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Prediction of Active Microwave Backscatter Over

Snow-Covered Terrain Across Western Colorado

Using a Land Surface Model and Support Vector
Machine Regression

Jongmin Park

Abstract—The main objective of this article is to develop a physi-
cally constrained support vector machine (SVM) to predict C-band
backscatter over snow-covered terrain as a function of geophysical
inputs that reasonably represent the relevant characteristics of the
snowpack. Sentinel-1 observations, in conjunction with geophysical
variables from the Noah-MP land surface model, were used as
training targets and input datasets, respectively. Robustness of the
SVM prediction was analyzed in terms of training targets, training
windows, and physical constraints related to snow liquid water
content. The results showed that a combination of ascending and
descending overpasses yielded the highest coverage of prediction
(15.2%) while root mean square error (RMSE) ranged from 2.06
to 2.54 dB and unbiased RMSE ranged from 1.54 to 2.08 dB,
but that the combined overpasses were degraded compared with
ascending-only and descending-only training target sets due to the
mixture of distinctive microwave signals during different times
of the day (i.e., 6 A.M. versus 6 P.M. local time). Elongation of
the training window length also increased the spatial coverage of
prediction (given the sparsity of the training sets), but resulted
in introducing more random errors. Finally, delineation of dry
versus wet snow pixels for SVM training resulted in improving the
accuracy of predicted backscatter relative to training on a mixture
of dry and wet snow conditions. The overall results suggest that
the prediction accuracy of the SVM was strongly linked with the
first-order physics of the electromagnetic response of different snow
conditions.

Index Terms—Land surface model, NASA land information
system (LIS), snow-covered terrain, support vector machine
(SVM), synthetic aperture radar (SAR).
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1. INTRODUCTION

NOW serves as a water tower that stores winter precipi-

tation and discharges it through snowmelt [1]. It supplies
freshwater to more than 1.2 billion people (approximately one-
sixth of the world’s population) for agricultural and human
usage [2]-[4]. Snowmelt during the springtime significantly in-
creases streamflow, which influences the terrestrial hydrological
cycle [5]. Snow also exerts a critical control on the terrestrial
energy cycle. That is, the relatively high albedo of snow re-
sults in reflecting much of the incoming solar radiation that
dictates much of the Earth’s energy balance [6], [7]. Snowmelt
also directly influences soil moisture that further controls the
partitioning of net radiation at the Earth’s surface [8]. Suffice it
to say that snow is an important resource across the globe and
that it merits scientific study so that this resource may be better
characterized, managed, and preserved.

Quantification of snow water equivalent (SWE) and snow
depth has commonly been conducted using ground-based net-
works [e.g., Snow Telemetry (SNOTEL), Global Surface Sum-
mary of the Day (GSOD), and National Weather Service (NWS)
Cooperative Stations (COOP)]. These observations have been
widely used for evaluating snowpack properties (e.g., SWE and
snow depth) from remote sensing retrievals as well as from land
surface models (LSMs) [9], [10]. However, in situ observations
have limitations in capturing the spatio-temporal dynamics of
snow mass given the sparsity of those observational networks.
Snow mass estimates from a LSM is one alternative to over-
coming the spatio-temporal limitations of ground-based obser-
vations. Many LSMs including the community land model [11],
variable infiltration capacity (VIC) [12], and NOAH-multi pa-
rameterization (NOAH-MP) [13] have been used for snow esti-
mation. However, snow estimates from LSMs contain their own
uncertainties related to model parameterization, model structure,
boundary conditions, and initial conditions [9], [14].

Space-borne instrumentation has been applied as an alter-
native to conventional measurements in order to quantitatively
characterize the physical properties of snow. Satellite imagery
from visible and infrared sensors is primarily used for mapping
snow cover area (SCA) and snow cover fraction (SCF) based on
the high albedo of snow relative to other natural surfaces [15],
[16]. It is known as one of the most intuitive approaches to
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Fig. 1.
cover dataset [59].

obtain SCA at a fine spatial resolution even though it has
limitations in complex terrain, dense vegetation, and difficulty
in discriminating clouds from snow [17]. Moreover, difficulty in
converting SCF to SWE using a snow depletion curve has severe
limitations in the optical retrieval of snow mass [18].

Active microwave remote sensing is another space-based
option for estimating snowpack properties (e.g., Snow cover,
snow depth, SWE, snow density, and snow liquid water content)
by measuring the intensity of the returned signal emitted by the
radar. The amount of signal return (also known as backscat-
ter) is highly sensitive to the liquid water content inside the
snowpack, which is a result of the significant difference be-
tween the ice and water dielectric constants in the microwave
spectrum and offers a relatively finer spatial resolution (com-
pared to passive microwave (PMW) radiometry) over wide areas
regardless of weather and daylight conditions [19]. Previous
studies showed the potential capability of obtaining snowpack
information using SAR measurements at Ku-band [20]-[24], X-
band [25]-[30], and C-band, including RADARSAT [31]-[33],
RADARSAT?2 [19], [34]-[36], the European Remote Sensing
satellite (ERS)-1/2 [37]-[41], ENVISAT [40], [42]-[44], and
Sentinel-1 [45]-[50].

In virtue of the increased availability of SAR imagery for
retrieving snowpack information, machine learning (ML) tech-
niques have been widely applied to retrieve snow cover proper-
ties [44], [49], [51]-[53]. For instance, Tsai et al. [49] utilized
a random forest technique to classify dry snow versus wet
snow conditions using Sentinel-1 imagery in conjunction with
ancillary information (e.g., digital elevation model, land cover
classification). Longepe et al. [53] was the first to use a support
vector machine (SVM) to classify snow cover extent using the
phased array-type L-band synthetic aperture radar (PALSAR).
Overall results confirmed that snow cover classification based on
the ML technique yielded reasonable accuracy when compared
with SCA retrieved from optical imagery. In addition to the
problem of classification, ML has the ability to map geophysical
model states into observation space, which makes ML a suitable
candidate for use as an observation operator within a data assimi-
lation (DA) framework [54]-[58]. The main objective of this arti-
cleis to assess the potential of a ML algorithm, specifically SVM
regression in time, to accurately predict C-band backscatter over
snow-covered land. The accuracy of the predicted backscatter is
diagnosed in terms of the selection of training targets, training
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windows, and physically based constraints. Such an analysis
is a necessary precursor to a proposed DA framework to be
completed in a follow-on study.

