processed by a 4D convolutional
neural network [20] that learns to exploit the correlation patterns
to ensure the extraction of spatially consistent feature point
matches. This three-layered neural network learns to identify
matches in a 4-D space by using 4D convolutions with a kernel

size of 3× 3× 3× 3. The learned network thus provides a
single channel 4D tensor α′ that represents filtered matches
between the two feature maps. We further apply soft mutual
nearest neighbor filtering to the correlation tensor before and
after processing through the 4D convolutional neural network
as presented in [20] to act as a global filtering mechanism which
reduces the weight of the matching scores which are not mutual
nearest neighbors to obtain a correlation tensor α′.

B. Extracting Pair-Wise Correspondences

Once the refined correlation maps are obtained, the next step
is to extract the pairwise feature correspondences between the
two feature maps. This is achieved by computing the probability
distributions using the soft-max function over the dimensions
corresponding to ξT and ξM as depicted in the following equa-
tions:

βT
ijlm =

eα
′
ijlm∑

ab e
α′

ablm
(2)

βM
ijlm =

eα
′
ijlm∑

cd e
α′

ijcd
(3)

In 2 and 3, β is a function of α′ and represents the scores
expressed as probability distributions showing the amount of
similarity between every pair of points in the two feature
maps.

From the implementation perspective, the correlation tensor
is reshaped into a single dimension along the dimensions of the
correlation tensor which correspond to the dimensions of feature
map ξT to get probability distribution over the feature map ξM

by applying the soft-max function on this reshaped dimension.
Therefore, for each point in the flattened dimension which corre-
sponds to that point in ξT , we get a 2-D probability distribution
of dimensions equal to dimensions of ξM . These are the scores of
similarity for each point in feature ξM given a point in feature
ξT . A similar process is done to get probability distributions
for points over ξT by reshaping and applying soft-max along
the dimensions of the correlation tensor which corresponds
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Fig. 3. Application of probablistic constraints on the processed correlation
tensor α′: βM and βT represent the probability distribution maps (shown in
green) corresponding to the flattened dimension. Here x and y refer to the
dimensions of the correlation tensor along which softmax function is applied
to get probability maps and to calculate the corresponding points of highest
probabilities. These probability maps are then associated with each point (x and
y) which belong to the dimensions which are flattened for softmax. To extract
the points of highest probability in the 2D probability maps, soft-argmax is
employed to give out γM and γT as its output (dimension: IRk×2).

to the dimensions feature ξM . βT and βM are interpreted as
a collection of probability distributions for respective feature
maps, as shown in the following two equations:

P (I = i, J = j|L = l,M = m) = βT
ijlm (4)

P (L = l,M = m|I = i, J = j) = βM
ijlm (5)

In the above equations, note that i and j corresponds to
the feature map ξT while l and m corresponds to the feature
map ξM .

C. Incorporating Soft Constraints

After the computation of the scores, we find the 2-D indices
of the point of highest probability in each distribution using the
soft-argmax function. The choice of soft-argmax function, rep-
resented by (6) and (7), instead of argmax is because the former
is differentiable and thus ensures the smooth gradient transfer for
backpropagation. It returns indices for the highest point in each
probability distribution corresponding to the flattened dimension
and these are stored as tensors γT and γM for respective feature
maps ξT and ξM . Fig. 3 illustrates process.

γT =

⎛
⎝∑

ij

eβijlm∑
ab e

βablm
· i,
∑
ij

eβijlm∑
ab e

βablm
· j
⎞
⎠ (6)

γM =

(∑
lm

eβijlm∑
cd e

βijcd
· l,
∑
lm

eβijlm∑
cd e

βijcd
·m
)

(7)

The extracted indices belong to the highest probability points
in one feature map associated with every point in the second
feature map. Then, we use indices given by soft-argmax and the
unraveled 2-D indices of each point in the flattened dimension
to correlate the corresponding feature points in both the feature
maps. The resulting correlation is subsequently used to sort the
tensors γT and γM according to the descending correlation

