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Attention Consistent Network for Remote Sensing
Scene Classification

Xu Tang

Abstract—Remote sensing (RS) image scene classification is an
important research topic in the RS community, which aims to assign
the semantics to the land covers. Recently, due to the strong behav-
ior of convolutional neural network (CNN) in feature represen-
tation, the growing number of CNN-based classification methods
has been proposed for RS images. Although they achieve cracking
performance, there is still some room for improvement. First, apart
from the global information, the local features are crucial to distin-
guish the RS images. The existing networks are good at capturing
the global features since the CNNs’ hierarchical structure and
the nonlinear fitting capacity. However, the local features are not
always emphasized. Second, to obtain satisfactory classification
results, the distances of RS images from the same/different classes
should be minimized/maximized. Nevertheless, these key points
in pattern classification do not get the attention they deserve. To
overcome the limitation mentioned above, we propose a new CNN
named attention consistent network (ACNet) based on the Siamese
network in this article. First, due to the dual-branch structure of
ACNet, the input data are the image pairs that are obtained by the
spatial rotation. This helps our model to fully explore the global
features from RS images. Second, we introduce different attention
techniques to mine the objects’ information from RS images com-
prehensively. Third, considering the influence of the spatial rotation
and the similarities between RS images, we develop an attention
consistent model to unify the salient regions and impact/separate
the RS images from the same/different semantic categories. Finally,
the classification results can be obtained using the learned features.
Three popular RS scene datasets are selected to validate our ACNet.
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Compared with some existing networks, the proposed method can
achieve better performance. The encouraging results illustrate that
ACNet is effective for the RS image scene classification. The source
codes of this method can be found in https://github.com/TangXu-
Group/Remote-Sensing-Images-Classification/tree/main/GLCnet.

Index Terms—Convolutional neural network (CNN), remote
sensing (RS), scene classification.

I. INTRODUCTION

ITH the development of remote sensing (RS) technol-
W ogy, an increasing number of RS images can be collected
every day by the diverse earth observation satellites. Abundant
information is provided by these images to scholars for under-
standing our planet. How to organize these huge volumes of RS
images becomes an urgent and necessary task. As a fundamental
and useful technology, RS image scene classification plays an
important role in the RS community. Through assigning the
semantic tags (e.g., “airport” and “beach”) to the RS images,
the large number of RS images could be categorized in different
classes. Then, researchers can select the specific RS images
according to the diverse semantics to accomplish their tasks.
Due to this characteristic, RS image scene classification is
popular in many practical applications, such as agriculture [1],
hydrology [2], and forestry [3].

During the last decades, many successful RS image scene
classification methods have been proposed [4]-[17]. At first, the
two-stage framework dominates the scene classification commu-
nity. In other words, researchers develop the methods to extract
or learn the RS images’ visual features first, and then some
machine learning algorithms are adopted or designed to com-
plete the categorization. For example, Sheng et al. [5] proposed
a two-stage classification scheme in which the support vector
machine (SVM) [18] is used to generate probability images with
different handcrafted features in the first stage and the generated
probability images with different features are fused in the second
stage to obtain the final classification results. Another scene
classification method was presented in the literature [10]. It
extracts several handcrafted visual features from the RS images
first. Then, the fully sparse semantic topic model is developed
to fuse the contributions of diverse features. Finally, the fused
features are classified by the SVM classifier. In this period,
for the feature extraction/learning, the low-/mid-level visual
features (e.g., Gabor feature [19] and bag of words feature [20])
are popular since they are easy in accomplishment and stable
in performance. For the classification, some traditional machine
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learning classifiers based on the statistical and Bayesian theories
(e.g., random forest [21] and SVM) are favored by researchers.

Recently, due to the strong feature learning ability and the
end-to-end classification framework, the convolutional neural
network (CNN) attracts more and more scholars’ attention.
An ocean of CNN-based RS scene classification methods is
proposed. Lu et al. [22] introduced an unsupervised deep fea-
ture learning method for scene classification. Inspired by the
deconvolution network [23], [24], the weighted deconvolution
network and the spatial pyramid model are combined to ex-
tract the effective features from RS images. Then, the scene
classification results can be obtained by these features. Liu
et al. [25] proposed a random-scale stretched CNN named
SRSCNN, where the patches with a random scale are cropped
from the image and stretched to the specified scale as input to
train a CNN for solving the scale variation of the same object in
a scene. To explore the semantic label information, Lu ef al. [26]
proposed an end-to-end feature aggregation CNN (FACNN). In
FACNN, a supervised convolutional features’ encoding module
and a progressive aggregation strategy are proposed to leverage
the semantic label information to aggregate the intermediate
features. The good performance of the above methods mainly
depends on CNN’s hierarchical feature learning structure and
a large number of labeled samples. However, they do not fully
consider a key issue in the pattern classification [27], i.e., the
interclass differences should be maximized and the intraclass
variations should be minimized.

To overcome the limitation mentioned above, the Siamese
network [28] is introduced to the RS images classification task.
On the one hand, based on the basic CNN framework, the
Siamese network can explore the high-level semantic features
from the RS images. On the other hand, due to the dual-channel
structure and specific loss function, the Siamese network can
also mine the similarity relationships between the RS image
pairs. For example, Liu et al. [29] imposed the metric learning
regularization term on the original Siamese network, which
enforces the Siamese networks to be more robust. Although
the mentioned Siamese network based classification methods
perform well for RS scenes, there is still some space to improve.
First, to capture the complex contents within the RS images,
not only the global information but also the local objects should
be taken into account during the feature learning. In general,
the global information of an RS image can be explored by the
common CNN. Nevertheless, it is hard for a usual CNN to mine
the objects from the RS images since they are diverse in type
and huge in volume. Second, to compact the interclass samples
and separate the intraclass images, the resemblance relationships
between RS images should be measured from different aspects.

Based on the above discussion, we design a new method
based on the Siamese network to accomplish RS image scene
classification, which is named attention consistent network (AC-
Net). First, we adopt a popular CNN (VGG16Net [30]) to learn
the intermediate feature maps (global information) from the RS
image pairs. Second, with the help of the visual attention mecha-
nism, a parallel-attention model is designed to mine the detailed
information (objects’ information) from the obtained feature
maps. Third, to reduce the influence of differences between
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attention maps corresponding to the input pairs, we develop an
attention consistent model here. Also, this model can narrow
down the intraclass variations and enlarge interclass differences
of RS images from the specific region aspect, which is beneficial
to deeply explore the similarity relationships between RS images
for the classification task. Finally, the RS scene classification
results can be obtained using the learned deep features.