II. STUDY AREA, DATA, AND MODEL
A. Study Area

The study domain selected here is Western Colorado within
the latitude of 36.875°N and 41.125°N and longitude of
104.375°W and 109.125°W (Fig. 1). The study area contains
three national forests in the southern Rocky Mountains (i.e.,
San Juan, Rio Grande, and Grand Mesa) and has an elevation
that ranges from 1314 to 4125 m with over 60% of the total
study area at elevations higher than 2250 m. The dominant
forest cover in the study domain is lodgepole pine, classified
as an evergreen conifer, according to the forest type map estab-
lished by the United States Forest Service.! This study domain
was selected because it contains a variety of snow conditions
(e.g., deep versus shallow snow; dry versus wet snow; snow
with overlying vegetation; and snow without) across a range of
different topographies and land-cover types. Furthermore, the
domain helps leverage the NASA SnowEx campaign, which
is a multiyear airborne and ground-based snow campaign with
the primary objective of assessing the characteristics of snow
using in situ and remotely sensed observations [60]. Two primary
evaluation sites—Grand Mesa and Senator Beck—are located
within the study area. Grand Mesa, in particular, is known as
one of the largest flat-topped mountains in the world. Since
SAR observations generally contain geometric distortions over
complex terrain, the investigation of SAR over flat terrain can
help minimize the uncertainties in the backscatter observations.

B. Sentinel-1 Observations

Sentinel-1 is a constellation of two satellites (Sentinel-1A
and -1B launched in April 2014 and April 2016, respectively)
developed by the European Space Agency as a component of
the European Copernicus Program [61]. Both Sentinel-1 A and
Sentinel-1B carry C-band SAR sensors with a 180° orbital phase
difference [62]. Sentinel-1 has a revisit frequency of 12 days for
each satellite, which results in achieving a 6-day global revisit
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TABLE I
MAIN CHARACTERISTICS OF SENTINEL-1 IW GROUND-RANGE DETECTED
(GRD) PRODUCTS

Product Type GRD-High

Center Frequency 5.407 GHz

Swath Width 250 km

Incidence Angle 29.1° — 46.0°

Resolution 20m x 22m

Pixel Spacing 10m X 10m

frequency between the two different satellites. However, it has
an irregular data acquisition schedule over North America until
2017 due to the evolving observation (operational) scenarios,
and as a result, impacts the availability of Sentinel-1 A and
-1B products in these regions [46]. Among the various imaging
acquisition modes and processing levels, interferometric wide
(IW) swath ground-range detected (GRD) product (Table I) is
utilized in this study as the primary focus of this research is
to apply C-band backscatter in analyzing terrestrial snowpack
characteristics.

Before applying the Sentinel-1 imagery to this analysis, it
is essential to first preprocess the datasets in order to remove
several sources of noise such as geometric distortion, speckle,
and thermal noise [63], [64]. Accordingly, standard preprocess-
ing steps were employed using the Google Earth Engine with
an additional incidence angle normalization step following the
procedures as outlined in Lievens et al. [46]. First, we collected
all the backscatter observations per relative orbit number. Next,
the backscatter observations are rescaled such that all the relative
orbit numbers have the same long-term mean backscatter, on a
pixel-by-pixel basis. Note that this procedure simultaneously
helps to correct the biases associated with different azimuth
angles (e.g., differences in viewing geometry between ascend-
ing and descending overpasses). The preprocessed Sentinel-1
imagery was then regridded (as an arithmetic average) onto a
0.01-degree equidistant cylindrical grid in order to match the
resolution of the LSM used in this analysis (see Section II-C for
more details).

C. Land Information System

The NASA Land Information System (LIS) is a software
framework developed at the NAS A Goddard Space Flight Center
to integrate a suite of LSMs, satellite observations, ground-based
measurements, and data assimilation techniques in order to
obtain improved posterior estimates of land surface states and
fluxes [65]. Among the different LSMs, Noah-MP [13] was
selected for use in this study.

Noah-MP is based on the Noah LSM and allows for multiple
parameterizations for the different process formulations of land—
atmospheric interactions [13]. Further, Noah-MP employs a
three-layer, physically based snow model that considers melting
and refreezing of snow, which results in a more accurate quan-
tification of snow mass [13], [66]. Noah-MP was simulated over
the study domain during the study period using meteorological
boundary conditions provided by the Modern-Era Retrospective
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(a) dry snow conditions and (b) wet snow conditions (modified from [78]).

analysis for Research and Application, version 2 (MERRA-2)
product [67]. Geophysical variables derived from Noah-MP
have a spatial resolution of 0.01° and a daily temporal resolution.

III. METHODOLOGIES
A. Microwave Properties of Snow

Backscatter observations over snow-covered terrain are influ-
enced by a variety of factors, including the physical properties
of the snowpack (e.g., dielectric constant, snow grain size, Snow
liquid water content, snow density, and snow depth) as well
as sensor properties (e.g., frequency, polarization, and viewing
geometry) [68], [69]. Among the different snow components,
snow liquid water content is regarded as one of the most impor-
tant variables when considering backscatter over snow-covered
terrain as dry snow and wet snow have distinctively different
electromagnetic responses associated with the differences in
dielectric properties between dry (ice) snow and wet (liquid
water) snow [68], [70].

Fig. 2 illustrates the different scattering mechanisms over
dry versus wet snow conditions. In general, dry snow acts
as a scatterer of microwave (MW) radiation while wet snow
behaves more as an absorber given that the presence of lig-
uid water within the snowpack results in a large increase in
permittivity [71]. During dry snow conditions, a snowpack is
a mixture of air and ice. Microwave radiation can penetrate
deeper into a dry snowpack (i.e., less absorption) than during wet
snow conditions. Accordingly, backscatter from the underlying
ground is more influential on the total observed backscatter
relative to other scattering components [Fig. 2(a)]. When the
snow depth or snow surface roughness increases, the influence
of backscatter from within the snowpack, as well as at the
air-snow interface, increases. Correspondingly, the influence
of backscatter from the underlying ground is reduced [72]. In
the case of wet snow, which is now a heterogeneous mixture
of air, ice, and water, the MW photons cannot penetrate as
deeply into the snow due to the decrease in scattering albedo
and the corresponding increase in the absorption of microwave
radiation associated with the existence of liquid water inside the
snowpack [72], [73]. Accordingly, backscatter over wet snow is
primarily dominated by backscatter at the air—snow interface
in most situations [Fig. 2(b)]. However, during the ripening
stage, backscatter over wet snow can also be increased due to
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the complex wet snow metamorphism, including an increase in
snow surface roughness and an increase in the snow grain size
during overnight refreezing [50], [74].