Fig. 4. Clustering using Highest Correlation: After calculation γM and γT ,
they are sorted in order of the highest correlation value of feature points
represented by indices in the last dimension of the tensor. After sorting, top
k points are selected which changes the shape of tensor. In the fig., the darker
circles show the point with the highest correlation value and lighter circles
represent decreased correlation.

values and take the top-k points in the flattened dimension of
both the tensors with highest correlation values in order to use
them to predict corresponding points in Image IT and Image IM

(see Fig. 4). This results in tensors γ′T and γ′M which represent
matching points between feature maps. Here, k represents the
number of points to select after correlation based sorting. Sub-
sequently, the k 2-D points, represented by γ′T (for feature A)
and γ′M (for feature B), are flattened and concatenated, as shown
in 8 and 9, to be fed to a fully connected network. This network
predicts the point-to-point correspondences between the two
images. The output of the network consists of 32 elements which
consist of eight 2-D (16) points for image IT , represented by yTp
and for image IM , represented by yMp . This results in an output
tensor of length 32.

γ′T : IRk×2 → IR2k γ′M : IRk×2 → IR2k (8)

γ′ = γ′T ‖γ′M (9)

The point-to-point correspondences, yTp and yMp , between
images are then used to compute the Homography matrix.
However, prior to this, RANSAC [17] has also been employed
to minimize the effects of any outliers which may affect the
computation of the Homography matrix. The four corners of the
template image are then projected over to the main image and the
center point of those projected pixel locations of the four corners
is calculated. The GPS coordinates of the pixel location on the
orthomosaic (main image) are extracted from the geo-tagged
image and hence the UAV is localized on the map through its
camera feed. The overview of the whole proposed approach is
presented in form of Algorithm 1.
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Algorithm 1: Template Matching-Based GPS Localization.

Input: Labeled template images {ITn }Nn=1;
Geo-tagged Orthomosaics {IMo }Oo=1;
Number of corresponding points k;

Output: GPS Coordinates: Latitude (φ), Longitude (λ);
1: Initialize wξ with weights for ImageNet.
2: Feature Extraction: ξM = θ(IM ,wξ), ξT = θ(IT ,wξ);

3: Correlation Matrix: αijlm =
(ξTij ,ξ

M
lm)

||ξTij ||2||ξMlm||2 ;

4: Soft Mutual Nearest Neighbor Filtering: α = sT sMα;
where sTijlm =

αijlm

maxab αablm
, sMijlm =

αijlm

maxcd αijcd

5: Neighborhood Consensus Network [20]:
α′ = ϕ(α,wn);

6: Soft Mutual Nearest Neighbor Filtering: α′ = sT sMα′;
where sTijlm =

α′
ijlm

maxab α′
ablm

, sMijlm =
α′

ijlm

maxcd α′
ijcd

7: Pairwise Correspondences: βT
ijlm = eα

′
ijlm

∑
ab e

α′
ablm

,

βM
ijlm = eα

′
ijlm

∑
cd eα

′
ijcd

;

8: Soft-Argmax:

γT = (
∑

ij
eβijlm

∑
ab e

βablm
· i,∑ij

eβijlm
∑

ab e
βablm

· j),
γM = (

∑
lm

eβijlm
∑

cd eβijcd
· l,∑lm

eβijlm
∑

cd eβijcd
·m);

9: Selection of highly correlated top k points from γT and
γM −→ γ′T , γ′M

10: Vectorization: γ′T : IRk×2 → IR2k, γ′M : IRk×2 → IR2k

11: Concatenation: γ′ = γ′T ‖γ′M ;
12: Fully Connected Network: yp = ζ(γ,′ wz)

where yp = yTp ‖yMp
yTp and yMp are regressed points on the image belonging
to template and orthomosaic respectively.

