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An Over-Segmentation-Based Uphill Clustering
Method for Individual Trees Extraction in Urban

Street Areas From MLS Data
Jintao Li , Xiaojun Cheng, Zhenlun Wu, and Wang Guo

Abstract—In this article, an over-segmentation-based uphill
clustering method for individual extraction of urban street trees
from mobile laser scanning data is proposed to solve the problem
that the existing methods depend heavily on tree trunks and have
poor extraction results in complex environments where the tree
trunks are blocked by cars and green belts, and the crown touching
or interlocking is large. First, supervoxels are generated by over-
segmentation, so that the amount of original data is reduced and the
boundaries of different objects are effectively preserved. Then, the
potential tree crowns and trunks are obtained by extracting typical
object structures. Finally, individual trees extraction is realized
by extracting independent crowns from the potential crowns via
uphill clustering and searching corresponding trunks from the
potential trunks. The main contribution of this article is to propose
an individual extraction method for street trees based on uphill
clustering that does not rely on the extraction of tree trunks, which
improves the completeness of extracted results in complex urban
environments. The experimental results demonstrate that the pro-
posed method effectively extracted the street trees individually
from the test data, with the completeness of 100%, the correctness
of 96.4%, and the F-score of 0.98. Moreover, the proposed method
also achieves good result for the extraction of greening trees that
are heavily blocked in the green belt areas. And the corresponding
completeness, correctness, and the F-score are 94.6%, 83.3%, and
0.89, respectively.

Index Terms—Clustering, individual tree, mobile laser scanning
(MLS), segmentation, supervoxel, urban environment.

I. INTRODUCTION

A S an important part of city, street trees play a crucial role in
many aspects like reducing noise [1], improving air quality

[2], and increasing urban vegetation coverage [3]. In some other
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aspects, it is very important to accurately extract individual street
trees and further capture their attributes such as the position,
tree height, crown area, and diameter at breast height [4]. For
example, the proper planning based on the determination for the
number and size of the street trees can minimize losses during
road widening [5]. In addition, analyzing the visibility of traffic
signs and traffic lights with the individual trees can guarantee
the safety of driving. Besides, in power lines inspection aspect,
calculating the distances between tree crowns and power lines
can discover the potential safety hazards timely and ensure the
safety operation of power lines. Moreover, extracting each street
tree accurately is also one of the important contents for high-
precision structured mapping in urban areas. Therefore, it is of
great significance to accurately extract individual trees in urban
street areas.

The mobile laser scanning (MLS) technology can quickly
obtain the surface information of urban street objects, which
are represented by the highly dense point cloud data [6]. Com-
pared with the terrestrial laser scanning, airborne laser scan-
ning (ALS), and digital satellite imaging technologies, MLS
technology is more flexible and efficient [7]. In the past, most
state-of-the-art surveys for static objects in urban areas were
mainly related to the data derived from images. With the rapid
development of MLS technology from 2008, the number of
publications related to MLS has grown rapidly [8]. Many urban
street area studies based on point cloud data from MLS have
been conducted, such as object detection and extraction (e.g.,
pole-like objects [9]–[12], building facades [13], [14], roads and
their boundaries [15]–[19]), scene semantic segmentation and
object classification [20]–[23], and high-precision navigation
map generation [24]–[26]. All of the abovementioned studies
show great potential for individual street trees segmentation and
extraction from MLS data.

Some scholars have done lots of researches on the extraction
of street trees in urban areas and proposed some methods for
individual trees extraction. These methods have better extraction
results in simple scenes, especially that without blocked tree
trunks. However, for the complex scenes where the tree trunks
are blocked by cars and green belts, and the crown touching or
interlocking is large, the existing methods have the problems in
missing extraction and have low correctness of extraction results.
Therefore, this article proposes an individual trees extraction
method named “uphill clustering” based on over-segmentation,
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which aims to realize the automatic extraction and improve the
accuracy of the individual trees extraction in urban street areas
from MLS data.

The rest of the article is organized as follows. In Section II,
related works on individual trees extraction in urban street areas
from MLS data are introduced. In Section III, the method for
the individual street trees extraction is presented. In Section IV,
the experiments and evaluations of the proposed method are
conducted with a real dataset. In Section V, the experiment
results are discussed in detail. Finally, conclusions are drawn
and future work is presented in Section VI.

II. RELATED WORKS

The main process of extracting individual trees from MLS
data comprises two steps. First, nontree objects (e.g., ground
and building facades) which are easily to identify are removed
by the pretreatment [27]. And then, the geometric characteristics
of the local structures, such as height [28], point density [29],
tree crown radius [30], 3-D structure tensor features [9], shape
complexity [31], are used to extract individual trees with trunks
and crowns from the remaining objects. According to Vo et al.
[32] and Li et al. [33], the existing methods for individual trees
extraction in urban street areas based on MLS data are divided
into two categories: region growing-based [28], [31], [33]–[35]
and clustering-based methods [30], [36]–[40].