In addition, backscatter coefficients observed at different po-
larizations contain different amounts of information regarding
terrestrial snow. In general, 0¥, exhibits a gradual increase
during the snow accumulation period due to the increased de-
polarization associated with multiple scatterings and inhomo-
geneities within the snowpack [21], [46], [75]. Conversely, a?/v
does not exhibit significant variations, which is related to the
limited sensitivity to volume scattering because backscatter from
the snow—land interface often dominates [76]. During the snow
ablation period, both o¥,,, and o¥,; exhibit a relatively large
sensitivity to terrestrial snow (as compared to the snow accumu-
lation period) due to the significant absorption and reflection by
liquid water content within the snowpack [45], [46].

Another important aspect affecting the backscatter coefficient
is the different observation times associated with the different
overpasses (i.e., ascending versus descending). Sentinel-1 has
an approximate local observation time of 6 P.M. and 6 A.M. for
the ascending and descending overpasses, respectively. These
different observation times often reflect different snow condi-
tions depending on the periodical cycles of melt and refreeze.
For example, diurnal melting and refreezing processes result
in creating internal ice layers or grain size and grain shape
metamorphosis. Further, vapor pressure gradients that result
from differences in snow temperature between the bottom and
top of the snowpack lead to the development of depth hoar.
This mixture of processes, including melting, refreezing, and
sublimation, leads to a preferential increase in the backscatter for
horizontal polarization as compared to vertical polarization [21],
[77]. Furthermore, during the snow ablation period starting in
March, roughly speaking, the top of the snow surface will have
relatively wetter snow during the afternoon associated with
incoming solar radiation and warmer air temperatures, which
often induces surface melt. Consequently, for the ascending
overpass time (~6 PM. local time), wet snow is more likely
to be found on the snow surface while any liquid water content
within the snowpack has the opportunity to refreeze prior to
the descending overpass (~6 A.M. local time) associated with
the cold temperatures experienced during the nighttime. This
difference in electromagnetic response likely contributes to the
different statistical results between ascending and descending
overpasses.

B. Support Vector Machine

ML is defined as an algorithm that can “learn” a highly
sophisticated, nonlinear relationship between inputs and outputs
for a given physical system based on statistical inference [79].
SVM regression is a supervised ML algorithm that maps the
input space into higher dimensional feature space using a kernel
function [80], [81]. SVM regression has been utilized in hydro-
logical research for spatial pattern recognition [82], [83], classi-
fication [44], [84], and temporal prediction [54], [S6]-[58], [85],
[86]. The study here focuses on predicting C-band backscatter
over snow-covered terrain using SVM regression. The overall
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framework, in general, follows that of Forman and Reichle [56],
although it uses different training targets and a different LSM
along with different physical considerations in the context of
active versus passive remote sensing of snow. A detailed descrip-
tion of the SVM training and prediction procedure is introduced
below.

1) SVM Regression: Fig. 3 shows the general framework of
SVM regression prediction used in this study. Suppose the [1
x NJ input vector (y) is composed of geophysical variables
estimated from the LSM to characterize the physical properties
of snow at a given time and location. When the input datasets
are trained based on the copolarized (i.e., vertical transmit
and vertical receive; o¥.y,) and cross-polarized (i.e., vertical
transmit and horizontal receive; o), ;) backscatter observations
from Sentinel-1, predicted backscatter at co- (&(‘),V) and cross-
polarization (6, ;) can be computed through the nonlinear SVM
expressed as follows:

59 M
[AXV] = f(@) =) (ai—a))k(ziy) +6 (D)

UVH i=1

where M indicates the number of available training target sets
in time at a given location in space; «; and o] represent the
dual Lagrangian multipliers at time ¢; and 0 represents the bias
(also known as offset) coefficients that are all defined during
the training procedure. x is the training matrix with a size of
[M x N] comprising model input vectors y at the times of
the M training targets [56]. k(x;,y) = exp{—v||z; — y||*} is
a scalar radial basis kernel function (RBF) that helps map the
geophysical inputs into the observation space. The rationale for
choosing an RBF for the kernel in this study is based on previous
research that showed an RBF yielded satisfactory performance in
solving complicated, nonlinear hydrologic problems [87], [88].
The solution to (1) is calculated by employing the LIBSVM
library [89], which is an open-source ML library developed by
National Taiwan University. See Appendix VII for more details
on the SVM regression procedure.

2) SVM Inputs, Training Targets, and Outputs: Inputs to the
SVM include four geophysical variables derived from the LSM
that are listed in Table II. These particular state variables were se-
lected considering the first-order, fundamental electromagnetic
response of C-band backscatter (e.g., absorption and volume
scattering) over snow-covered terrain and include consideration
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TABLE II
SVM INPUTS AND OUTPUTS

Inputs Unit Scale Factor
Snow Water m 10
Equivalent

Snow Density? kgm—3 0.01

Snow Liquid mm 1

Water Content®

Top layer K 0.01

Snow Temperature

Outputs Unit Scale Factor
&(\)/V dB none

&9, e dB none

2Column-integrated estimates.

of physically based constraints to aid the statistical learning pro-
cess. The selection of these four geophysical input variables was
further motivated by an exhaustive sensitivity analysis exploring
a wide range of different input variables derived from Noah-MP
(results not shown).

As the four variables have different ranges of magnitude, each
variable was first rescaled using a scale factor in order to remove
the different orders of magnitude, which will significantly influ-
ence the weights and SVM prediction capability. In addition to
the LSM state variables, the Interactive Multisensor Snow and
Ice Mapping (IMS) [90] binary snow cover product was used
to further constrain the SVM training only when snow cover
is positively detected using the visible and thermal-based snow
cover estimation algorithm. Considering the selection of training
targets (and outputs) for SVM, o, and o, ,; as observed by
Sentinel-1 over snow-covered terrain were trained separately
based on the inherent characteristics described in Section III-A.