The major contributions of this article are as follows.

1) Based on the Siamese network, an end-to-end RS image
scene classification model is proposed. The input RS
image pairs for our model are constructed by the spatial
rotation, which can not only augment the training data but
also highlight the intraclass similarities.

2) Taking the characteristics of RS images into account,
the parallel-attention model is developed to capture the
local information from the spatial and spectral aspects.
Accompanying with the global knowledge obtained by a
successful CNN, the discrimination of the final features
can be improved a lot.

3) To unify different kinds of attention maps and consider the
resemblance between RS images for the scene classifica-
tion, we design the attention consistent model. On the one
hand, it can avoid the negative effects caused by the differ-
ences between attention maps of image pairs. On the other
hand, this model is able to reduce the interclass differences
and increase intraclass variations of RS images.

4) Extensive experiments are conducted on three benchmark
datasets, and the encouraging results prove that our ACNet
is effective for the RS image scene classification task.

The remainder of this article is organized as follows. Related

work is reviewed in Section II. Then, the proposed ACNet
is introduced in Section III. The evaluations of the proposed
method are given in Section IV. Finally, the conclusions are
summarized in Section V.

II. RELATED WORK

RS scene classification is one of the challenging content
understanding tasks in the RS community. In recent years, with
the help of CNN, the performance of RS scene classification
is enhanced dramatically. Here, we roughly divide the existing
CNN-based classification methods into two groups according to
their architecture.

In the first group, the structure of the classification networks
is the single-branch. In other words, these networks have only
one entrance. When the RS images are input the networks, they
would be mapped into the feature vectors by some operations
(e.g., convolution, pooling, fully connection, and other advanced
techniques) for completing the classification task. The positive
results of this kind of classification methods mainly depend on
constructing the relationships between RS images and semantic
labels by a large number of training data [31], [32]. At the
very beginning, some classical CNNs (such as AlexNet [33],
Overfeat [34], and VGG16 [30]) were applied to the RS scene
classification directly [35]. Due to the pretrained weights (using
ImageNet dataset [36]) and the strong feature learning capacity
of CNN, the classification results are improved dramatically.
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Then, considering the characteristics of RS images, a series of
methods have been proposed based on the basic CNNs. In 2017,
Han et al. [37] proposed a pretrained AlexNet-spatial pyramid
pooling-side supervision model for RS scene classification, in
which the spatial pyramid pooling and the side supervision mod-
els are embedded into a pretrained AlexNet to solve the problem
of nonconvergence caused by the small quantities of RS images.
Since the feature maps corresponding to different convolutional
layers are fused, the multiscale information within RS images
can be explored, so that this model enhances the RS image
classification performance of AlexNet effectively. A multisource
compensation network was proposed in the literature [38]. It
combined a pretrained CNN, a cross-domain alignment model,
and a classifier complement module to deal with the cross-source
scene classification task. By finding a common space for RS
images from different sensors, the homogeneous features of
diverse RS images can be captured, which is beneficial to the
multisource RS image scene classification. The mentioned two
networks focus on mining the global information, however, the
local information that is also important to scene classification
is ignored. Fan et al. [39] proposed an attention-based residual
network to fully explore the complex contents from RS images,
where the common CNN with residual blocks is selected to mine
the global information from RS images. Meanwhile, the visual
attention mechanism is utilized to capture the local informa-
tion from RS images by assigning the larger weights to key
areas of RS images. Through combining the global and local
information, the RS scene classification results were enhanced
obviously. In 2019, Guo et al. [40] proposed an end-to-end
global-local attention network (GLANet) in which the global
attention blocks are designed to capture the global semantic
information from RS images. Then, the local attention blocks,
as a kind of attention mechanisms, are proposed to explicitly
distinguish between key information and redundant information
of RS images. Finally, to enhance the learning ability of the
network, the two supplementary loss functions are applied to
the GLANet. Although the mentioned two networks consider the
global and local information simultaneously, and they achieve
good performance. The similarities between RS images are not
taken into account, which could further enhance the classifica-
tion accuracy.

In the second group, the structure of the CNNss is the multi-
branch. Besides extracting the discriminative features from
RS images, the methods in this group can deeply explore the
intra/interclass relationships between RS images, which are
important to the RS scene classification task. Among the diverse
multibranch CNNss, the Siamese network [41] is a typical one. It
combines two weight-shared CNNs and develops some specific
objective functions to accomplish RS the image content under-
standing. Zhan et al. [42] proposed a deep Siamese convolution
network for RS images. Different from the methods based on
hand-crafted features, this model is developed to capture the
visual features from the image pairs. Furthermore, the weighted
contrastive loss function is imposed on the Siamese convolution
network to ensure the discrimination of the features. Its effective-
ness has been proved by the positive performance of the change
detection task. In the literature [43], an RS scene classification
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network was introduced. It integrates the Siamese network and
structural metric learning to accomplish the feature learning
and develops the diversity-promoting scheme to enhance the
representational ability of the network. In 2018, Ma et al. [44]
proposed the Siamese hierarchical attention network (SHAN).
To obtain the more discriminative semantic features from RS
images, SHAN is designed based on the hierarchical recurrent
structure. Duo to the characteristics of the Siamese network, it
can effectively minimize the distance between the same class of
samples and separate the distance between the different classes
of samples, thereby improving the learning ability of the CNN.
In 2019, Liu et al. [29] proposed a scene classification method
based on the Siamese network, which consists of identification
and verification models. The identification model is used to
predict the input images’ identity labels and the verification
model is designed to measure the similarities between image
pairs. Integrating those two models, the interclass samples could
be compacted, whereas the intraclass images could be separated.
Finally, the regularization term is imposed on the features, which
effectively improve the performance of Siamese networks. The
advantage of the above methods is developing the specific
strategies for capturing the similarities between RS images,
which could improve the classification performance through
compacting/separating the RS images from the same/different
classes. Nevertheless, they overlook the effectiveness of visual
features. In other words, the characteristics of RS images are not
fully taken into account during the feature learning.