13: Homography Estimation Using Direct Linear
Transformation −→ H;

14: Projection of Template onto Orthomosaic: yTM = H · yT
15: Extraction of 2D Spatial Coordinates Using Geo-coded

Orthomosaic: yTM −→ (φ, λ)

D. Model Training and Optimization

Data for training and optimizing the proposed model com-
prises of a set of template images IT and their labels ya which
represent the pairs of labeled point-to-point correspondences be-
tween template images and the relevant orthomosaic. Moreover,
orthomosaics IM , belonging to three different areas, act as the
second input to the model and their correspondence with the
template image is taken into account by the training procedure.
Furthermore, training data has also been augmented using image
transformations in order to increase variance and the number
of images in the dataset. This also eliminates the dependence
of point-to-point correspondence prediction on orientation and
size of the template image. Lastly, the training data is also
mean-subtracted and normalized with the standard deviation.

The feature extraction model, based on convolutional layers
of ResNet-101 [41], is used to process template images and
orthomosaics by mapping them into a convolutional feature
space. The network weights wξ are initialized using ImageNet

weights [42]. Fully connected network, which is present in the
later part of the proposed pipeline, is initialized with random
weights using He-normal initialization [43]. Moreover, as this
network acts as a regressor, ReLU activations have been used
at the output layer of this network and the proposed approach
has been trained and optimized in an end-to-end supervised
manner which aims to minimize the L2 regression loss. The
optimization routine is presented by (10) where yp represents the
predicted correspondences between template and orthomosaic.
Minimization of cost function and optimization of trainable
parameters of the network are done using stochastic gradient
descent with momentum.

min
wξwnwz

n∑
i=1

L(yp, ya) (10)

The model is trained for 185 epochs using early-stopping
paradigm with an initial learning rate of 0.0008. The complete
architecture contains a total of 27.733 million parameters. The
learning rate is also decayed with a factor of 0.5 in the case
of plateauing of validation loss and the optimization algorithm
uses momentum with a value of 0.9. Training process has been
executed on NVIDIA Titan X GPU and it has been deployed on
NVIDIA Jetson TX2 for inference to emulate real-life setting
by providing on-board computing capability for UAVs.

After the prediction of point-to-point correspondences, the
spatial 2D coordinates (in standard WGS-84 format) are ex-
tracted out via GDAL [44] library from pre-ordained geotagged
orthomosaic by utilizing the center pixel coordinates of the
template projection over the orthomosaic.

IV. EXPERIMENTAL EVALUATION

Various experiments have been performed in order to measure
the performance of the proposed approach by emulating real
conditions of UAV imagery in our test dataset. Extensive study
of algorithmic details and hyperparameters has also been carried
out to determine the best possible configuration of the model in
terms of efficiency and accuracy and are presented in form of
ablation study in this section.

A. Dataset

1) Data Acquisition: To demonstrate the correctness and
efficiency of the proposed solution, we trained and tested the
performance of the proposed approach on custom built dataset
whose detail is provided next.

To our knowledge, there does not exist any dataset for aerial
imagery with respect to aerial image localization perspective.
Thus, to train and test the proposed approach, we collected our
own dataset of the aerial imagery. For this task, we selected three
different cities/regions for UAV flights and collected overlapping
images over them using the DJI Phantom 4 Pro drone. Specifi-
cally, the images were acquired in nadir looking orientation via
multiple flights over the partial regions of NUST, Islamabad,
DHA, Rawalpindi and Gujar Khan district at regular intervals
along the flight path. Table I shows statistics and information
about the area covered and the number of images in the raw data
collected.
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Fig. 5. Geo-tagged Orthomosaics of three different areas. (a) A geographical patch from NUST Islamabad which covers about 0.522 km2 area. (b) Area in
DHA Rawalpindi having sparsely populated terrain and covering upto 0.64 km2 area. (c) Densely populated urban area of Gujar Khan District in Pakistan which
represents 0.664 km2 land. (a) NUST. (b) DHA. (c) Gujar Khan.

Fig. 6. Comparison of images of the same landmark collected from UAV at different times of the day. The inclusion of images in the training data that are variant
in illumination conditions helps deep networks to become robust to changes in lighting, hence, making image matching more accurate.

