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Abstract—Superpixel segmentation is an important technique
for image analysis. In this article, we develop a new superpixel
segmentation approach and investigate its application on ship tar-
get detection in marine synthetic aperture radar (SAR) images.
Existing superpixel segmentation algorithms often simply consider
the intensity and spatial features, which may degrade the segmen-
tation performance due to the low contrast between ship targets
and the sea clutter background in marine SAR images. Besides, it
is difficult for existing algorithms to adaptively select the weights
of the features. Here, we propose a new Fisher vector (FV)-based
adaptive superpixel segmentation (FVASS) algorithm to address
the aforementioned issues. Our newly developed FVASS not only
fuses the intensity and spatial features, but also the multiorder
features introduced by FVs, resulting in a better segmentation
performance (even with low signal-to-clutter ratios). The weights
of the features considered in FVASS are adaptively adjusted by
minimizing the sum of within-superpixel variances to maintain
the compactness of superpixels. Experiments demonstrate that,
compared with commonly used superpixel segmentation meth-
ods, the proposed FVASS algorithm enhances the segmentation
performance of SAR images and further improves the detection
performance of existing superpixel-based ship detectors.

Index Terms—Fisher vectors (FVs), ship detection, superpixel
segmentation, synthetic aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is a widely applied tech-
nology for ocean monitoring/management, including ship

target detection, due to its ability to generate high-resolution
images under all-weather and day-or-night conditions [1], [2].
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In the last decades, more and more marine SAR images have
been collected with the extensive development of SAR systems.
Therefore, it is necessary to develop effective and automatic
methods for marine SAR image processing.

Superpixels represent locally coherent and visually significa-
tive image regions, which can reveal the boundary and structure
information of the targets in marine SAR images [2]–[19].
Besides, the degeneration of target detection/discrimination
performance caused by speckle noise in SAR images can be
alleviated by using superpixel-level features [8]. Superpixels
can also reduce the subsequent image processing time, such as
superpixel-based ship detection in marine SAR images [7].

Regarding the problem of generating superpixels, there are
the following two key tasks: 1) how to select pixel features, and
2) how to assign weights to such features in the calculation of
pixel distances to achieve the local clustering. Recently, some
works have been devoted to these two tasks in the context of
superpixel segmentation of SAR images [6]–[19].

A very popular approach for superpixel segmentation is sim-
ple linear iterative clustering (SLIC) [9]. This algorithm was first
proposed for optical image segmentation, where the CIELAB
color feature and the spatial features of pixels are used to locally
cluster pixels into superpixels. In [10], the CIELAB color feature
in SLIC is replaced by the intensity feature to make SLIC more
suitable for the segmentation of SAR images. Instead of the
intensity feature of isolated pixels, the patch-based intensity
feature is considered in [7] and [8] to reduce the effect of image
noise on superpixel segmentation. In [11] and [12], the com-
monly used spatial feature calculated with Euclidean distance
is extended to the Mahalanobis distance and Wishart distance,
respectively, to improve the segmentation performance. Note
that the abovementioned superpixel segmentation algorithms in
[7]–[12] mainly focus on simple intensity and spatial features of
pixels and may provide an unsatisfactory segmentation perfor-
mance for marine SAR images, due to the strong sea clutter
background and relatively weak ship targets therein [20]. In
addition, it is difficult to determine the weights of the intensity
and spatial features considered in [7]–[12] to balance them
properly in marine SAR images with different signal-to-clutter
ratios (SCRs).

In [13]–[18], the edge information and the local directional
change of intensity are considered as new features to improve
the segmentation performance for SAR images in urban/land
environments. In [13] and [18], edges in polarimetric SAR
images are utilized to achieve superpixel segmentation based on
the spherically invariant random vector model. In [14], the image
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Fig. 1. Examples of two gradient features of marine SAR images. (a) Original
SAR image. (b) LBP [21] of (a). (c) LGRP [14] of (a). Here, a 3 × 3-pixel
window is used to calculate LBP and LGRP.

gradient of SAR images is calculated to measure the variation
coefficient within superpixels. In [16] and [17], Gaussian and
Gabor templates are used to calculate the edge maps of SAR
images to enhance the compactness of superpixels. In particular,
the weights of the features are adaptively adjusted in [13] and
[14], according to the local homogeneity degree of SAR images.
However, the exact edges and gradients of SAR images in marine
environments are often severely contaminated by the widely
strong and heterogeneous sea clutter background [4]. In Fig. 1,
we show two kinds of gradient features in marine SAR images,
i.e., local binary pattern (LBP) [21] and local gradient ratio
pattern (LGRP) [14]. In both cases, it is difficult to distinguish the
target from the clutter background, indicated that more robust
strategies are required for superpixel segmentation in marine
SAR images.

The Fisher vector (FV) is another widely used feature. It
models the difference between the pixel under test and the global
Gaussian mixture model (GMM) of the image [23], [24]. This
difference is measured by the gradient of the log-likelihood with
respect to the weights, mean values, and standard deviations in
the GMM, which are termed as the zero-order, first-order, and
second-order information contained in the FV of the pixel [23].
Compared with the intensity feature [7]–[12], the FV is a more
informative feature that provides multiorder information about
the pixels. To the best of authors’ knowledge, the FV feature has
never been exploited to improve the superpixel segmentation of
marine SAR images.