III. METHODOLOGY
A. Overall Framework

Different from the ordinary multibranch network, which sam-
ples two images from the same/different classes to compose the
positive/negative input data, our ACNet takes the image I and
the image T'(I) obtained by the spatial rotation as the input. The
reasons for this operation are twofold. First, spatial rotation is
a common data augmentation strategy. After the rotation, the
volume of training data can be increased two times with visual
perceptual consistency, which can not only reduce the overfitting
risk but also help ACNet to fully understand RS images from
different aspects. Second, since the RS images I and T'(I) have
the same semantics, this kind of input pairs can push ACNet
to pay its attention to learn the rules for compacting the RS
images from the same classes. In other words, the RS images
from different semantic classes can be dispersed as well.

The framework of the proposed ACNet is shown in Fig. 1,
which contains four parts, i.e., the intermediate feature extrac-
tion model, the parallel-attention model, the attention consistent
model, and the classification model. First, the input image pairs I
and T(I) are passed through the intermediate feature extraction
model for the feature maps X and X', which contain the basic
semantic information. Second, the parallel-attention model is
developed to explore the complex contents within the RS im-
ages from the global and local aspects. Then, the convolutional
representation is obtained by global average pooling (GAP)
on the concatenated feature maps, which come from parallel
attention models. Third, taking the influence of spatial rotation
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Fig. 1.

Framework of our ACNet.

into account, we develop an attention consistent model to unify
the attention areas of the image pairs with different angles. Also,
this specific operation can compact the interclass samples and
separate the intraclass images. Finally, the softmax function is
combined to complete the classification. Note that, we assume
that the spatial rotation T(-) would not change the size of the
images. Now, we discuss them in detail.

B. Intermediate Feature Extraction

In this article, rather than developing some new CNNs, we
adopt VGG16 [30] to extract the intermediate features from
the RS images. The whole VGG16 network consists of 13
convolution layers with the kernel size of 3 x 3, five max pooling
layers with the size of 2 x 2, five nonlinear activation layers, and
three fully connected (FC) layers. Here, our intermediate feature
extraction network remains convolution layers, max pooling
layers, and nonlinear activation layers. We use the pretrained
weights (obtained by ImageNet [35]) to initialize the feature
extraction model for speeding up the convergence. Note that,
for the input RS image pairs I and T(I), the feature extraction
networks are parameter shared. After the feature extracting
mode, the feature maps X € RHXWXC apd X' € RHXWxC
can be obtained, where C, H, and W indicate the number of
channels, height, and width of the feature map.

The reasons that we adopt VGG 16 are summarized as follows.
Considering the complex contents of RS images, we need a
CNN that has strong nonlinear feature learning capacity. Also,
taking the time complexity of network training into account,
the select intermediate feature extraction network should be as

light as possible. VGG16 just meets the demands mentioned
above. Compared with some shallow CNNs (e.g., LeNet [45]
and AlexNet [33]), VGG16 has more nonlinear layers that could
improve the capacity of feature learning. Also, the sizes of
convolutional kernels of VGG16 are 3 x 3, which are beneficial
to capture the objects with diverse resolutions. Compared with
some heavy models (e.g., GoogleNet [46] and ResNet101 [47]),
optimizing VGG16 is not a tough issue. Therefore, we choose
VGG16 as our intermediate feature extraction network in this
article.

C. Parallel-Attention Models

The intermediate feature maps extracted by VGGI16 can
represent the contents of RS images from the global aspect.
However, they are limited to explore the targets’ information
from RS images. To address this problem, we introduce the
visual attention mechanism into our model. Furthermore, con-
sidering the characteristics of the complex targets within RS
images, a parallel-attention model is designed to fully capture
the local-level information for the scene classification task. Note
that, since the operations on X and X' are the same, we use X
as an example to explain our parallel-attention model clearly.

The parallel-attention model contains two blocks: channel-
wise attention block (CAblock) and spatial-wise attention block
(SAblock). CAblock focuses on emphasizing the significant
channels and suppressing the insignificant channels of X to cap-
ture the salient targets from the RS images. To this end, we adopt
the squeeze-and-excitation (SE) model [48] as our CAblock,
and its framework is shown in Fig. 2. The SE model mines the
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local information from the input feature maps through adaptively
assigning the weights to different channels within X. First, to
quantize the contributions of different feature responses, SE
applies GAP on the input X. The generated channel descriptor
s € R can be regarded as the compressed local descriptors.
The squeeze operation mentioned above can be formulated as

. AW
s = T ZZXC(i,j) )]

i=1 j=1

where s indicates the C'th element of s, and x¢ means the C'th
feature map in X. Second, to construct correlations between
channels and capture channel-wise dependencies, the channel
descriptor s is passed through two FC layers with different
activation functions. The output o is the channel weight that
represents the importance of each channel. This excitation op-
eration can be formulated as

0= Fu(, W) =1n(Wso (W;is)) )

where W7 and Wy, represent the parameters of two FC layers,
o(+) is the ReLU function, and 7(-) is the sigmoid function.
Finally, the output of SE X, € R¥*W*C can be obtained by
the following function:

xt =0 -x1=1

C ) .

e 3)

where x! means the I/th channel of X;, o' indicates the /th

element of o, and x! denotes the /th feature map of X.
SAblock aims to transform the input data X into a special
space with the consideration of spatial information, in which
the targets within RS images can be highlighted. For the output
of the intermediate feature extraction network X, each feature
vector £ € R1*1%C corresponds to a 32 x 32 x 3 spatial
region of the RS image. To make clear the contributions of
different spatial regions for exploring the local information,
SAblock should learn a group of weights in the spatial domain
for feature vectors within X. To achieve this goal, we select a
spatial attention (SA) model proposed in the literature [49] to be
our SAblock. The structure of the SA model is exhibited in Fig. 3.
First, to transform the input X into the spatial domain, the SA
model reshapes X into X; € RE*WH Second, to emphasize the
significant feature vectors within X (i.e., highlight the attention
regions), and analysis the spatial-wise dependencies between
feature vectors, SA applies multiple nonlinear layers and reshape
operation on X;. In particular, this step can be formulated as

M; = fm (0 (n (Re (W:Xy)))) “)

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

\
: w, X, SAblock :
I reshape
IR e— U U |
|
| X /\eshape H \ X, |
!
l |
!
| w > i
|
| |
l\__f___I_-I_____________________C’___I;I/l
Fig. 3. Flowchart of SAblock.

where W; € R1*C is the transformation matrix, Re(-) repre-
sents the operation of reshape, o (+) is the ReLU function, 7(-) is
the sigmoid function, f,,(-) indicates the normalization function
that maps the elements of M into the values between 0 and 1,
and M, € R">*H is the weight coefficient of X that reflects the
importance of the different RS image spatial regions. Finally,
the output of SA X, € RH*W*C can be obtained by

xgi’j) — x() . Mgi,j) (5)
where x(%7) indicates the 1 x 1 x C feature vector located in
the spatial position (i, j) of X, and M{"*) denotes the (i, j) of
M.