3) Training Procedures: An SVM was trained at each 0.01°
equidistant cylindrical model grid location in order to explicitly
consider the heterogeneity of regional climatology, land cover
type, and topography. At each pixel, a separate SVM was
generated for both 63, and 69, to predict each backscatter
separately. Available Sentinel-1 observations from April 2015
to August 2016 and September 2017 to August 2018 were
utilized for training, which include two complete winter sea-
sons. Sentinel-1 observations from September 2016 to August
2017 were excluded in order to be used to evaluate the SVM
prediction, which is described further in Section III-C.

There are numerous considerations when developing a
physically-constrained, well-designed SVM, including parame-
ter setups, input datasets, training targets, and training windows.
Accordingly, the first experiment was conducted to analyze the
influence of different training targets on SVM prediction per-
formance. Sentinel-1 observes backscatter along ascending and
descending overpasses. One of the main differences between the
ascending and descending overpass is the local overpass time.
Ascending measures backscatter at approximately 6 P.M. local
time while descending measures backscatter at approximately
6 AM Moreover, the ascending and descending tracks have
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training approaches. Different training windows provide different degrees of
wet versus dry snow delineation. Bold arrows indicate the training period and
dashed arrows represent the temporal overlap. The gray dotted lines represent
periods of time not included in the training data for the period ¢;. The shorter
window provides better discrimination, but the trade-off is a less robust SVM
due to fewer training targets as a function of time.

different incidence and azimuth angles in complex terrain, which
leads to a different backscatter intensity [91]. Normalizing the
incidence angle for both ascending and descending overpasses
during the preprocessing step (previously described in Sec-
tion II-B) reduces the biases associated with different azimuth
angles. Hence, more available training targets (which, in general,
is advantageous given a sparse training set) can be obtained
by combining both the ascending and descending overpasses.
However, it remains to be seen if combining different overpasses
is advantageous or disadvantageous. Consequently, Sentinel-1
backscatter from the ascending node versus the descending node
versus the combined overpasses was trained separately in order
to explore the different impacts on SVM performance.

The second experiment is designed to examine the influence
of different training windows on the prediction accuracy of the
SVM across which to collect the Sentinel-1 training targets.
Fig. 4 shows the concept of three different training windows: 1)
fortnightly, 2) monthly, and 3) seasonal. The fortnightly training
procedure includes 2 weeks of overlap before and after the
specific fortnight (14-day period) in order to reduce temporal
discontinuities between different SVMs [92]. Analogously, the
monthly training period includes the month before and month
after the specific month of training during the collection of
the training targets. In the case of a seasonal training window,
it includes the Sentinel-1 observations during the entire snow
season (e.g., from September to May). The underlying rationale
of the fortnightly training window is to generate a physically
constrained SVM that more carefully considers the first-order
control on the different electromagnetic responses from dry
snow versus wet snow described in Section III-A. Thus, a shorter
training window can enhance the delineation between dry versus
wet snow. On the other hand, elongating the length of the training
window ensures more available training data for the SVM even
though there is more possibility to commingle the observations
containing a different electromagnetic regime.

Finally, explicit SVM training for dry snow versus wet snow
conditions was conducted separately in order to explicitly ana-
lyze the influence of snow liquid water content on SVM pre-
diction efficacy. Considering the different first-order physics
between the scattering mechanisms for dry versus wet snow
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conditions described in Section III-A (based on the snow liquid
water content in the a priori LSM estimates) provides one more
mechanism to explore different physically constrained training
techniques to the ML procedure.

C. Validation Approach

Predicted backscatters for both polarizations were evaluated
by comparing against Sentinel-1 backscatter observations not
used during training (i.e., from Sep 2016 to Aug 2017). This
ensures that the validation dataset is independent from the
Sentinel-1 datasets used for training. One of the main reasons
to select Sep 2016 to Aug 2017 for validation is that this period
was considered as a typical snow year for the available years in
the Sentinel-1 record.

In order to quantitatively evaluate the predicted backscatter
from the SVM, bias and root mean square error (RMSE) across
the snow-covered grid cells were computed as

n

. 1 .
bias = - Z(O'gol — Ugol) 2)
i=1
I
RMSE = - Z(Ugol — op)? 3)
i=1

where n is the number of predicted and observed backscatter
values collocated at a given location in space and time and
9 (dB) and of, (dB) represent the predicted and observed
backscatter at a given polarization, respectively. In addition,
ubRMSE is utilized to identify the random error by removing
the bias from RMSE as

ubRMSE? = RMSE? — bias?. 4)

As part of the statistical evaluation, the presence of sta-
tistically significant differences between the various domain-
averaged statistics was conducted using the two-sided Wilcoxon
signed rank sum test [93], which is a nonparametric hypothesis
test to examine the null hypothesis that the median of two
samples are not different [94]. The main reason for selecting
the Wilcoxon signed rank test is that the predicted and observed
backscatters are expected to be non-Gaussian, which violates
the assumption for the two-sample #-test. For the same reason of
non-Gaussianity, the correlation coefficient was not used here as
an evaluation metric in favor of using other evaluation metrics
instead. Furthermore, statistics during the snow accumulation
(e.g., December, January, and February) and snow ablation
periods (e.g., March, April, and May) were calculated separately
as the delineation of dry snow versus wet snow motivates three
different experiments outlined in Section III-B3.