Among the region growing-based methods, the region grow-
ing seed points generally located on the trunks should be selected
first. And then, the extraction for the whole trees can be accom-
plished by the growing of the seed points according to certain
methods, such as competing region growing algorithm [31],
breadth-first search algorithm [34], and dual growing method
[33]. It is important to select the seed points correctly to improve
the completeness and correctness of the extraction. Yue et al.
[28] selected seed points on tree trunks based on the elevation
difference and density of each grid point. Wu et al. [31] selected
them according to the area and shape of the voxels projected to
the horizontal plane at a relative height of 1.2–1.4 m above the
ground. Li et al. [33] searched for the seed points on tree trunks
according to the rules that a tree trunk stands near the horizontal
center of the corresponding crown and has a smaller diameter
than the crown with a relatively cylindrical shape. Wu et al.
[34] pointed that if the plane coordinate of the gravity center
of a supervoxel and other points in the supervoxel are close to
the detection position, the supervoxel would be more likely to
belong to the detection position, which is exactly the seed point
on the tree trunk. Similarly, Zhong et al. [35] selected seed points
according to the local maxima in the horizontal histogram of the
octree nodes and their shape characteristics after the construction
of the octree. The extraction results of these methods are highly
depended on the selection of seed points [41]. For trees whose
trunks are not blocked, these methods can completely select the
trunk position of each tree, and the corresponding tree can be
extracted independently from the trunk position through upward
and downward growth. Nevertheless, it is problematic when the
tree trunks are blocked by cars and green belts due to the inability
of the selection for seed points on the trunks.

Among the clustering-based methods, Huang et al. [37] per-
formed Euclidean distance clustering on the points after the
ground removed, and extracted individual trees with the support
vector machine classifier. Moreover, Guan et al. [36] combined
the Euclidean distance clustering and voxel-based normalization
cut [42] segmentation for the extraction of individual trees.
In order to improve the results of individual trees extraction,
Weinmann et al. [38] extracted independent trees via mean shift
clustering and shape analysis. Yadav et al. [30] and Xu et al. [39]
segmented and extracted each crown following the rule that for
any point cloud except for the tree vertex, the point belongs to
the tree where the nearest tree vertex is located. Xu et al. [40]
proposed a bottom-up hierarchical clustering method to cluster
nonphotosynthetic components of trees, and clustered the leaf
regions according to the principle of closest to the clustered
nonphotosynthetic components. The existing clustering-based
methods can extract individual trees well in some simple scenes
where the adjacent street trees have relatively large spacing, less
touching, or interlocking with urban infrastructures. However,
in the scenes where the street trees have different crown size,
the crown touching or interlocking is large, and there is an
overlap between tree crowns and other urban infrastructures,
these methods demonstrate low identification accuracy and poor
crown segmentation results.

In order to overcome the deficiencies of the existing methods,
an “uphill clustering” method based on over-segmentation is
presented in this article for the automatic extraction of individual
trees in urban street areas from MLS data. The main contribu-
tions of this article include the following conditions.

1) We proposed a new uphill clustering method for individual
street trees extraction from MLS data.

2) We realized the adaptive setting of clustering threshold
parameters, which improved the automation of individual
trees extraction.

3) We took the point density into account when performing
the over-segmentation to improve the supervoxels seg-
mentation method proposed by Lin et al. [43] and the
improved method shows advantages on the processing of
MLS point cloud data with nonuniform densities.

III. METHODOLOGY

MLS point cloud data of urban scenes contains many nontree
objects, such as ground, building facades, vertical poles, and
cars, which cause difficulties in the extraction of individual street
trees. In order to accurately extract each street tree, the proposed
method based on uphill clustering mainly includes the following
processes. First, we over-segment the original point cloud data to
generate supervoxels. This operation can reduce the number of
point clouds, improve the computational efficiency, and it can
also distinguish the boundaries of different objects well [43].
Second, the typical object structures, such as ground, building
facades, low planar structures, horizontal linear structures, and
vertical linear structures (potential tree trunks) are all identified
after the extraction of planar and linear structures based on the
region growing of supervoxels. Then, the remaining volumetric
object structures (potential tree crowns) are resegmented and
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Fig. 1. Overall workflow of the proposed method.

clustered to generate “hillsides,” and the uphill clustering is
conducted to segment the potential tree crowns individually.
Finally, tree crowns are selected and the corresponding tree
trunks are found from the potential trunks. The overall workflow
sketch is illustrated in Fig. 1.

A. Supervoxels Generation

Supervoxel can be defined as the 3-D analog of superpixel
[44] or a compact point cluster [43]. Using the supervoxels,
the number of original 3-D points can be greatly reduced and
the processing efficiency will be improved. In addition, a good
supervoxel generation method can preserve the object bound-
aries and provide a natural and compact representation for the
original 3-D points, which allows the operations to be performed
on a local region with consistent features instead of the original
scattered points. Supervoxels have received a lot of attention in
3-D point cloud processing, such as object detection [39], [45],
and semantic segmentation or classification [46], [47]. Defined
as a compact point cluster as that in reference [43], supervoxels
are generate to reduce the amount of data and improve the
efficiency of individual trees extraction in this article.