To fuse the contributions of different attention feature maps
and get complete local information, we first use the batch nor-
malization (BN) and GAP operations to map them into the chan-
nel attention feature f, € R™*¢ and SA feature f, € R1*1*¢
Then, f. and f; are contacted together for the final feature
representation f € R1*1<2C,

D. Attention Consistent Model

So far, we get the deep features f and f’ for the image pairs
I and T(TI). They can represent the images’ contents from both
global and local aspects. Ideally speaking, we hope these two
deep features could help us to group the image pairs into the
same semantic class since they are constructed by the simple
spatial rotation. Nevertheless, these two features would influ-
ence each other negatively due to the issue of visual attention
inconsistency. In detail, as mentioned in Section I1I-A, the image
T(I) is obtained by rotating I spatially. Thus, the attention areas
of the two images may be different. Taking an RS image as
an example (shown in Fig. 4), when we rotate the original
image by 90°, the attention regions are changed as well for
focusing on the planes to reflect the semantic of “Plane.” For
the original RS image [see Fig. 4(a)], the channel-wise attention
and spatial-wise attention regions are concentrated in the right
part. For the rotated RS image [see Fig. 4(b)], the channel-wise
attention and spatial-wise attention regions are concentrated in
the bottom part. Also, the objects within the attention regions
are different slightly. For instance, the lounge bridges can be
highlighted in the rotated scenario. In the original scenario,
however, the lounge bridges cannot be extracted by the attention
mechanism. To overcome the limitation discussed above, we
develop an attention consistent model here. On the one hand,
the proposed model could remain the consistency of the visual
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Fig. 4. Illustration of the visual attention inconsistency. The images within
the first column are input images, the heat maps in the second column are
the channel-wise attention maps, and the heat maps in the third column are
the spatial-wise attention maps. (a) Original image and its attention maps.
(b) Rotated image (90°) and its attention maps.

attention areas of a pair of RS images. On the other hand,
the attention consistent model is beneficial to enlarging the
differences between interclass RS images and narrowing down
the distances between intraclass RS images.

For CAblock, to reduce the gap between two attention maps
X, and X!, corresponding to image pairs I and T(I), we first
extract the attention regions M, € R"*H# and M/, ¢ RW>*H
from X, and X/, by the operations of average, BN, and ReLU
activation. In detail, the average (at the channel level) is used
to extract the salient features from attention maps, and BN
and ReLU operations are adopted to emphasize the attention
regions. Second, we reversely rotate M, € R">*# according to
the degrees of the input data rotation to get T(M,). Thus, the
angles of M, and T(M,) are unified. Here, T(-) denotes the
inverse operation of T(-). In addition, we still suppose the sizes
of feature maps are not changed by T() Third, the mean square
error (MSE) loss function is chosen to constrain the difference
between M, and T(M.,). For SAblock, we first use (4) to get
the SA regions M and M. Then, similar to the operation for
CAblock, we also reversely rotate M/, to get T(M,) for unifying
the angles. Third, we use the MSE loss function to reduce the gap
between two SA regions that correspond to two SA maps M
and T(M,). In the whole, the objective function of our attention
consistent model is

o 1 / /
Jdlfferent — m Z Z (gu’ (mcv mc) + Gii (msa ms))

i=1¢=1

giit (Me,my) = H(mc)w - (T (m/c))“,,

w

2

2

g me, ) = [ me)e = (T 0m) [ ©

2
where (m..),, and (T(m.,)),, indicate the values in the position

(i,1") of channel attention regions M, and T(M;), and (my),;
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and (T(m,)),, indicate the values in the position (i,7') of SA

region M and T(MY).

E. Classification Model

The main target of the classification model is to get the
semantic labels for the input RS images I and T(I) according to
their deep representation f and f’. To this end, we add two FC
layers and a softmax layer on the top of ACNet to transform f
and f’ into the predict labels p and p’. Also, the cross-entropy
loss function is selected to measure the predict labels. However,
due to the specific architecture of our ACNet, the classification
schemes of training and testing phases are different.

In the training phase, when we get the predicted labels p and
p’, the following objective function is developed to optimize our
ACNet:

L:Ji+Ji’+)‘«Jdifferent (7)

where J; and Jy represent the cross-entropy loss functions for
two branches, Jyifrerent means the objective function of the atten-
tion consistent model, and A is a hyperparameter for controlling
the contribution of Jyifrerent- In the testing phase, we directly
combine the classification results p and p’ together for the final
classification results P, and the formulation is

/
P:p;p. ®)

IV. EXPERIMENTS AND DISCUSSION
A. Testing Data Introduction

To testify the effectiveness of our ACNet, we select three RS
image benchmarks. The first one is a small-scale aerial image
dataset, which was published by the University of California
Merced [50], and we name it UCM! in this article for short.
There are 2100 aerial images in UCM that cover 20 U.S. regions,
including Birmingham, New York, etc. These aerial images
are divided into 21 scene classes, and each class contains 100
RS images. Their spatial resolution and sizes are one foot and
256 x 256. Some image examples and the semantic categories
of the UCM dataset are displayed in Fig. 5. The second one
is a medium-scale RS image dataset, which was proposed in
the literature [51]. We record it AID? here for convenience.
There are 30 scene classes (such as “Dense Residential” and
“Viaduct”) in AID, and the volume of images within each class
varies from 220 to 420. The total number of images within AID is
10 000, and these aerial images cover different countries around
the world. The spatial resolution of images changes from 0.5 to
approximate 8 m, and the sizes of images are 600 x 600. The
examples and their scene classes are displayed in Fig. 6. The last
one is a large-scale RS image dataset, which was constructed
in 2017 [31]. We name it NWPU? here for short. There are
31 500 images in NWPU with the spatial resolution from 0.2
to 30 m, which are collected by more than 100 countries and