IV. RESULTS

A. Influence of Training Targets on SVM Prediction

Sentinel-1 observations from the ascending (6 P.M. local time)
versus descending (6 A.M. local time) overpasses as well as the
combination of the two different overpasses during Sep 2016
to Aug 2017 were utilized by examining the influence of the
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different training target sets on the SVM prediction efficacy.
For each of the three different scenarios, four different inputs
derived from LIS (see Table II) using fortnightly training were
first explored. Next, predicted backscatter from the different sets
of training targets was evaluated by comparing against Sentinel-
1 observations not utilized during training. Table III summarizes
the domain-averaged statistics of predicted 69, and 6, ;; using
the three different training sets for the validation period.
Results suggest that predicted backscatter using the
descending-only overpasses showed the lowest absolute mean
bias for both polarizations. The computed bias for the
descending-only training targets ranged from —5.37 to 4.86 dB
with a spatial mean of —0.74 dB for &v,y,. Similarly, the bias
ranged from —4.92 to 3.85 dB for 6, ;; with the spatial mean of
—0.82 dB. Further, the descending-only training targets exhib-
ited the lowest mean RMSE over the study area (Table III). For
the ascending-only training targets, the bias for both polariza-
tions showed a wider range than for the descending-only training
targets (i.e., from —12.3 to 11.7 dB for &y, and —5.73 to
6.96 dB for 69, ;;), which resulted in a larger magnitude of mean
bias and RMSE. Among the three different training target sets,
the combined dataset showed the highest RMSE and ubRMSE
at both polarizations. This phenomenon is a consequence of the
systematically different signals from the snowpack with respect
to data acquisition time. Snow often undergoes a small amount
of diurnal melting and refreezing at the snow surface depending
on the diurnal temperature cycle. Thus, the descending acquisi-
tions prior to sunrise (6 AM local time) tends to minimize wet
snow conditions and are relatively dry given refreezing while
ascending acquisitions following sunset (6 P.M. local time) are
often relatively wet at the surface by comparison. As a result,
the snowpack during the ascending overpass tends to have more
wet snow in the surface layer, and in turn, results in a higher
magnitude of domain-averaged bias. Moreover, a mixture of
signals collected during different snow conditions and viewing
geometries contained within the combined training target set
resulted in a relatively larger RMSE and ubRMSE than did the
other training target sets (see Supplementary Fig. S1).
Comparing Fig. 5 with the elevation map presented in
Fig. 1(a), a relatively high magnitude of negative bias was
observed within the elevation range of 2500-3500 m. Among the
pixels that showed a bias greater than the lower decile of bias
for each training target set, over 69% (77.5% for ascending-
only, 71.9% for descending-only, and 69.5% for combined)
of pixels were located within this elevation range. This result
likely originated from the influence of vegetation on C-band
backscatter in this elevation band. Comparing the spatial pattern
of the elevation map with the forest cover fraction presented
in Fig. 1(b), most of the pixels with high forest cover fraction
are located within the range of 2500-3500 m. Huang and An-
dereeg [95] mentioned that the dominant forest type for this
specific elevation band is largely heterogeneous with different
types of vegetation in the understory (e.g., mountain snowberry)
and overstory (e.g., aspen pine). Backscatter observed from the
heterogeneous forest contains little sensitivity to snow due to
the vegetation-related scattering components such as multiple
scatterings within the canopy and scattering from the forest
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TABLE III
DOMAIN-AVERAGED STATISTICS OF PREDICTED BACKSCATTER FROM ASCENDING-ONLY, DESCENDING-ONLY, AND THE COMBINATION OF BOTH ASCENDING AND
DESCENDING OVERPASSES COMPARED AGAINST THE SENTINEL-1 OBSERVATIONS FROM SEP. 2016 TO AUG. 2017 Nor USED DURING FORTNIGHTLY TRAINING

Bias RMSE ubRMSE Cigztrt‘;e
Datasets &OVV ErOVH &OVV &%H &OVV &OVH [%]
Ascending-only -0.89  -0.84 1.64 1.36 0.91 0.73 7.2
Descending-only -0.74  -0.82 1.58 1.36 1.16 0.80 11.9
Combination -0.83  -0.95 2.54 2.06 2.08 1.54 15.2

Note: All statistics are different at p = 0:05 using the Wilcoxon signed rank sum test.
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Spatial distribution of bias (top row), RMSE (middle row), and ubRMSE (bottom row) of copolarized backscatter (&?/V) for the validation period Sep.

2016 to Aug. 2017. The different columns represent the training target sets for ascending-only (left column), descending-only (middle column), and combination
of ascending and descending (right column). The white space in each map represents the area where there are no available SVM predictions at locations due to
either limited duration of snow in the LSM or insufficient Sentinel-1 observations for use during training.

floor [41], [96]. In terms of the percent spatial coverage (also
known as ratio of the number of pixels with predicted backscatter
within the validation period over the total number of pixels
within the study domain) among the different training targets, the
combination of ascending and descending overpasses yielded
the highest spatial coverage followed by descending-only and
ascending-only observations (Table III and Fig. 5). As the as-
cending and descending overpasses have different acquisition
times, the concatenation of the two leads to a larger train-
ing set for a given training window. That is, the combination
of the two different sets of overpasses results in obtaining
more predicted backscatter at more locations across the study
area.

Fig. 6 summarizes the domain-averaged statistics during the
snow accumulation and snow ablation periods. By comparing
the two different periods, the accuracy of predicted backscatter
during the snow ablation (wet) period showed more negative
bias than the snow accumulation (dry) period. The magnitude of
bias during the snow accumulation period ranged from —0.93
to —0.64 dB and was less negative than for the snow ablation
period that ranged from —1.15 to —0.72 dB. Different statistical
results during the snow accumulation and snow ablation periods
are associated with different physical characteristics of the snow
at different times of the year. Namely, the snowpack during the
ablation period tends to have deeper snow with more complex
snow stratigraphy, more depth hoar, and more internal ice layers.
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Asterisks indicate statistically significant differences between all pairs using the
Wilcoxon signed rank sum test (p < 0.05).

The presence of more internal ice layers introduces even more
heterogeneity, which makes the electromagnetic response of the
snowpack even more complex and diverse.

In terms of different training target sets, the descending-only
set yielded a slightly smaller absolute bias, RMSE, and ubRMSE
at both polarizations than did the ascending-only set or the com-
bined set during both the snow accumulation and snow ablation
periods (Fig. 6). Statistics from the descending-only training set
yielded a modest bias (ranged from —0.84 to —0.64 dB), RMSE
(ranged from 1.28 to 1.68 dB), and ubRMSE (ranged from 0.65
to 1.17 dB) relative to the other training target sets. Different
statistical results between the ascending- and descending-only
overpasses resulted from the different observation times. As
earlier mentioned in Section III-A, different observation times
for ascending and descending overpasses resulted in different
electromagnetic responses associated with the diurnal melting
and refreezing cycle. More specifically, wet snow is more likely
to be found on the snow surface associated with relatively
warmer temperature and incoming solar radiation. This can
result in large variations in surface roughness and dielectric
constant, and in turn, lead to increased uncertainty of predicted
backscatter using backscatter observations from ascending-only
overpasses. Comparing the statistics during the snow accumula-
tion and ablation period, predicted backscatter during the snow
ablation period revealed more uncertainties than during the snow
accumulation period.