TABLE I
DATASET STATISTICS SHOWING THE AMOUNT OF AREA COVERED BY THE

NUMBER OF IMAGES COLLECTED OVER THE COURSE OF NINE

FLIGHTS IN THREE DIFFERENT AREAS

After the images had been taken and compiled, they were
stitched together to form orthomosaics in an efficient manner as
images were overlapped during collection. Since the captured
images had GPS coordinates associated with them, every pixel
of the corresponding orthomosaic was geo-tagged automatically.
Images from one of the flights for each area (the one with
better lighting conditions) are used for orthomosaic generation
process. Generated orthomosaics are shown in Fig. 5.

The collected images, which act as template images in our
proposed approach, are taken during three different periods of
the day in order to maximize variance in illumination conditions
as shown in Fig. 6. This makes our approach more robust
and invariant to change in lighting conditions as possible in
several flight settings. Moreover, the difference in terrain of

three different areas also helps to combat overfitting of ap-
proach to one specific terrain. We have three different terrains
in all of three areas as Gujar Khan district appears to be a
densely populated urban area, DHA Rawalpindi presents a
sparsely populated residential area with water bodies and green-
ery and NUST Islamabad lies in the middle of this spectrum
as it has complex terrain pattern with buildings, water bodies
without the density of an urban area. This is best illustrated
in Fig. 5.

The collected dataset (images) have also been expanded by
applying standard augmentation techniques in order to increase
the size of the dataset to prevent overfitting. Specifically, we per-
formed the image flipping over the vertical axis, horizontal axis
and around the image center. Furthermore, the respective trans-
formations are also reflected in point-to-point correspondence
labels to correctly match the points of the source images and the
target orthomosaic. These are the only augmentations which we
employed. Usually, there exist other (affine) transformations as
well such as random rotations, but we have not employed them
as they may cause differences in the tagged GPS coordinates.

2) Annotations: Each image in the dataset is annotated with
at maximum 16 associated point-to-point correspondences
on both the orthomosaic and the image itself. During model
training, we have used eight out of them to better optimize the
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TABLE II
COMPARISON OF MATCHING METHODS VIA CONVENTIONAL KEYPOINT

DESCRIPTORS AND DEEP-LEARNING-BASED FRAMEWORKS

performance. Each annotated correspondence has two points
and every point is two dimensional. The output of the model
also predicts the corresponding points and then the mappings
of the template image over the orthomosaic using labeled and
predicted points are compared. The correspondences for all
the training and test data are labeled and verified by human
annotators. The dataset including the annotations has been
made public on GitHub.2

B. Results Evaluation

The presented approach has been tested in terms of correctness
of point-to-point correspondences and error in GPS coordinate
localization of predicted position over the geographical map.

1) Matching Accuracy: The model essentially provides us
with point-to-point correspondences between the two images.
Subsequently, the Homography and RANSAC [17] are em-
ployed after extraction of corresponding points to localize the
source template in the target patch. Table II provides the compar-
ison of the correct matches obtained by the proposed architecture
as well as with the classical key-point descriptors and recent deep
learning based approaches. For this comparison, the match is
considered to be correct when the predicted bounding box over-
laps with the 90% of the bounding box obtained from the labeled
correspondences. As expected, the deep learning based matching
accuracies are much higher than the conventional key-points
descriptor based techniques due to their ability of contextual
feature learning. Among them, the proposed approach evidently
provides the best matching accuracy.

It is worth mentioning that the overlapping imagery used
for the orthomosaic generation is from only one of the three
flights over each of the selected regions. The achieved matching
accuracy when the source image is taken either from the same
flight or different flights, whose images are used to generate the
target orthomosaic, are 92.95% and 92.35% respectively. It is
evident that there is indeed a slight reduction when the images
from the different flights owing to variations in illumination.
However, the reduction is quite small (less than 1%) which
highlights the robustness of the proposed approach.