'{Online]. Available: http://vision.ucmerced.edu/datasets/landuse.html

2[Online]. Available: http://captain.whu.edu.cn/project/ AID/

3[Online]. Available: http:/www.escience.cn/people/gongcheng/NWPU-
RESISC45.html
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Fig.5. Examples of different scenes of the UCM dataset. The scene numbers
and names are summarized as follows. 1-Agricultural, 2-Airplane, 3-Baseball
Diamond, 4-Beach, 5-Buildings, 6-Chaparral, 7-Dense Residential, 8-Forest,
9-Freeway, 10-Golf Course, 11-Harbor, 12-Intersection, 13-Medium Density
Residential, 14-Mobile Home Park, 15-Overpass, 16-Parking Lot, 17-River, 18-
Runway, 19-Sparse Residential, 20-Storage Tanks, and 21-Tennis Courts.

Fig. 6.
and names are summarized as follows. 1-Airport, 2-Bare Land, 3-Baseball Field,
4-Beach, 5-Bridge, 6-Center, 7-Church, 8-Commercial, 9-Dense Residential,
10-Desert, 11-Farmland, 12-Forest, 13-Industrial, 14-Meadow, 15-Medium Res-
idential, 16-Mountain, 17-Park, 18-Parking, 19-Playground, 20-Pond, 21-Port,
22-Railway Station, 23-Resort, 24-River, 25-School, 26-Sparse Residential,
27-Square, 28-Stadium, 29-Storage Tanks, and 30-Viaduct.

Examples of different scenes of the AID dataset. The scene numbers

regions around the world. All of the images are equally grouped
into 45 scene categories, including “River,” “Water,” etc. The
image examples and the scene classes of the NWPU dataset are
displayed in Fig. 7.

B. Experimental Settings

In this article, we use an HP-Z840-Workstation with Xeon(R)
CPU ES5-2630, NVIDIA GTX TITAN Xp, and 128 G RAM
to complete the experiments. As mentioned in Section III-B,
the intermediate feature extraction model of our network is
initialized with the ImageNet’s pretrained weights. The rest parts
of our ACNet are initialized by a set of random parameters that
follows a normal distribution with a standard deviation of 0.1. To
train ACNet, we choose the Adam algorithm with the learning
rate of 0.001 and the weight decay of 0.0001. Furthermore, the
batch size and epochs are equal to 64 and 120. The training
process is accomplished by the PyTorch platform [52]. Here, due
to the structure of the intermediate feature extraction model, we
resize the input RS images into 224 x 224. Two free parameters
impact the performance of our ACNet, i.e., the rotation angle
0 for building the image pairs and the hyperparameter A for
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Fig. 7. Examples of different scenes of the NWPU dataset. The scene num-
bers and names are summarized as follows. 1-Airplane, 2-Airport, 3-Baseball
Diamond, 4-Basketball Court, 5-Beach, 6-Bridge, 7-Chaparral, 8-Church, 9-
Circular Farmland, 10-Cloud, 11-Commercial Area, 12-Dense Residential,
13-Desert, 14-Forest, 15-Freeway, 16-Golf Course, 17-Ground Track Field,
18-Harbor, 19-Industrial Area, 20-Intersection, 21-Island, 22-Lake, 23-Meadow,
24-Medium Residential, 25-Mobile Home Park, 26-Mountain, 27-Overpass,
28-Palace, 29-Parking Lot, 30-Railway, 31-Railway Station, 32-Rectangular
Farmland, 33-River, 34-Roundabout, 35-Runway, 36-Sea Ice, 37-Ship, 38-
Snowberg, 39-Sparse Residential, 40-Stadium, 41-Storage Tank, 42-Tennis
Court, 43-Terrace, 44-Thermal Power Station, and 45-Wetland.

controlling the contributions of different terms in (7). We use the
fivefold cross-validation method to obtain their optimal values
for different datasets. Their influence would be discussed in
Section I'V-E.

To validate our model’s performance, we choose two widely
used assessment criteria, i.e., overall accuracy (OA) [53] and
the confusion matrix (CM) [54]. OA is defined as the number
of correctly classified images divided by the number of the total
testing images. CM is an informative table in which the column
indicates the ground-truth and the row denotes the prediction.
From the observation of CM, it is easy for researchers to find if
the predicted labels of the test data are correct or not.

C. Performance of ACNet

To validate our ACNet extensively, we compare it with the

following five RS scene classification networks.

1) The discriminative CNN (D-CNN): The D-CNN model
was proposed in the paper [54], where a new objec-
tive function is developed to replace the common cross-
entropy loss for considering the issues of intraclass diver-
sity and interclass similarity. The positive results counted
on three RS image datasets demonstrate the usefulness of
D-CNN.

2) The FACNN: FACNN was introduced in the litera-
ture [26], in which a CNN feature-oriented encoding
module and a feature fusion scheme are developed to fully
explore the semantic information from the RS images.
Then, the classification results can be obtained in an
end-to-end manner.



TANG et al.: ATTENTION CONSISTENT NETWORK FOR REMOTE SENSING SCENE CLASSIFICATION 2037

TABLE I
OVERALL ACCURACIES AND STANDARD DEVIATIONS (%) OF THE PROPOSED
ACNET AND THE COMPARED NETWORKS ON THE UCM DATASET

Networks OA (8:2)
D-CNN [54] 98.8140.30
FACNN [26] 99.05+0.24
S-CNN [29] 98.81+0.16
GLANet [40]  99.2940.24

RAN [39] 98.8140.30
ACNet (Ours)  99.76+0.10

The entry with the highest values is
bold-faced.

3) The Siamese CNN (S-CNN): Based on the dual-channel
framework, S-CNN was developed for the RS scene clas-
sification task [29]. There are two submodels within S-
CNN, including the identification and verification blocks.
Along with the specific metric learning loss function, the
classification results can be obtained.