Among the supervoxels generation methods, Papon et al. [44]
proposed the Voxel Cloud Connectivity Segmentation (VCCS)
algorithm, in which the initial supervoxels are formed with the
seed points selected uniformly in 3-D space, and then the final
supervoxels are generated with local k-means clustering method.
The corresponding result depends on the selection of seed points
and the setting of the voxel resolution. For the point cloud data
with nonuniform density, the object boundaries cannot be ideally
preserved, and there exists the deficiency that more than one
object may overlap with the same voxel [43]. Thus, Lin et al. [43]
regarded supervoxel segmentation as a subset selection problem.
First, the number of supervoxels, N, or the desired resolution
of supervoxels, R, (N can be evaluated by R) is specified.
Then, N supervoxels are selected by minimizing the sum of
the dissimilarity distance (measured by the distance metric, D)
between each point and its corresponding representative point.
This method is more suitable for the extraction or detection of
objects because of its better preservation of object boundaries.
However, since only the normal vector difference and Euclidean
distance between points are considered in the distance metric,
D, the resolutions of supervoxels generated from the areas with
different point densities are quite different, which is particularly
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Fig. 2. Supervoxels generation results of MLS data with different point
densities. (a) Density inconsistency not considered. (b) Density inconsistency
considered.

obvious for MLS point cloud data. As shown in Fig. 2(a), the
point cloud is denser on the middle of the road near the laser
scanner, so the resolutions of the generated supervoxels are
smaller. Along both sides of the road far from the scanner, where
the point cloud density is smaller, the corresponding resolutions
of the generated supervoxels are larger. Therefore, using this
method directly to the extraction of street trees from MLS point
cloud data will cause two problems as follows.

1) The average resolution of the supervoxels near the tree
along both sides of the road is inconsistent with the input
desired resolution, R, which makes it difficult to select
the parameter, R. R represents the average resolution of
generated supervoxels where the point densities are close
to the average point density in the original point cloud. The
average resolution of supervoxels near the tree on both
sides of the road is greater than the desired resolution.

2) A large part of the generated supervoxels are distributed
on the road, and the number of points cannot be efficiently
reduced. The average resolution of the supervoxels on the
road is small and the number of supervoxels is large, which
can be attributed to the high point density on the road
surface for MLS data. However, the road surface is usually
a simple flat structure, so there is no need to use too many
supervoxels for representation. Therefore, it is necessary
to reduce the number of supervoxels on the road.

To solve the two mentioned problems, the distance metric
in [43] is improved with the inconsistency of point density
considered in this article. Using the improved method, the
influence of density inconsistency on the average resolution of
generated supervoxels can be avoided as much as possible and
the number of supervoxels on the road can be reduced effectively.
The optimized distance metric is expressed as

D (p, q) = 1− |np · nq|+ α
||p − q|| −K ·Mdis + dispq

R
(1)

where np and nq are the normal vectors of the points p and q,
which are normalized to the unit length, respectively. The normal
vector is calculated as the same as the VCCS implementation in
[48]. K is a parameter that needs to be specified to control the
influence of point density. Mdis represents the average point den-
sity of all points in the original point cloud, which is expressed by
the average point spacing. dispq is the average density at point
p and q, which is represented by the average point spacing at
point p and point q. In practice, the point spacing at point p is
represented by the average of the distances from point p to the

points in its k-nearest neighborhood. α is the weight parameter
to balance the influence of normal vector difference and spatial
distance. In practice, α is taken as 0.4, which is the same as that
in [43] and [48].

The supervoxels generated with the same desired resolution
by the distance metric before and after optimization are shown
in Fig. 2(a) and (b), respectively. From the comparison in Fig. 2,
we can see that the resolutions of the supervoxels generated with
the point density considered are more uniform, which facilitates
the selection of the desired resolution, R. Moreover, the number
of supervoxels on the road is greatly reduced, which effectively
reduced the amount of data by using supervoxels to represent
the original points.

B. Planar and Linear Object Structures Extraction

After supervoxels are generated, all points can correspond
to the supervoxels which they belong to. Almost all points in
the same supervoxel belong to the same object or part of the
same object. This provides a good foundation for the detection
of objects. Since we focus on the extraction of individual trees,
we first extract the typical planar and linear object structures
based on the region growing of supervoxels, and then remove
the typical nontree planar and linear object structures.

Using principal component analysis method, the geometric
structures for each supervoxel are calculated as follows [49],
[50].

Let pi (i = 1, 2, …, k) be the points in one supervoxel. The
covariance matrix M of them can be written as

M =
1

k

k∑
i =1

(pi − p̄) · (pi − p̄)T (2)

where k is the number of points in the supervoxel, p̄ is the
centroid of the supervoxel, and p̄ = 1

k

∑k
i = 1 pi.

The eigenvalues λ1, λ2, λ3; (λ1 ≥ λ2 ≥ λ3) of M can be
determined, and they represent the 3-D geometric tensor features
of the supervoxel.

Different from Yang et al. [50], which used probabilistic meth-
ods to determine whether a supervoxel belongs to a linear, planar,
or volumetric structure, we determine the geometric structure,
VL, of the supervoxel according to the three eigenvalues of
M by specifying parameter thresholds KL and KP . This can
effectively avoid salt-and-pepper noise during the subsequent
region growing process. The method of judging the geometric
structures of supervoxels is as follows:

VLis :

⎧⎨
⎩

linear, if λ1 ≥ KL · λ2

planar, else if λ2 ≥ KP · λ3

volumetric, else
. (3)

For the supervoxels with planar and linear structures, their
normal direction, VN , and principal direction, VP , are calculated
respectively. VN and VP are the corresponding eigenvectors to
the smallest and largest eigenvalue of M.

With the geometric characteristics of supervoxels, all points
can be represented by N supervoxel representative points
with geometric characteristics (linear, planar, or volumetric
structure categories, normal directions of planar structures or
principal directions of linear structures). The planar and linear
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TABLE I
SEVERAL TYPICAL URBAN OBJECT STRUCTURES AND THEIR CORRESPONDING JUDGMENT METHODS

object structures are detected successively with region growing
method. The process is as follows.