In the case of the combined training set, ubRMSE was rel-
atively large during both the snow accumulation (1.84 dB for
6V, and 1.31 dB for 67, ;) and the snow ablation (2.10 dB for
69, and 1.56 dB for 6¥, ;) periods (Fig. 6). Similar findings
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were found in previous studies (e.g., Varade et al. [35], Nagler
and Rott [97]) that the use of backscatter observations from
both ascending and descending overpasses resulted in increased
uncertainty. This phenomenon was likely due to the combination
of observations from ascending and descending overpasses,
which reflects differences in daytime versus nighttime snow-
pack conditions, and, in turn, introduces more random errors in
conjunction with differences in viewing geometry between the
two overpasses.

B. Influence of Training Window Length on SVM Prediction

Fig. 7 illustrates the spatial distribution of bias calculated by
comparing the predicted backscatter, 67/, against observations
notused during training for the three different windows and three
different sets of training targets across the validation period. For
the different sets of training targets, the spatial coverage tends
to increase in accordance with the elongation of the training
window. That is, when more training data is available as a
function of time (and space by association), more SVMs are
available to make predictions across the study domain, and
hence, the increased spatial coverage. Among the three different
sets of training targets, the ascending-only and the combined
sets showed a significant increase in spatial coverage relative
to the descending-only set. For example, spatial coverage was
increased from 7.18% (fortnightly) to 30.1% (seasonal) for
the ascending-only sets. Similar behavior was observed for the
combined sets in that fortnightly and seasonal training showed
the lowest (15.3%) and highest (33.9%) spatial coverage, re-
spectively. As the training window is elongated, it is possible
to generate SVMs at more locations due to the increased avail-
ability of training data, which resulted in expanding the spatial
coverage of predicted backscatter. However, SVM prediction
with the descending-only training set did not show a significant
increase in spatial coverage with respect to the elongation of the
training window. The fortnightly, monthly, and seasonal training
period yielded a spatial coverage of 11.9%, 12.2%, and 12.2%,
respectively. This behavior was related to the limited number
of descending observations from Sentinel-1. Within our study
area, the descending overpasses have significant data gaps prior
to May 2017 based on the evolving Sentinel-1 (operational)
observation scenario dictated by ESA. More specifically, most
of the available dual-polarized observations in IW mode were
only available for the ascending overpass before May 2017,
which limits the training period to only the 2017-2018 winter
season for generating SVMs using the descending-only train-
ing set. This operational issue prior to may 2017 is the cause
of the limited increase in amount of spatial coverage for the
descending-only training activities. Differences in the number
of available training datasets also resulted in differences in the
domain-averaged bias. Focusing on Fig. 7(g) and (h), the average
bias within the region outlined by the black box was computed
as —0.18 and —0.30 dB for the ascending-only and descending-
only overpasses, respectively. At these locations, more than 30
observations were available for the ascending-only overpasses
while only a maximum of 12 observations were available for
the descending-only overpasses. Similarly, the area outlined
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Spatial distribution of bias for co-polarized backscatter (&?/V) during the validation period from Sep. 2016 to Aug. 2017. The different columns represent

the different training target sets: ascending-only (left column), descending-only (middle column), and combination of ascending and descending (right column).
The different rows represent the different training windows (fortnightly, monthly, and seasonal from the top to bottom).

by the black ellipse in Fig. 7(h) yielded a large magnitude of
negative bias (approximately —5 dB) when only 10 (or fewer)
descending observations were available for use during training
activities. In general, as more observations were made available
for use during the training procedure, a less biased result was
obtained regardless of the amount of random error contained
therein.

An elongation of the training window resulted in a reduction
in the magnitude of bias. For example, elongating the training
window from fortnightly to seasonal resulted in reducing the
magnitude of bias in the southwestern and middle portions of the
study area (Fig. 7). However, comparing Fig. 7(a) with Fig. 7(g)
and Fig. 7(c) with Fig. 7(i), the bias in the northwestern and
southern regions of the study domain using seasonal training
showed a relatively larger, positive bias (approximately 4-5 dB)
than in other parts of study area. Notably, the increase of the
training window expands the size of the training matrix, which
enables the existence of more SVMs across the study domain.
However, it can also result in introducing more sources of uncer-
tainties along with a more diverse electromagnetic response of
the snowpack. For example, Sentinel-1 observations during the
spring (March, April, and May) and Fall (September, October,
and November) were utilized to predict backscatter during the
winter season. During the Fall season, the snowpack is relatively
shallow and relatively dry whereas the snowpack during the

Spring season is typically deeper, includes more depth hoar,
and contains more internal ice layers along with wind slab.
Accordingly, this mixed information content of dry, shallow
snow with deeper, wetter snow in a single training matrix
provides a complicated, mixed electromagnetic response that
can be difficult for the SVM to reproduce, and hence, results
in degrading the prediction accuracy. This further motivates the
physically constrained ML approach of delineating dry versus
wet snow conditions, for example, that is more implicit in the
fortnightly and monthly training approaches.

Figs. 8 and 9 describe the domain-averaged statistics of pre-
dicted backscatter at both co- and cross-polarization using the
three different training periods and three different sets training
targets during the snow accumulation and ablation periods, re-
spectively. During the snow accumulation period, the magnitude
of all the statistics (e.g., bias, RMSE, and ubRMSE) showed
improvement, in general, with a lengthening of the training
window (Fig. 8). Bias for predicted co-polarized backscatter,
9./, became less negative from —0.87 dB for fortnightly train-
ing, —0.59 dB for monthly training, and —0.10 dB for seasonal
training. Even though the types of snow (e.g., shallow versus
deep, dry versus wet) are more complex as more data is included
over a longer time window, these results illustrate the impact of
how more training data often yields a more robust SVM with a
temporally sparse training set.
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period.