2) GPS Localization Error: To estimate the positioning ac-
curacy, we have computed the center pixel deviation of the
predicted localized region in the orthomosaic from its actual
(ground-truth) GPS coordinates. Table III shows the comparison

2[Online]. Available: github.com/m-hamza-mughal/aerial-template-
matching-dataset

Fig. 7. Average mean error (depicted in red) and its standard deviation in
predicted values for the latitude/longitude and their corresponding average errors
shown with respect to the increasing number of epochs. The mean error in
coordinates starts at 9.2255× 10−04 and steadily decreases to 7.325× 10−06

at 185th epoch as the training procedure is stopped at the point where validation
loss is the least. Here, the error in latitude and longitude are represented by φ
and λ, respectively while, the μ represents the mean error in both the latitude
and dimensions.

of the average positioning error (AE) and the maximum position-
ing error (ME) in squared meters of the proposed method along
with classical and recent approaches. Fig. 7 graphically shows
the decline in the average mean error in the predicted latitudinal
and longitudinal coordinates as the number of epochs increases.
It also shows the standard deviation at each point and it can be
seen that the standard deviation in error is also decreased as the
network learns to localize the template better.

3) Intersensorial Registration: The intersensorial registra-
tion problem deals with matching the onboard UAV image
sequences (or the source templates) with the pre-installed larger
reference target orthomosaic generated using the satellite im-
agery (instead the orthomosaic generated by the same sensor
which is the drone in our case). Although the article does not
specifically target this problem and instead solves the intrasen-
sorial registration, still we have conducted an experiment where
we generated the orthomosaic using the Bing maps satellite
imagery of the same regions for which we have conducted the
UAV flights. The generated orthomosaics are then taken as the
reference target images in which the source template images
acquired from UAV are matched/searched. The exact four corner
coordinates of the generated orthomosaics for the three different
areas where we have flown the drone including NUST, DHA
and Gujar Khan respectively are provided in the GitHub link
of the Dataset (mentioned above) along with the generated
orthomosaics and the drone flight imagery. The overall matching
accuracy over the three areas which has been achieved with the
correct matching pairs is 91.04% with the average and maximum
GPS localization error of the center pixel of around 3.708m2

and 33.164m2 respectively. It can be seen that these results are
quite close to the obtained intrasensorial results (mentioned in
Table II) which demonstrates the robustness of the proposed
approach.



MUGHAL et al.: ASSISTING UAV LOCALIZATION VIA DEEP CONTEXTUAL IMAGE MATCHING 2453

TABLE III
COMPARISON OF GPS LOCALIZATION ERROR FOR CONVENTIONAL KEYPOINT DESCRIPTORS AND DEEP-LEARNING BASED FRAMEWORKS. HERE AVERAGE ERROR

(AE) IS CALCULATED AS THE AVERAGE POSITIONING ERROR IN THE LOCALIZED COORDINATES FOR ALL TEMPLATE IMAGES IN THE TESTING SET WHILE THE

MAXIMUM ERROR (ME) IS THE MAXIMUM OF ALL THE POSITIONING ERRORS CORRESPONDING TO THE TESTING SET. BOTH AVERAGE ERROR (AE) AND

MAXIMUM ERROR (ME) ARE REPRESENTED IN METERS FOR DISTANCE AND DEGREES FOR COORDINATES

TABLE IV
COMPARISON OF THE COMPUTATIONAL COMPLEXITY OF FEATURE EXTRACTOR

IN TERMS OF NUMBER OF PARAMETERS WITH THE PERCENTAGE ACCURACY.
AS DEMONSTRATED BY THIS COMPARISON, RESNET-101 GIVES MOST

ACCURATE RESULTS BUT REQUIRES HIGH COMPUTATIONAL POWER

C. Ablation Study

1) Comparison of Feature Extractors: The convolutional
feature extractors are used for deep feature extraction from
the images which in turn enable the neighborhood consensus
network to learn matching schemes based on consistent features
in the images. The correlation patterns in the feature maps are
highly dependent on the architecture of the feature extractor.
To see the effect, we have compared different feature extrac-
tors including VGG-16 [45], ResNet-50, ResNet-101 [41] and
DenseNet-201 [46] and chose the one giving the best perfor-
mance.