1) Detection of planar object structures. The threshold pa-
rameters KL = 10 and KP = 5 are used to calculate the
supervoxels geometric structures in the detection of the
planar object structures. Then, the first seed supervoxel
is randomly selected from the planar supervoxels, and
the spatially adjacent supervoxels are regarded as the
candidate growing supervoxels. The growth criterion is
that the angle of normal vector between the supervoxel
and the seed supervoxel is smaller than the threshold, TN

(TN = 20◦ in practice). The supervoxels that satisfy the
growth criterion are clustered into the seed supervoxel, and
their neighborhoods are putted into the candidate growing
supervoxels. For the candidate supervoxels, the growing
process is carried out with the growth criterion, until the
detection of the planar object structure of the first seed
supervoxel is achieved. After the growth of the planar
object structure where the first seed supervoxel is located,
the next seed supervoxel is selected to start the growth
of the next planar structure until the detections for all the
planar object structures are completed.

2) Detection of linear object structures. The geometric struc-
tures of the grown planar object structures are recalculated
with threshold parameters KL = 5, KP = 10, and the
recalculated planar object structures are used together
with other ungrown linear supervoxels for linear object
structures detection. The detection method of linear object
structures is similar to that of planar object structures,
except for that the growth criterion is replaced by the
criterion that the angle of principal direction between
the supervoxel and the seed supervoxel is less than the
threshold, TP (TP = 20◦ in practice).

The planar and linear object structures generated after the
region growing and the ungrown supervoxels are all parts of
objects. For convenience, we call them object structures. Among

Fig. 3. Extracted building facade structures.

them, several typical object structures including ground, build-
ing facades, low vegetation in the shape of a plane, horizontal
linear structures such as roadsides, linear structures of buildings,
and vertical linear structures such as traffic sign poles, street
light poles, and tree trunks can be easily extracted. The vertical
linear structures of these typical object structures are potential
tree trunks. The structures other than the above typical object
structures belong to the potential tree crowns. Inspired by Yang
et al. [50], we extract the typical object structures according
to their minimum bounding box size and their geometric char-
acteristics. And then, other typical object structures except for
the potential tree trunk and crown structures are removed. The
judgment method of each typical object structure is shown in
Table I.

In addition to the large planar structures, the building facades
also contain many other small structures, such as door and
window frames, air conditioners. Therefore, after the building
facade structures are extracted according to the judgment method
in Table I, other structures located within the extracted minimum
bounding boxes of the building facades are also regarded as
the building facade structures, as shown in Fig. 3. In the same
way, for the low planar structures, other structures located in the
smallest bounding boxes of the low planar structures are also
regarded as the low planar structures.
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Fig. 4. Hillside generation process. (a) Volumetric geometric points (colored by elevation). (b) Supervoxels. (c) Side view of the hillside structure. (d) Top view
of the hillside structure. (e) Side view of representative points of the hillside structure. (f) Top view of representative points of the hillside structure.

C. Hillside Generation

After planar and linear object structures detection and ex-
traction, typical object structures, such as ground, building
facades, roadsides, street light poles, and tree trunks, have
been extracted. The rest of the object structures are mainly
tree crown object structures and other noncrown small object
structures, as shown in volumetric object structures in Fig. 1.
Compared with tree crowns, these noncrown objects are usually
smaller and separated from each other in space [Fig. 4(a)], so
they can be distinguished from the tree crowns by clustering.
However, there may be touching or interlocking between the
crowns of adjacent trees. Therefore, existing clustering methods
such as Euclidean distance clustering and mean shift clustering
are difficult to separate each tree crown. To this end, we first
generate “hillsides” for uphill clustering by reover-segmentation
and columnar clustering of the volumetric object structures. And
then we achieve independent segmentation of the tree crowns
through uphill clustering.

When generating supervoxels from the original point cloud,
we use (1) as the distance metric function, and the normal vector
consistency is considered in the distance metric function D.
But for tree crowns, the points of the crowns usually appear
as scattered points with volumetric structures, and the normal
vectors of the two points are quite different even if they are
adjacent. The shape of the supervoxel generated by considering
the consistency of the normal vector is extremely irregular and
the points of two tree crowns may be distributed in the same
supervoxel. Independent extraction of tree crowns directly based

on the original supervoxels easily leads to poor extraction of
adjacent tree crowns. Therefore, before the independent seg-
mentation of the crowns, we reover-segment the point cloud in
the volumetric object structures to generate new supervoxels
with the desired resolution Rcro, in which the spatial Euclidean
distance is considered only in the distance metric Dcro.

Dcro (p, q) = ||p − q|| . (4)

Only considering the spatial Euclidean distance can better
distinguish the tree crown boundaries while reducing the number
of points. The regenerated supervoxels are shown in Fig. 4(b).

The result of reover-segmentation is further applied to
columnar clustering to generate “hillside” for uphill clustering
[Fig. 4(c) and (d)]. The implementation of columnar clustering is
similar to the supervoxels generation, which is also regarded as a
subset selection problem. The supervoxels whose distance in the
XY plane is less than the threshold Rcol are merged. The plane
distance in the XY plane is used only in the columnar clustering
distance metric Dcol.