4) The GLANet: GLANet was presented in the litera-
ture [40], in which the FC layers of VGGNet are replaced
by the attention blocks to explore the global and local
information from RS images. Also, two auxiliary loss
functions are adopted in this model to complete the scene
classification.

5) The residual attention network (RAN): To highlight the
useful information and eliminate the redundant informa-
tion during the feature learning, the RAN model was
introduced in the paper [39]. With the residual units and
attention techniques, the promising scene classification
results can be obtained.

Note that, all of the methods are accomplished by ourselves.
In addition, for the sake of the fairness, the experimental settings
of the compared methods are the same as the contents discussed
in Section I'V-B.

1) Results of the UCM Dataset: For the UCM dataset, we
select 80% RS images randomly to construct the training data,
and the rest of the images are regarded as the testing data.
The optimal values of A and € for UCM are 0.7 and 180°,
respectively. The OA and Kappa values of different methods are
summarized in Table I, where we can find that the performance of
all methods is good and our network has the strongest behavior.
Compared with other methods, the improvements in OA values
obtained by our ACNet are 0.95% (D-CNN, S-CNN, and RAN),
0.71% (FACNN), and 0.47% (GLANet). The reasons for the
superior performance of our method are threefold. First, due
to the dual-network architecture and the specific loss function,
not only the global features but also the similarities between
RS images can be learned by our ACNet. Second, with the
help of the attention mechanisms, the diverse land cover in-
formation within RS images can be fully explored. Third, the
developed attention consistent model could help ACNet to unify
the important regions in the RS images, which is beneficial to
highlight the target-level information further. Apart from the
OA values, the superiority of ACNet is also confirmed by CM
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Fig. 8. CM of the UCM dataset under the training ratio of 80% using our
ACNet. The semantic of each number can be found in Fig. 5.

TABLE II
OVERALL ACCURACIES AND STANDARD DEVIATIONS (%) OF THE PROPOSED
ACNET AND THE COMPARED NETWORKS ON THE AID DATASET

Networks OA (2:8) OA (5:5)
D-CNN [54] 92.05+0.16  94.62+0.10
FACNN [26] 92.48+0.21  95.10+0.11
S-CNN [29] 92.3840.13  95.2440.18
GLANet [40]  91.80+0.28  94.164+0.19

RAN [39] 92.18+0.42  93.66+0.28
ACNet (Ours)  93.33+0.29  95.38+0.29

The entries with the highest values are bold-faced.

that is exhibited in Fig. 8. Here, due to the space limitation, we
only show CM generated by ACNet. From the observation, it is
apparent that the confusion is only appeared between “Medium
Density Residential” and “Dense Residential.” The encouraging
results discussed above demonstrate that our model is useful to
classify the scenes within the UCM archive.

2) Results of the AID Dataset: To study the performance of
our network to the AID dataset deeply, we establish two training
sets, respectively. In the first set, the proportion of the numbers of
training and testing data is 2:8 and we set . = 0.8 and # = 180°.
In the second set, this proportion is changed into 5:5 and the A
and 6 are equal to 0.8 and 90°. The OA values and their standard
deviations are exhibited in Table II. Similar to the results counted
on the UCM dataset, the performance of our model is the best
among all methods in any case. When there are 20% RS images
that can be used to train different networks, the enhancements
achieved by ACNet are 1.28% (D-CNN), 0.85% (FACNN),
0.95% (S-CNN), 1.53% (GLANet), and 1.15% (RAN). When
the percentage of the number of RS images in the training set
equals to 50%, the improvements obtained by our model are
0.76% (D-CNN), 0.28% (FACNN), 0.14% (S-CNN), 1.22%
(GLANet), and 1.72% (RAN). Different from the results of
the UCM dataset, the behavior of the attention-based methods
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The semantic of each number can be found in Fig. 6.
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(GLANet and RAN) is weaker than that of others. On the
one hand, the size of RS images within the AID dataset are
600 x 600, which are larger than that of the UCM dataset. The
areas highlighted by the attention technique used in GLANet
and RAN maybe not important to the classification. On the other
hand, the semantics of the AID dataset are more diverse than that
of the UCM archive. The relationships between the RS images
would be impacted by the improper salient regions generated
by the attention method, which harms the classification results.
The CMs of ACNet counted by the AID dataset under different
training sets are exhibited in Figs. 9 and 10. Through observing
these matrices, we can find that our ACNet is good at distinguish-
ing the RS images belonging to “Baseball Field,” “Beach,” and
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TABLE III
OVERALL ACCURACIES AND STANDARD DEVIATIONS (%) OF THE PROPOSED
ACNET AND THE COMPARED NETWORKS ON THE NWPU DATASET

Networks OA (1:9) OA (2:8)
D-CNN [54] 89.094+0.50  91.68+0.22
FACNN [26]  90.8740.66  91.38+0.21
S-CNN [29] 88.054+0.78  90.99+0.16
GLANet [40]  89.50+0.26  91.5040.17

RAN [39] 88.79+£0.53  91.4040.30
ACNet (Ours)  91.09+0.13  92.4240.16

The entries with the highest values are bold-faced.

“Viaduct.” However, for the images from “Resort” and “School,”
our model’s performance is not as good as expected.

3) Results of the NWPU Dataset: The NWPU dataset is the
largest one among three archives. Thus, we only select 10%
and 20% RS images from NWPU to train different models,
respectively. Then, the rest of 90% and 80% images are used
as the testing data. Here, the value of A is set to be 0.7 for
two scenarios, and 0 equals to 90° /180° when the proportion of
the training set is 10%/20%. The OA values and their standard
deviations are exhibited in Table III, in which we can find that
the strongest network is the proposed ACNet. Compared with
other methods, the enhancements achieved by ACNet under the
training ratio of 10% are 2.00% (D-CNN), 0.22% (FACNN),
3.04% (S-CNN), 1.59% (GLANet), and 2.3% (RAN). The im-
provements obtained by our model under the training ratio of
20% are 0.74% (D-CNN), 1.04% (FACNN), 1.43% (S-CNN),
0.92% (GLANet), and 1.02% (RAN). These encouraging results
illustrate that our method is useful to the scene classification
task even though the dataset is diverse and complex. Besides,
ACNets’ CMs under different training sets are displayed in
Figs. 11 and 12. From the observation of CMs, it is easy to
find that ACNet is effective for most categories. Taking Fig. 12
as an example, the accuracies of ACNet are higher than 90%
for 35 out of 45 categories and are higher than 85% for 42
out of 45 categories. Especially for the “Chaparral” class, there
is no incorrect prediction. These promising results prove the
effectiveness of our model again.