As presented by Table IV, VGG-16 proves to be the least
robust in our case as it is the least accurate. DenseNet-201 proves
to be highly efficient in terms of parameters but is less accurate
as compared to the most accurate ResNet-101. ResNet-50 has
also been tested but it turns out to be in the less accurate feature
extractors despite being more efficient. ResNet-101 provides the
most accurate results which are shown in Table II. Moreover,
it can also be inferred that the residual connections tend to
help in meaningful feature extraction which aids subsequent
4D convolutional network to learn better filtration of matches.

TABLE V
HIDDEN LAYER (HL) CONFIGURATIONS FOR 4D CONVOLUTIONAL NETWORK

DenseNet-201 or ResNet-50 can be used in those UAV local-
ization settings which have lesser reliance on accurate matches
and can bear error in GPS coordinate estimation.

2) Exploration of Probabilistic Constraints: Introducing
probabilistic constraints enables the network to filter out the
strongest matches after the nearest neighbor filtering of the
correlations between features. These softmax-based constraints
help determine consistent matches between all the feature points
of both images. The corresponding probability scores are repre-
sented by (4) and (5) and are visualized in form of heatmaps in
Fig. 8. These probability distributions show high values in the
vicinity of pixel locations in the main image which are similar to
the template image thus, showing the model’s ability to correctly
identify matching regions in the main image and localize the
template image accordingly.

3) Variation in Hyperparameters: The 4D convolutional net-
work processes the correlation tensor and finds patterns accord-
ing to neighborhood consensus matching scheme which it has
learned during the training process. The network contains certain
number of hidden layer units which can be tweaked in order to
achieve an efficient balance between accuracy and latency. Ta-
ble V shows different configurations of neighborhood consensus
network [20] which have been tried on the deployment platform
i.e. NVIDIA Jetson TX2 for comparison in terms of performance
and inference time. Fig. 9 clearly illustrates that the network with
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Fig. 8. Softmax-based constraints visualized: This image shows 2-D probability distributions (28 x 28) of ξM (orthomosaic) for ξT (template) as an input. These
eight images show probability distributions over ξM for top eight points which have highest correlation with points in ξT . Matching capability of probabilistic
constraints can be visualized using this fig. as they highlight the areas in the orthomosaic feature map which match the template.

10 units provides an optimal balance of latency and accuracy by
giving 92.66% accuracy at 3.77 seconds of inference time.

4) Comparison of Number of Point-to-Point Correspon-
dences: The output of the whole pipeline outputs pairs of
point-to-point correspondences between the template image and
the main image which in turn is used to extract GPS coor-
dinates in the geographical map. These correspondences are
made dependent on the number of the feature point indices
passed to the fully-connected network (FCN) which regresses
the point-to-point correspondences. Changing the number of
feature point indices in order to improve performance or to
achieve required latency can provide valuable insights for the

selection of the configuration which minimizes positioning error
without much computational burden. The network has been
trained to generate 4, 8 and 16 pairs of correspondences between
the images, detailed in Table VI, and they have been compared on
basis of complexity and average positioning error as illustrated
by Fig. 10. As evident, the eight number of point-to-point
correspondences provides the best results and have total number
of parameters equals to 16 672. The calculation of homography
matrices between the template and main image is done from
these correspondences which eventually contribute to localiza-
tion of the template over the main image.
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Fig. 9. Configurations of 4D convolutional network shown w.r.t to their
percentage accuracy at the output and their inference times on NVIDIA Jetson
TX2 platform. This clearly shows that using five hidden units in the network does
not give enough capacity to learn better feature matches and using 15 hidden
units proves to be very computationally expensive. Therefore, ten hidden layers
come out as an efficient and accurate option.