For each columnar cluster in the “hillside,” we use the highest
point as a representative point to represent it. The side view and
top view of the “hillside” represented by representative points
are shown in Fig. 4(e) and (f), respectively. Using the highest
point as the representative point can make the columnar cluster
of the same tree clustered together more closely with the tree
apex as the center and increase the distance between different
crowns, which facilitates the individual extraction of different
crowns.
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Fig. 5. Uphill clustering process. Upper, clustering process of the representative points (numbered and colored by elevation), top view; lower, columnar clusters
corresponding to clustering process of the representative points, side view.

D. Uphill Clustering

For the representative points of the generated hillside struc-
ture, the clustering category to which each representative point
and its corresponding columnar cluster belong is determined in
the order of height from low to high with the uphill clustering
criterion, so as to realize the individual extraction of the tree
crowns. Fig. 5 shows the hillside clustering process of the
representative points and their corresponding original points.
The specific clustering process is as follows.

1) For the representative points of the columnar clusters in the
hillside structure, we sort them according to their elevation
and number them sequentially. The number represents the
cluster category to which the columnar cluster belongs.
Before the uphill clustering, the number of cluster cate-
gories is equal to the number of columnar clusters.

2) According to the order of the height from low to high,
that is, the number from large to small, we cluster each
representative point Pi in the hillside structure in turn.
Next, we find the representative point Pj that is closest
to Pi in the XY plane and whose number is less than Pi

(that is, higher than Pi in spatial). Determine whether Pi

and Pj meet the clustering condition, that is, whether they
are adjacent in space and the distance in the XY plane
is less than the threshold Tc. If the clustering conditions
are met, the representative points Pi and Pj belong to
the same cluster category. And then the numbers of the
representative points Pi and representative points with
the same numbers as Pi (that is, the columnar clusters
belong to the cluster category of Pi) are both changed to
the number of Pj.

3) After the clustering of the highest representative point
is completed, all representative points of the columnar
clusters on the hillside structure have their corresponding
cluster category numbers. The columnar clusters with
the same number belong to the same clustering category,
and the columnar clusters with different numbers can be
distinguished, so as to realize the uphill clustering.

For the clustering results of the hillside structure, the spatial
minimum bounding box of each cluster is calculated, and the

cluster with the size of the minimum bounding box greater than
the threshold Sbb is regarded as the tree crowns, as the individual
tree crowns shown in Fig. 1. After the crown of each tree is
extracted, the plane coordinates of the highest point of each
crown are used to indicate the position of the crown in XY plane.
The nearest vertical linear structure whose distance to the crown
in XY plane is less than Dct is selected as the corresponding tree
trunk from the potential tree trunk structures. The tree crown
has no corresponding trunk if it does not have a potential trunk
structure within a distance less than Dct in the XY plane. So far,
individual extraction of street trees from MLS point cloud data
in urban areas has been completed, which is shown in Fig. 1,
individual trees part.

To improve the self-adaptive ability of the uphill clustering
method for extracting crowns of different sizes, the selection of
the clustering threshold Tc adopts an adaptive method accord-
ing to the size of the tree crown in the process of clustering
representative points of the columnar cluster. Assuming that the
crown width is proportional to the crown length, the clustering
threshold Tc can be adaptively selected according to the current
length, Hi, of the columnar cluster.

Tc =

{
1
3Hi ·Rc, Hi ≥ Ht

1
3Ht ·Rc, Hi < Ht

(5)

where Rc is the ratio of crown width to crown length, and its
value can be selected according to the tree species; Ht is the
length threshold of columnar clusters. In the uphill clustering
process, the use of Ht can avoid clustering failures of columnar
cluster whose length is less than Ht.

The method with fixed thresholds has the shortcoming that it
is difficult to accurately extract tree crowns of different sizes,
which can be avoided by the adaptive clustering threshold
method. As shown in Fig. 6, A, B, C, and D are four repre-
sentative points. For the clustering of D, the searched nearest
neighbor representative point is B, and the condition for that the
columnar clusters in D can be clustered into B is that dBD is
less than the threshold TcD. For the clustering of C, the searched
nearest neighbor representative point is A, and the corresponding
clustering condition is that dAC is less than the threshold TcC.
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Fig. 6. Schematic diagram of adaptive selection of clustering threshold ac-
cording to the length of columnar clusters.

Since dAC is greater than dBD, when the fixed threshold Tc

is small, the two columnar clusters A and C will be divided
into two cluster categories, resulting in over-segmentation of
the tree crowns; when the fixed threshold Tc is large, B and
D will be clustered into the same cluster category, resulting in
under-segmentation. The adaptive threshold selection method
adopted in this article can automatically determine the size of the
threshold Tc according to the length of the current columnar clus-
ter, so that the clustering threshold TcD at representative point
D is smaller than the clustering threshold TcC at representative
point C. In this way, the shortcomings of fixed threshold that it
is difficult to cluster spatially connected and different-sized tree
crowns can be effectively avoided.