Same as Fig. 8 except for the snow ablation (March, April, and May)

Statistics during the snow ablation period showed a similar
behavior during the snow accumulation period in that most
of the domain-averaged statistics showed a decreasing trend
among the three different sets of training targets as the training
window was elongated (Fig. 9). At the same time, however,
the snow ablation period sometimes yielded an opposite behav-
ior indicating that statistics were worse when elongating the
training window length. For instance, the magnitude of bias
from predicted 6y using the ascending- and descending-only
training sets was decreased from fortnightly (—1.13 dB for
ascending-only and —0.84 dB for descending-only training set)
to monthly training (—0.89 dB for ascending-only and —0.75 dB
for descending-only training set) while it was increased for
seasonal training (—0.91 dB for ascending-only and —0.80 dB
for descending-only training set) even though seasonal training
provides the largest set of training data at a given location. Fur-
ther, ubRMSE for the ascending-only training set for 69, and
descending-only training set for 63, and 6. ;; showed a slight
increasing trend as the training window was elongated (Fig. 9).
These phenomena suggest that a mixture of signals during
different snow conditions within a single training matrix resulted
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in introducing more random errors to the predicted backscatter.
This infers a conundrum of more training data versus “better”
training data when training targets are sparse in space and time.
In the limit, as the number of training data approaches infinity,
the physically constrained approaches should be superior, but is
not always evident given the severity of the data sparsity in this
study.

C. Influence of Separate Training for Dry and
Wet Snow Conditions

C-band backscatter has distinct characteristics related to dry
versus wet snow conditions as mentioned in Section III-A.
Statistical analysis of predicted backscatter using different sets
of training targets and training window lengths highlighted that
including signals from both dry and wet snow conditions at
the same time resulted in a degradation of SVM performance.
Here, the influence of different snow liquid water content to-
ward SVM prediction is explicitly examined by comparing the
statistics of predicted backscatter with and without explicit dry
snow and wet snow delineation based on Noah-MP estimates.
Previous research utilized the diurnal amplitude variation and
cross-polarization gradient ratio based on PMW observations
for detecting snowmelt. In this study, however, snow liquid
water content from Noah-MP output was utilized for delineating
dry snow versus wet snow. Here, a pixel with more than 0%
liquid water content was classified as wet snow based on the
general classification in Fierz et al. [98]. It is noted here that
Noah-MP snow liquid water content estimates are far from
perfect. However, in the absence of in situ measurements of
liquid water content, it is assumed here that the model-based
estimates are a viable proxy. Similar to the previous sections,
ascending-only, descending-only, and combined training sets
were used separately.

The spatial distributions of bias of the predicted co-polarized
backscatter, &(\)/v’ using the three different training sets without
and with dry snow versus wet snow delineation via Noah-MP
are shown in Fig. 10. Wet snow is defined here as simply as when
the snow liquid water content was greater than zero. Comparing
Fig. 10(a)—(c) with Fig. 10(d)—(f), bias was modestly reduced
when the separate SVMs for dry and wet snow pixels were
generated. The use of modeled liquid water content from Noah-
MP added another physical constraint during SVM training. As
such, the size of the training matrix was further reduced, which
resulted in fewer trained SVMs that in turn reduced the spatial
coverage. However, Table IV showed that separate training for
dry and wet snow resulted in improving most of the domain-
averaged statistics of predicted backscatter at both polarizations
in spite of the reduced number of targets for use during training.
For the ascending-only and descending-only training sets, the
bias, RMSE, and ubRMSE were slightly improved only when us-
ing the explicit dry versus wet snow delineation during training.
Even though the combination training set also showed slight im-
provement in ubRMSE, the RMSE was slightly increased when
using the explicitdry versus wet delineation during training. This
phenomenon was due, in large part, to the different observation
times for ascending and descending overpasses. As mentioned
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TABLE IV
DOMAIN-AVERAGED STATISTICS OF PREDICTED BACKSCATTER USING THE THREE DIFFERENT TRAINING SETS (A) WITHOUT DRY VERSUS WET SNOW
CLASSIFICATION AND (B) WITH DRY VERSUS WET SNOW CLASSIFICATION BASED ON NOAH-MP

(a) Bias [dB] RMSE [dB] ubRMSE [dB]
Datasets 6% Vg 6%, oYy 6%y 6y
Ascending-only -0.16  -0.48 1.38 1.12 1.03 0.73
Descending-only  -0.60  -0.72 1.58 1.36 1.23 0.90
Combination -048  -0.72 222 1.77 1.86 1.36
(b) Bias [dB] RMSE [dB] ubRMSE [dB]
Datasets ovy OvH ovy OvH ovv OV H
Ascending-only -0.12 -0.39 1.37 1.09 1.05 0.69
Descending-only  -0.30  -0.40 1.52 1.23 1.16 0.88
Combination -0.54  -0.67 2.30 1.78 1.59 1.14

Note: All statistics are different at p = 0:05 using the Wilcoxon signed rank sum test.

earlier, the different observations at different times (overpasses)
will often have different snow conditions depending on the
diurnal melting and refreezing cycle. Accordingly, even if the
specific pixel is classified as wet or dry snow pixel based on
the modeled snow liquid water content, the combined overpass
training set is often composed of a mixture of both wet snow
and dry snow signals.

Statistics of predicted backscatter based on explicit dry versus
wet snow delineation were classified into dry and wet snow pix-
els based on the amount of liquid water content and analyzed in
order to evaluate the efficacy of the physically constrained SVM
(Fig. 11). The results showed that predicted backscatter over dry
snow and wet snow pixels using ascending-only training exhib-
ited comparable statistical performance. For example, 63,,, over
dry snow pixels yielded RMSE and ubRMSE of 1.38 dB and

1.09 dB, respectively, which were similar for wet snow pixels
(1.37 dB for RMSE and 1.13 dB for ubRMSE). Similarly, bias
and RMSE of 67, ; over dry snow pixels was —0.43 and 1.08 dB,
respectively, which showed similar statistical performance as
the wet snow pixels (—0.51 dB for bias 1.09 dB for RMSE). As
mentioned earlier, ascending overpasses have relatively wetter
surface snow conditions due to the small amount of diurnal
melting during the afternoon. It is believed that this leads to
the similar statistical behavior over dry snow pixels versus wet
snow pixels using the ascending-only training set.

In the case of descending-only and combined training sets,
wet snow pixels showed a lower magnitude of bias than did dry
snow pixels. Bias of 60, and 6, ;; using the descending-only
training set was —1.45 and —1.40 dB for dry snow while it was
reduced to —0.11 and —0.23 dB during wet snow conditions.
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Fig. 11. Domain-averaged statistics of predicted backscatter for three different
training approaches at (a) dry snow locations and (b) wet snow locations during
the validation period of Sep. 2016 to Aug. 2017. Asterisks indicate statistically
significant differences between all pairs using the Wilcoxon signed rank sum
test (p < 0.05).