D. Ablation Study

As mentioned in Section III, our ACNet mainly contains an in-
termediate feature extraction model, a parallel-attention model,
and an attention consistent model. To study their influence on
ACNet, we conduct the following ablation experiments. First,
three networks are constructed, as follows.

1) Net-0: Intermediate feature extraction model.

2) Net-1: Intermediate feature extraction model + Parallel-

attention model.

3) Net-2: Intermediate feature extraction model + Parallel-

attention model + attention consistent model.

Here, Net-0 is the VGG16 net, Net-1 is the single version
of ACNet, and Net-2 is our ACNet. Net-0 and Net-1 are single-
branch networks, whereas Net-2 is a multibranch network. Then,
we count their classification performance on three datasets for
studying different models’ behavior. The experimental settings
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Fig. 11.

are the same as the contents mentioned in Section IV-B. The
results of the three networks are shown in Fig. 13(a). From
the observation, we can find some conclusions. First, the per-
formance of Net-0 is the weakest among the three networks
since only the global features learned by VGG16 are utilized to
complete the classification. After adding the attention models,
the behavior of Net-1 is stronger than that of Net-0. Moreover,
there is a distinct performance gap between Net-1 and Net-0.
These indicate the usefulness of the local features for scene un-
derstanding. When we expand the structure of the network into
the dual-branch, Net-2’s performance is enhanced for different
datasets. This denotes that the data augmentation achieved by
the spatial rotation and the intraimage compaction achieved by
the attention consistent model play a positive role in the scene
classification task.

Besides the above ablation experiments, we also want to study
the contributions of two attention blocks. To this end, two single-
branch networks are constructed based on Net-1 and two dual-
branch networks are constructed based on Net-2. In detail, given
as follows.

1) Net-1-CA: Intermediate feature extraction model + CA-

block.

CM of the NWPU dataset under the training ratio of 10% using our ACNet. The semantic of each number can be found in Fig. 7.

2) Net-1-SA: Intermediate feature extraction model +
SAblock.

3) Net-2-CA: Intermediate feature extraction model + CA-

block + attention consistent model.

4) Net-2-SA: Intermediate feature extraction model +

SAblock + attention consistent model.

The performance of different networks is displayed in
Fig. 13(b), in which the results of Net-1 and Net-2 are also
exhibited for reference. It is easy to find that 1) the networks with
channel-wise attention model (Net-1-CA and Net-2-CA) out-
perform the networks embedding spatial-wise attention model
(Net-1-SA and Net-2-SA), and 2) the dual-branch networks
that contain two kinds of attention models (Net-1 and Net-2)
outperform the single-branch networks. The contents discussed
above confirm the contributions of different attention models
and the superiority of our ACNet.

Here, we want to further explain why Net-1-CA and Net-2-
CA outperform Net-1-SA and Net-2-SA. The reasons behind
this phenomenon can be summarized as follows. In general,
channel-wise attention methods aim to emphasize the significant
channels and suppress the insignificant channels for capturing
the salient targets from the RS images, whereas spatial-wise
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models. (b) Performance of networks with different attention mechanisms.



TANG et al.: ATTENTION CONSISTENT NETWORK FOR REMOTE SENSING SCENE CLASSIFICATION

yl
100 r
98
96
Sl
g 90
88 I
86 I
84
UcM AID (28)  AID (55) NWPU (19) NWPU (2:8)
Data Sets (Training : Testing)
m(0.] =02 ™03 =04 W05 ®W0.c m(.7 m().8§ m(Q,9 W]
(a)
Batch Size

OA (%)

LIl

AID (55) NWPU (19) NWPU (28)

UCM

AID (28)
Data Sets (Training : Testing)

mi6 m32 me4 W128
©

Fig. 14.
of damaged RS images within training set.

attention methods focus on transforming the feature maps into
a specific space with the consideration of spatial information so
that the important targets within RS images can be highlighted.

To decide the importance of each channel within the feature
map, the selected SE model (CAblock) [48] learns the weights
of different channels by GAP, FC layers, and the self-gating
mechanism (sigmoid activation). Then, the attention maps are
generated through the average, BN, and ReLU activation opera-
tions, which are conducted on the updated feature maps (which
are obtained by multiplying the original feature maps by the
learned weights). This leads that the obtained attention maps
contain much useful information for our task.

Different from SE, the adopted SA model (SAblock) [49]
first transforms the feature map into a spatial space. Then,
the relationships between feature map pixels are mined for
emphasizing the useful local information so that the SA maps
can be generated. Although the selected SA model completes
the attention areas extraction under the paradigm of spatial-wise
attention methods, its shortcomings should not be ignored. First,
the spatial-wise dependencies between feature map pixels are
not fully mined. Second, the SA maps are learned directly,
which would be influenced by the training data. Due to the
limitation discussed above, the target information may not be
captured from the complex RS images accurately. Consequently,
the performance of networks based on the SA model is weaker
than that of networks based on the SE model. We have to admit
that many other advanced spatial-wise attention methods can be
used [55]. If we choose one of them, the behavior of networks
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based on it could be stronger. How to select or develop a proper
SA model could be our future work.

E. Sensitivity Analysis

In this section, we study the sensitivity of our ACNet from
the four aspects, including the influence of two free parameters
[the rotation angle # and the hyperparameter A within (7)], the
impact of different batch size in the training process, and the
performance variation if there are some damaged RS images in
the training set.

First, the value of A is varied from 0.1 to 1, and then the OAs
of ACNets obtained by three datasets are shown in Fig. 14(b).
From the observation of figures, we can find the following points.
First, the trend of our networks’ performance is upward with A
is increased. This demonstrates the importance of the attention
consistent model. Second, when A € [0.6,0.9] the behavior of
ACNets is strong and stable. The peak values of model’s perfor-
mance appear at A = 0.7 (UMC and NWPU) and A = 0.8 (AID).
Therefore, we suggest that the value of A can be tuned at a range
of [0.6,0.9].