IV. EXPERIMENTS AND EVALUATIONS

A. Test Data

The data shown in Fig. 7(a) is used to verify the individual
trees extraction method proposed in this article. The data was
collected by an MLS system in an urban street, with a total
of 10 738 632 original measurement points. The length of the
road in the experimental data is about 220 m, and the height
difference between the two ends of the road is about 0.5 m. There
is a total of 129 trees that can be artificially identified from the
scanning data, of which 85 are street trees on both sides of the
road and 44 are greening trees in the green belt areas. The size,
height, density, and tree species of the street trees are different.
The trunks of some trees are blocked by cars parked on the
roadside and the green belt walls under the trees [Fig. 7(b)]. In
addition, the poles contained in the street trees such as traffic sign
poles, street light poles [Fig. 7(c)], and bicycles parked under
the street trees [Fig. 7(c)] all have influence on the extraction
of individual trees. The point density of trees in the green belt
areas is sparse and the density difference is large [Fig. 7(d)]
because the greening trees are far away from the scanner and
are seriously blocked. In addition, some greening trees are close
to the building [Fig. 7(e)]. All of the above characteristics lead
to the difficulties in the extraction of individual trees.

In order to show the close-view of the extraction results and
analyze the applicability of the proposed method in scenes with
different complexity, we divided the trees into six small regions
and numbered them with 1–6 [Fig. 7(a)]. The trees in region
1 and 6 are located in green belt areas and belong to greening
trees. The trunks of greening trees are usually not obvious, and
the height under branches is usually small, so it is difficult to
effectively extract the trees by identifying the tree trunks and
then growing from them. The trees in regions 2–5 belong to street
trees, which are the main objects the proposed method focus on.
Among them, the environmental complexity of each region is
different. Except for cars, bicycles, street lights, and traffic signs
in region 4, the street trees in this region are in two parallel rows.
The distance between the street trees is close, the crowns are
connected, and the tree height and the crown size vary greatly.
In addition, the trunks of the second row of trees far from the
scanner are seriously blocked by the green belt walls [Fig. 7(b)].
Therefore, region 4 is the most complex for individual trees
extraction. It should be noted that it also contains some greening
trees, but it is difficult to distinguish them from the scanning data
due to severe block. Therefore, in the experimental part, for the
trees in region 4, we only considered the two rows of street
trees close to the road that can be artificially identified from
the scanning data. The experimental data used here contains six
small regions with different environmental complexity, which
can effectively verify the feasibility of the proposed method for
individual trees extraction.

B. Individual Trees Extraction Results

The method proposed in this article is used to extract in-
dividual trees from the experimental data. When supervoxels
segmentation is performed on the original point cloud data, the
desired resolution of the supervoxel R is taken as 1.0 m, and the
parameter K is taken as 6. When extracting several typical object
structures using the judgment methods described in Table I, we
set the empirical parameter thresholds as follows: TGA = TBA =
20 m2, TGN = THLP = TVLP = 20°, TBN = 10°, TLPL = TLPW

= 1.5 m, TLPH = 2.0 m, THLL = TVLH = 1.0 m. And the
extraction results are shown in Fig. 8. In detail, Fig. 8(a) shows
the extraction results of several typical planar and linear object
structures not belonging to tree crowns and trunks. Fig. 8(b)
shows the extraction results of potential tree trunks, including
vertical pole-like structures such as tree trunks, street light poles,
and traffic sign poles. Fig. 8(c) shows the remaining potential
tree crowns after removing several typical object structures that
are not tree crowns from the original data.

After hillside generation and uphill clustering, the potential
tree crowns [Fig. 8(c)] are segmented independently. Then,
independent tree crowns are extracted from the potential tree
crowns according to the size of their minimum bounding boxes
and the trunk corresponding to each tree crown is selected (if
the corresponding trunk exists) from the potential tree trunks
[Fig. 8(b)]. The parameters and thresholds that are adopted
in this process are as follows: Rcro = 0.25 m, Rcol = 0.5 m,
Rc = 1.5 m, Ht = 2 m, Sbb = 2 m × 2 m × 2 m, Dct = 1.0 m.
The final individual trees extraction results are shown in Fig. 9,
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Fig. 7. Test data. (a) Original point cloud and the regions division (colored by elevation). (b)–(e) Close-view of the test data.

with regions 1 and 6 displaying the result of extracted individual
greening trees, and regions 2–5 showing that of the street trees.

In order to quantitatively evaluate the results of the individual
trees extraction, we calculate the correctness r, completeness p,
and F-score f as

r =
TP

TP + FP
, p =

TP

TP + FN
, f =

2× TP

2× TP + FP + FN
.

(6)
TP: the number of trees correctly extracted; FP: the number

of trees wrongly extracted; FN: the number of trees that have
not been extracted.

The correctness represents the ratio of the number of trees
correctly extracted to the number of trees extracted in the ex-
periment, which is used to describe the accuracy of individual
trees extraction; the completeness represents the percentage of
the number of trees correctly extracted to the total number of
trees in the test region, which is used to describe the integrity
of the individual trees extraction; F-score is the harmonic mean
of correctness and completeness, which is the comprehensive
evaluation index of the above two indexes, and can evaluate the
comprehensive effect of individual trees extraction. The evalu-
ation of our performance on each region is shown in Table II.