In general, C-band backscatter has a greater penetration depth
for dry snow (~20 m) than wet snow (~3 cm) [49], [68], [99].
Furthermore, C-band backscatter during dry snow conditions,
in general, is dominated by backscatter at the snow—land inter-
face as other components (i.e., volume scattering or air—snow
interface scattering) are relatively small [70]. This behavior
resulted in no significant difference between backscatter from
snow-free conditions versus shallow, dry snow conditions [45],
but that volume scattering (and hence backscatter) can still be
significantly modulated during deep, dry snow conditions [46].
Conversely, backscatter during wet snow conditions is generally
dominated by either scattering at the air—snow surface or by
volume scattering depending on the snow liquid water con-
tent [70]. Hence, the backscatter has arelatively larger variability
during wet snow conditions as C-band radiation undergoes
a large amount of absorption and/or reflection (Fig. 2). This
increased sensitivity during wet snow conditions provides more
information content for the SVM to yield better predictions
regarding C-band backscatter (and its relation to snow mass) as
compared to the SVM predictions during dry snow conditions
when C-band backscatter is predicated more on backscatter from
the snow—land interface rather than volume scattering associ-
ated with terrestrial snow mass. It is hypothesized that these
differences in the fundamental physics result in better statistical
performance as in this case related to snow mass when the snow
is wet rather than dry.

V. CONCLUSION

The main goal of this article is to assess the feasibility of
physically constrained SVMs to predict C-band backscatter over
snow-covered terrain in Western Colorado. More specifically,
the influence of different training target sets, training window
lengths, and dry versus wet snow delineation on SVM efficacy
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were considered in conjunction with the first-order electromag-
netic response of snow.

Results indicated that a combination of backscatter obser-
vations from ascending and descending overpasses allows for
the usage of more available training data (in time and space)
during SVM training activities. This results in a significant
increase in spatial extent and decrease of the domain-averaged
bias of predicted backscatter. However, this approach degraded
the RMSE and ubRMSE due to the mixture of different signals
associated with different times of day and different viewing
geometries during the different overpasses. Similarly, elongation
of the training window length also yielded an increase in the
spatial coverage of predicted backscatter and a decrease in the
domain-averaged bias, but introduced more random errors due
to the mixture of signals from different snow conditions.

Finally, separate training of dry and wet snow pixels using
modeled snow liquid water content from Noah-MP yielded a sta-
tistical improvement in reducing the magnitude of bias, RMSE,
and unbiased RMSE of ascending-only and descending-only
training sets. Moreover, separate training for dry versus wet
snow pixels, and the physical constraints associated with the
different electromagnetic responses of the snow, demonstrated
more robustness at wet snow locations than dry snow locations.
This implies that C-band backscatter showed relatively higher
sensitivity toward wet snow than dry snow due to the different
electromagnetic responses (e.g., scattering versus absorption).

In summary, prediction of C-band backscatter over snow-
covered land using a physically constrained ML approach sug-
gests the necessity of considering the first-order physics during
ML training in order to ensure the ML algorithm produces the
right answer for the right reason. As part of a future follow-on
study, it is recommended that the inclusion of local incidence
angle obtained through preprocessing with Sentinel Application
Platform (SNAP) provided by ESA for use as an input to SVM
regression should be explored in detail, including the impact on
SVM regression prediction performance over the snow-covered
terrain. Further, this article provides a fundamental framework
utilizing SVM regression as an observation operator within a
data assimilation system to be pursued in a follow-on study in
order to improve model-derived snow mass information based
on a Bayesian merger of an advanced land surface model with
C-band backscatter observations.

APPENDIX A
SUPPORT VECTOR REGRESSION

Assume a [M x N] training matrix, x, such that it contains
N = 4 different geophysical variables simulated from Noah-MP
for characterizing the physical conditions of snow at M different
times for a given location in space. Training target (z; Sentinel-1
backscatter observations in this article) has a size of [M x 1].
The objective function for SVM regression can be written as

flw,0) = (w-¢(x)) +0 )

where w is a weighting factor and ¢(x) is a nonlinear function
for mapping the geophysical variables into observation (i.e.,
backscatter) space. (w - ¢(x)) refers the inner dot product of
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w and ¢(x). As the main goal of SVM regression is to opti-
mize parameters to increase the accuracy of f(w,¢), the basic
formulation of nonlinear SVM regression can be expressed as
follows:

N IR - \
minimize §||w|| + CZI(& +&)
fw,6) =z <e+¢&
Zi_f(w?é) SE—"S;
& & =0
where C'(> 0) is the user-defined constant representing the
trade-off between tolerance of ¢ and f(w,d) [100]. &; and &
are slack variables and z; represents the Sentinel-1 backscatter
observation at timestep ¢. Optimization of (6) is commonly

regarded as a dual optimization problem [89] and can be solved
by applying a dual set of Lagrangian multipliers (c; and o) as

subject to

(6)

m

minimize & " (o — ?)(a — a}){0(r:) - 6(z,)
i,j=1
+ Ze(ai +aj) — Zzi(ai +a;)
i=1 =1

Z;il el +aj) =0

subject to
) a, af €1[0,0)i=1,2,..

(N
m
When the dual Lagrange multipliers yield a nonzero value, then
it is the so-called support vector that lies on the margins [100].
In real-world applications, computation of (¢(x;) - ¢(x;))
can be too computationally costly, which motivates one to
employ a kernel technique for improving computational effi-
ciency by directly mapping the solution into higher dimensional
space [92], [100]. There are different types of kernel functions
that can be used such as linear, nonlinear, and polynomial
forms [101]. Among them, the radial RBF is employed in this
study due to its advantages in dealing with datasets having
nonlinear relationships between inputs and outputs (training
target). As such, the kernel function can be expressed as

ki, 25) = (d(x1), d(25)) = exp{—llzi — z;]*}  (8)

where x; and x; represent a single instance of x in time and
space and ||. || represents the Euclidean norm between ¢ (z;) and
¢(z;). The positive parameter, -, is an adjustable parameter to
control the width of the Gaussian variable. When +y is small,
more weight will be given to the points closer to x; while a
larger ~y indicates more importance to points far from z;.
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