Second, we change 6 from 45° to 315° with the interval of
45°, and then the OAs of ACNets counted on different datasets
are exhibited in Fig. 14(a). We can find that the difference of
ACNets is not big, which denotes that our network is not sensitive
to the rotation angles. Taking the results counted on “NWPU
(2:8)” as examples, the OAs are 92.05% (45°), 92.27% (90°),
91.96% (135°),92.42% (180°), 91.87% (225°), 92.19% (270°),
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Fig. 15. Examples of RS images and their damaged version. All of the RS
images are randomly selected from the UCM dataset. The images exhibited in
the first row are the original RS images, and the images displayed in the second
row are the damaged RS images. (a) Agricultural. (b) Airplane. (c) Baseball
Diamond. (d) Beach. (e) Harbor.

and 91.92% (315°), respectively. In addition, an interesting
observation is that the behavior of ACNets under 90°, 180°, and
270° is stronger than that of ACNets under 45°, 135°, and 225°.
The reason behind this is that there is information loss when
the rotation angles are arbitrary. Fortunately, the information
loss impacts our model slightly. Note that, the reason why the
arbitrary rotation angles (45°, 1350, 2250) are adopted in our
experiments is that we want to study if our ACNet works or not
when one of the input RS images loses some contents.

Third, the values of batch size are varied from 16 to 128 for
studying its influence, and the results of ACNets are exhibited
in Fig. 14(c). It is easy to find that the performance of ACNets
is enhanced with the batch size increases. Taking the UCM
dataset as an example, the OAs rise from 98.81% to 99.76%
when batch size is varied from 16 to 64. When the value of
batch size equals 128, the OAs of different ACNets are almost
remained (compared with the results of batch size equals 64).
Therefore, we suggest that the batch size can be tuned around
64 for some other RS image datasets.

Last, we further discuss the influence of damaged images on
our ACNet. To construct the damaged images, we cut out a
rectangular region with the size of 50 x 50 from the original RS
images (which have not been resized to 224 x 224). In detail,
for an RS image, we first select a 50 x 50 rectangular region
randomly. Then, the contents of the rectangular region are wiped
off from the RS image and the pixels within this region are set to
be 0. The examples of RS images and their damaged version are
displayed in Fig. 15. When we input the damaged RS images into
our ACNet, their sizes would be resized to 224 x 224. Here, the
percentage of damaged RS images within the training set is var-
ied from 10% to 50% to observe the performance of the proposed
ACNet. The classification results of three datasets are shown in
Fig. 14(d). From the observation of bars, it is easy to find that
the performance of ACNet is decreased when the percentage
of numbers of damaged RS images increase. Fortunately, the
degrees of decline for three datasets are acceptable. For example,
the OA values of ACNets are decreased from 99.76% to 98.29%
when the volume of damaged RS image within the training set
is increased from 0% to 50%. The positive results prove that
ACNet is not sensitive to the damaged images.

Apart from the cases discussed above, the convergence of AC-
Net s also studied in this section. As mentioned in Section [V-B,
the epochs for training our model are set to be 120 for different
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Fig. 16. Loss curves of ACNets counted on different RS image datasets with
the different ratios of training data. (a) UCM dataset. (b) AID dataset with 20%
training data. (c) AID dataset with 50% training data. (d) NWPU dataset with
10% training data. (e) NWPU dataset with 20% training data.

RS image datasets. To observe if this setting is suitable or not,
we count the loss values for three datasets with different ratios
of training data. The results are exhibited in Fig. 16. It is easy to
find that all ACNets are convergent when epochs equal around
[80, 100]. The reason why we set epoch to be 120 is that a little
more training epochs could make our model more stable.

F. Time Costs

In this section, we study the time costs of our model. The
time consumption of training ACNet using different datasets
with the different ratios of training data is recorded in Table I'V.
The compared methods’ training times are counted as well for
the reference. Through observing the results, we can find that 1)
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TABLE IV
TRAINING TIMES (MIN) OF THE PROPOSED ACNET AND THE COMPARED NETWORKS ON THREE DATASETS UNDER DIFFERENT TRAINING RATIOS
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Networks UCM (8:2) AID (2:8) AID (5:5) NWPU (1:9) NWPU (2:8)
D-CNN [54] 64.6 72.7 177 112 226
FACNN [26] 65.0 72.3 179 121 225
S-CNN [29] 56.8 68.2 168 104 215
GLANet [40] 33.7 42 106 70.7 133

RAN [39] 70.1 82.4 189 120 241
ACNet (Ours) 69.1 84.6 225 232 459

all of the models’ training times are acceptable, and 2) the most
time-saving method is GLANet and the most time-consuming
network is our model. The time costs of GLANet are low since
it is constructed by a feature extraction network with a simple
attention block. The main reason is that the structure of ACNet
is the most complex, in which an intermediate feature extraction
model, a parallel-attention model, an attention consistent model,
and a classification model are combined. The function of them
is learning the global and local information from RS images,
unifying the local areas, and compacting the RS images with
same semantics. Compared with D-CNN, FACNN, and S-CNN,
our ACNet has extra attention models. Compared with GLANet
and RAN, our ACNet is a dual-branch model. Therefore, it is not
surprising that training ACNet needs more times. Fortunately,
training ACNet is an offline process that can be completed
only once. When ACNet is trained, the time costs of predicting
an RS image are low, which only needs several milliseconds.
Moreover, the encouraging experimental results illustrate that
the comparatively high time cost of ACNet is acceptable.

V. CONCLUSION

In this article, we propose a dual-branch network (ACNet) to
accomplish the RS scene classification task. It consists of four
parts, including the intermediate feature extraction model, the
parallel-attention model, the attention consistent model, and the
classification model. The input image pairs’ (constructed by the
spatial rotation) global features are learned by the intermediate
feature extraction model. Then, two attention techniques are run
concurrently to explore the local information from RS images
deeply. To eliminate the influence of the spatial rotation in the
generation of salient regions, the attention consistent model is
developed based on the reversed rotation and the specific loss
function. This step can also impact the samples within the same
categories and separate the samples from different categories.
Finally, the results are obtained by the classification model. The
positive results counted on three popular benchmarks demon-
strate that our model is useful to the RS scene classification
task.
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