V. DISCUSSION

A. Performance of the Supervoxels Generation

In order to verify the effectiveness of the improved supervox-
els generation method with the inconsistency of point density
considered, we calculated the relationship between the number
of supervoxels on the road surface and the parameter K, and the
relationship between the average resolution of the supervoxels
and the parameter K, as shown in Fig. 10(a) and (b), respectively.
Fig. 11 shows the supervoxels generation results on the road
with several different values of K. In Figs. 10 and 11, when
K = 0, the number of supervoxels on the road is 10 233, and the
average resolution of supervoxels on the road is 0.452 m. These
are the results in which the inconsistency of point density is not
considered. When K = 0, the average resolution of supervoxels
on the road is much smaller than the average resolution of all
supervoxels (1.0 m), so the average resolution of other nonroad
supervoxels is about 1.548 m (greater than the average resolution
1.0 m). It can be seen from Figs. 10(b) and 11 that when
the inconsistency of point density is considered, the average
resolution of supervoxels on the road shows an increasing trend
on the whole, and keeps close to 1.0 m with the increase of
K. Therefore, the average resolution of nonroad supervoxels
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Fig. 8. Object structures extraction. (a) Several typical planar and linear object structures not belonging to tree crowns and trunks. (b) Potential tree trunks
(vertical pole-like objects). (c) Potential tree crowns (volumetric object structures).

TABLE II
EVALUATION OF THE EXTRACTED INDIVIDUAL TREES

becomes smaller toward the desired value of 1.0 m. In addition,
with the increase of K, the number of supervoxels on the road
shows a decreasing trend as a whole [Fig. 10(a)], and the average
resolution of supervoxels is more uniform (Fig. 11). Therefore,
the supervoxels generation method which considers the incon-
sistency of point density by selecting the appropriate K cannot

only effectively solve the problem of excessive differences in the
average resolution of all supervoxels, but also reduce the number
of supervoxels on the road and improve the efficiency of data
processing. Combined with Fig. 2, it is proved that considering
the inconsistency of point density is of great significance in
supervoxels generation.
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Fig. 9. Close-view of our performance on regions 1–6.

Fig. 10. Relationship between the changes of generated supervoxels on the road and the parameter K. (a) Relationship between the number of supervoxels on
the road and the parameter K. (b) Relationship between the average resolution of supervoxels on the road and the parameter K.

B. Performance of the Typical Object Structures Extraction

It can be seen from Fig. 8(a) that the proposed supervoxel-
based planar and linear nontree object structures detection
method can effectively extract the nontree objects structures
like ground, building facades, low planar object structures, and

horizontal pole-like structures. Potential tree trunks (vertical
pole-like structures) can also be extracted effectively [Fig. 8(b)].
It can be seen from the potential tree crowns [Fig. 8(c)] that
although there are many nontree crown object structures in the
potential tree crowns, the tree crowns are reserved without any
omission, which provides a guarantee for the completeness of
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Fig. 11. Supervoxels generation results on the road with different values of K.

crowns extraction in the subsequent processing. Moreover, in
the potential tree crowns, the crowns and noncrown structures
are not connected with each other and the size of the former is
larger. Therefore, the tree crowns and noncrown structures can
be distinguished by clustering, which ensures the correctness of
independent extraction of the crowns in subsequent processing.
In summary, the extraction of typical object structures based on
the region growing of supervoxels provides a basis for individual
trees extraction.

C. Performance of the Individual Trees Extraction

From the close-view of the individual trees extraction results
(Fig. 9), it can be seen that the proposed method has a good
extraction result for street trees and greening trees. And for
region 4 where trees are dense, the tree crown size is different
and some tree trunks are blocked, the proposed method can
also extract individual tree well. Fig. 12 shows the extraction
results of street trees in several different environments. It can
be seen that the proposed method cannot only extract the street
trees from simple environments [Fig. 12(a) and (b)] but also can
correctly extract trees from complex environments where the
tree trunks are blocked severely by cars and green belts and the
crown touching or interlocking is large [Fig. 12(c) and (d)].

It can be seen from Table II that the completeness of the
proposed method for the extraction of street trees in regions
2–5 has reached 100%, that is, there is no missing extraction,
and the correctness is 96.4%. There are four wrongly extracted
street trees, which are located in the red circles in Fig. 8, and
their close-up views are shown in Fig. 13(a), (b), (c), and (f),
respectively. From the close-up view, the wrongly extracted
street trees include two types: 1) the tree mixed with other objects
like traffic signs [Fig. 13(a) and (c)], resulting from the fact
that the tree crown is connected with the other objects; 2) the
tree whose crown is wrongly divided into more than one parts
[Fig. 13(b) and (f)], which is caused by the incomplete crown or
the large difference of point cloud density in the crown.

From the results of trees extraction in regions 1 and 6 in
Table II, the proposed method also performs well for the ex-
traction of greening trees in different shapes, and the com-
pleteness and correctness are 94.6% and 83.3%, respectively.
There are two missing greening trees in the extraction results,
which are located in the red rectangles in Fig. 8 and their
close-views are shown in Fig. 14. The reason why the tree
shown in Fig. 14(a) is missed is that the point spacing of the

tree is larger than the distance recognition threshold, because
it is far away from the scanner and blocked severely. The
corresponding reason for the missed tree in Fig. 14(b) is that
the size of the tree is smaller than the 2 m × 2 m × 2 m
crown recognition thresholds set in our experiment. There are
seven trees extracted wrongly in the green belt areas, which
are located in the red circles in Fig. 8. Their close-views are
shown in Fig. 13(d), (e), (g), and (h), respectively. The reason
why the trees shown in Fig. 13(d), (e), and (g) are not correctly
extracted is that the tree point cloud is incomplete due to the
block. The corresponding reason for Fig. 13(h) is that the dis-
tances between trees are too close and the crown touching and
interlocking are severe, which causes the two adjacent trees to
be wrongly identified as one.