TABLE VI
FCN SPECIFICATIONS FOR 4, 8, 16 POINT-TO-POINT CORRESPONDENCES

Fig. 10. Configurations of Fully Connected Network (FCN) based Regressor
compared with the average positioning error. This comparison shows eight point-
to-point correspondance configuration is very efficient in terms of computational
burden as it also gives the least average positioning error.

V. DISCUSSION AND CONCLUSION

Vision-based autonomous localization of UAVs is of vital
importance in situations where the GPS signals may suffer
from outages or jamming problems. Such a task of vision based
localization estimation of an airborne platform essentially boils
down to the task of robust template matching. In this context,

we have presented a robust deep learning based feature points
extraction approach which is used for template matching by
establishing point-to-point correspondences between the source
template and the target pre-stored orthomosaic. The results on
real UAV imagery show a high matching accuracy and much
superior performance compared to already existing methods in
classical computer vision. Despite this superior performance,
there are a few worth mentioning points in relation to the
proposed approach which are as follows:
� Novel Dataset: We have collected and annotated novel

dataset consisting of 2052 high resolution aerial images
acquired at different times over three different areas in
Pakistan spanning a total area of around 2 km2. We shall
make the dataset public which we believe would ignite and
open up new possibilities of further advancement in vision
based GPS localization.

� Nadir View Imagery: Although we have tried to cater for
changes in topography by acquiring all the overlapping
imagery in the “nadir” view over different areas of varying
topographical nature including densely populated urban
areas and sparsely populated residential areas with water
bodies and vegetation, still the effect of terrain consisting of
a mix of mountain and a flat area may impact the matching
accuracy which in turn could lead to errors in localization.
Generalizing this to other viewing angles and varying
heights would make the problem of finding the source
image patch in the target orthomosaic highly challenging.
Having said this, the “nadir” view makes the matching
somewhat easier as it alleviates the problem of learning
complex viewpoint changes.

� Height Estimation: Firstly, instead of 2-D, we need the
actual 3-D position to aid the navigation system. Assuming
the terrain is flat and the UAV is equipped with the barom-
eter pressure sensor that provides the estimated height
information, the “nadir” viewing geometry in our case
somewhat resolves the 3-D positioning issue. However, if
there is no sensor that provides the UAV height information,
the height estimation using a single monocular RGB on-
board camera is still possible using odometric and/or visual
simultaneous localization and mapping based techniques
but has not been addressed in this work.

� Latency & Onboard Computing: To reduce latency in the
matching scheme, the whole processing should be done on
the onboard flight computer. To this end, we have deployed
the model on NVIDIA Jetson TX2 and inferred latency
of around 3.7 seconds. With this inference latency time,
the proposed localization system can aid the GPS based
navigation system in scenarios where the integrity of the
GPS is in question by reducing the drifting effect in INS
based state-estimation. Nevertheless, the inference latency
can be further improved by incorporating feature extractors
such as MobileNet [47] to achieve better efficiency.
Moreover, the substitution of convolution operations with
depthwise separable convolutions [48] and implementation
of 4D convolution with lesser number of calculations
seems a promising future direction that can reduce the
computational complexity of the neighborhood consensus
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network to enable models to efficiently run on edge
devices.

� System Integration: From product perspective, the inte-
gration of the estimated 3-D UAV localization (i.e., the
2-D position estimation with the proposed scheme plus
the barometric height estimate) with the INS based state
estimation is indeed vital to develop a complete and au-
tonomous navigation solution.

� Practical Solution (Inter-Sensorial Matching): Although
the orthomosaic has been pre-built and has to be stored for
template matching, this may have practical limitations. A
more viable solution would be to use large-scale satellite
orthomosaics as e.g., in Wan et al. [49] or available in
Google Earth software. Preliminary results in this direction
have been included in this work. However, large-scale
matching would pose additional challenges in the context
of domain adaptation since the drone imagery would have
to be matched with the rectified satellite imagery. In the
future, we would extend the presented approach in this
direction.
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