In order to verify the advantages of the proposed method,
our performance is compared with other individual street trees
extraction methods based on MLS point cloud data, including
Wu2013 [31], Wu2016 [34], Li2016 [33], Zhong2017 [35],
Huang2015 [37], Yadav2018 [30], Xu2018 [40], and Improved
Wu2013. Among them, Wu2013 is a representative region
growing-based method, and Improved Wu2013 is the optimized
method of Wu2013 to compare the proposed method with the
region growing-based method on the same test data. Compared
with Wu2013, the condition that the compactness index of crown
after region growing is less than 0.5 is added in Improved
Wu2013. The calculation of compactness index can be found
in [31]. The addition of the compactness index condition can
effectively overcome the weakness that the crown without a
trunk and the crown with a trunk touched to it may be divided
into the same one during the horizontal growth of the crown.
This can improve the correctness of individual tree extraction.

Table III shows a description of the datasets and test scenes in
the mentioned methods for individual trees extraction. The Im-
proved Wu2013 and the proposed method use the same dataset,
which is the experimental data used in this article. Among the
85 street trees in the experimental data, the Improved Wu2013
method extracted 63 street trees (85 with the proposed method),
of which 62 were correctly extracted (81 with the proposed
method). Because the trunks of some street trees in region 4
are blocked by the low green belts, 22 street trees have not been
extracted in the results of the Improved Wu2013 method (there
is no missing extraction with the proposed method). The partial
comparison of results for the two methods is shown in Fig. 15,
which shows that the Improved Wu2013 method cannot extract
the street trees with trunks blocked because the trunk seed points
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Fig. 12. Extraction results of individual street trees in environments with different complexity. Left: original point cloud data; Middle: tree crowns and potential
tree trunks; Right: individual trees with crowns and trunks.

TABLE III
DESCRIPTION OF METHODS AND TEST SCENES IN INDIVIDUAL STREET TREES DETECTION FOR MLS DATA
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Fig. 13. Close view of the false positive results in the extraction.

TABLE IV
COMPARISON WITH OTHER INDIVIDUAL STREET TREES EXTRACTION METHODS PROPOSED FOR MLS DATA

Fig. 14. Close view of the false-negative results in the extraction.

cannot be selected. This leads to serious omission of extraction.
In contrast, the proposed method does not rely on the selection
of seed points and can extract street trees with trunks blocked.

Table IV shows the quantitative analysis results of street trees
extraction from several MLS point cloud data. It can be seen that
the completeness of our method is the highest, which is 100%.
Although the completeness of Wu2013_1 and Li2016_1 are also
100%, but their experimental scenes are far less complex than
ours. In their test scenes, there is no crown touching of street
trees, and there are no blocked trunks. In our test data, for the

street trees whose trunks are not scanned due to the block, the
proposed method can still identify them correctly, and there is no
missing extraction. This is not achieved by most of the existing
methods based on the selection of tree trunks. For example,
the completeness of the street trees extraction of the Improved
Wu2013 method in our test data is only 73.8%. In terms of
the correctness of street trees extraction, the correctness of our
method is 96.4% which is slightly lower than that of Wu2013,
Li2016_1, Huang2015, Xu2018, and Improved Wu2013. There
are mainly two reasons that affect the correctness of our method.
One is that in region 4 of our test data, there are two rows of
street trees, and the crowns are severely blocked, which leads to
incomplete crowns of some trees or too large difference in point
density of the same crown [Fig. 13(b) and (f)]. Therefore, one
crown is wrongly divided into two during the extraction. How-
ever, for the experimental data used in the comparison methods,
there is no case of multiple rows of street trees. The other reason
is that our method cannot remove the artificial irregular objects
mixed in the crowns (mainly traffic signs and traffic lights, etc.)
well, which is also a problem in most of the exiting individual
trees extraction methods. On the whole, although the data we
used are more complex, the proposed method is still superior to
the most existing methods. Especially for the comparison with
the Improved Wu2013 method, it can be seen that the proposed
method has great advantage in the extracting of street trees whose
trunks are blocked.
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Fig. 15. Typical extraction result comparisons between two different methods. (a) and (b) are original point clouds of typical parts in region 2 and region 4,
respectively; (c) and (d) are the extraction results by Improved Wu2013 method for the typical parts in region 2 and region 4, respectively; (e) and (f) are the
extraction results by the proposed method for the typical parts in region 2 and region 4, respectively.

VI. CONCLUSION

For individual trees extraction from urban MLS point cloud
data, we proposed an over-segmentation-based uphill cluster-
ing method, the main steps of which include the supervoxels
generation, potential tree crowns and trunks determination, and
individual trees extraction. Results show that it can extract
individual trees in different complex scenes successfully. For
the tree with blocked or missing trunk, it can still be extracted
individually, which means that the proposed method does not
rely on the data quality of the tree trunks.

Using the experimental data, the correctness and complete-
ness of the proposed method for the extraction of street trees are
96.4% and 100%, respectively. There is no missing extraction
and the overall extraction result is better than most existing
methods. In addition, the proposed method also has a good
extraction for greening trees that are heavily blocked in the
green belt areas. The correctness and completeness are 83.3%
and 94.6%, respectively. The content that needs further research
is that the proposed individual trees extraction method has to
be further improved for the extraction of street trees mixed with
artificial irregular objects in the crowns.
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