Main Contribution: In this article, we propose a new FV-based
adaptive superpixel segmentation (FVASS) algorithm for marine
SAR images and further investigate its application to ship target
detection problems. In addition to commonly used intensity
and spatiality features, three new features, i.e., the zero-order,
first-order, and second-order information contained in FVs are
exploited by the proposed FVASS algorithm to improve the
superpixel segmentation performance of marine SAR images,
especially with low SCRs. Besides, the weights of the features
are adaptively adjusted in the iterations of FVASS to enhance
the compactness of superpixels. Note that the strategy adopted
for balancing such weights is different from the one adopted
in [13], [14]. Specifically, the feature weights in the proposed
FVASS method are selected according to the relative importance
of all the features (instead of the value of a specific feature, e.g.,
homogeneity degree of the SAR images, as in [13] and [14]). Our
experimental results demonstrate that: 1) the proposed FVASS
algorithm provides a better segmentation performance than other

Fig. 2. Pixel feature representation for superpixel generating.

existing, commonly used approaches; 2) FVASS further im-
proves the performance of ship detection when it is adopted for
the superpixel segmentation step in existing superpixel-based
detection frameworks.

The remaining content of this article is organized as follows.
Section II formulates the intensity feature, spatiality feature, and
the multiorder features in FVs considered for superpixel segmen-
tation. In Section III, we develop a new feature discriminability
measure to calculate the distance of two pixels in SAR images.
In Section IV, we design the adaptive weights of the features
and elaborate on the proposed FVASS algorithm. Section V
provides in-depth comparisons between the proposed FVASS al-
gorithm and other existing algorithms via detailed experiments.
Section VI concludes this article with some remarks and hints
at plausible future research.

II. FEATURE REPRESENTATION

The selection of features plays an important role in super-
pixel segmentation. Intensity and spatiality features are two
commonly used pixel features for such purpose. Existing super-
pixel segmentation algorithms [7]–[12] completely depending
on these two features may achieve the nonideal segmentation in
low SCR scenarios. In [10] and [20], the zero-order, first-order,
and second-order features produced by FVs were shown to be
effective and robust in terms of distinguishing ship targets from
sea clutter, but these features have not been exploited as of yet for
the problem of superpixel segmentation in SAR images. In this
section, we introduce an improved pixel feature representation
for superpixel segmentation, which not only incorporates the
intensity and spatiality features, but also the multiorder features
contained in FVs, as shown in Fig. 2.

A. Intensity Feature

In general, ship targets appear as bright parts with larger
intensity values than the clutter background in SAR images, as
shown in Fig. 1(a). Following this idea, the intensity feature is a
straightforward one for superpixel segmentation. Let δi denote
the intensity value of the ith pixel in the SAR image, where i =
1,2, …, I, and I is the total number of pixels in the SAR image.

B. Spatiality Feature

The spatial coordinates of pixels are helpful to generate locally
meaningful regions [22]. The spatiality feature of the ith pixel
is represented by (xi, yi), where xi and yi are the horizontal and
vertical locations of the ith pixel, for i = 1,2, …, I.
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C. Multiorder Features in FVs

GMM provides the capability to model any continuous dis-
tribution in terms of a linear combination of different Gaussian
distributions [25]. A GMM can be completely specified by its pa-

rameter set Λ
Δ
= {ωm, μm, σm, m = 1, 2, . . . ,M}, where ωm,

μm, and σm are the weight, mean value, and standard deviation
of the mth Gaussian distribution in the mixture, respectively,
and M is the number of Gaussian distributions. The parameter
set Λ = {ωm, μm, σm, ∀m} of GMM can be pre-estimated by
using maximum likelihood estimation methods [26].

The FV ai ∈ R3M×1 of the ith pixel in the SAR image is
calculated as the normalized gradient vector with respect to the
GMM parameters in Λ [23]

ai = [ ai,ω1
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, φi,m =

ωmfm(δi)∑M
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, fm(·) are the mth Gaussian distribution in

GMM, i = 1,2, …,I, and m = 1,2, …,M. From (1), we have
that a(ω)

i , a(μ)i , and a
(σ)
i represent the zero-order, first-order,

and second-order features in the FV ai, respectively. Then,
intrasign-square-rooting is performed on a

(ω)
i , a(μ)i , and a

(σ)
i ,

respectively, to avoid the FV to be close to null [23]. After (1),
a
(ω)
i , a(μ)i , and a

(σ)
i are self-l2-normalized, respectively, for fair

comparison in Section III [see (5)].
In [10] and [20], FVs were used to encode superpixels in the

SAR image. The FV defined in (1) is an extended version of that
in [10] and [20]. In detail, the FV in this article is pixel-wise,
while the FV is made superpixel-wise in [10] and [20] by mean-
pooling all the pixel-wise FVs in a superpixel. Pixel-wise FVs
enrich the representation of pixels and have not been exploited
for superpixel segmentation thus far.

Based on Section II-A.C, the proposed pixel feature represen-
tation is

Ω (i)
Δ
=

{
δi, (xi, yi) ,a

(ω)
i ,a

(μ)
i ,a

(σ)
i

}
∀i (2)

which aggregates the intensity and spatiality features, and also
the zero-order, first-order, and second-order features produced
by FVs.

III. DISTANCE MEASURE

In addition to feature selection, another key problem for super-
pixel segmentation is how to calculate the distance between two
pixels in feature space. In this section, we introduce a distance
measure based on the aggregative pixel feature representation in
(2), where the importance of each feature is represented by its
weight.

First, we define the distances of intensity features, spatiality
features, and the zero-order, first-order, and second-order fea-
tures of FVs between pixel i and pixel j as follows:

d1 (i, j) =

T∑
t=1

G (t)× |δit − δjt | (3)

d2 (i, j) =

√
(xi − xj)

2 + (yi − yj)
2 (4)

d3,4,5 (i, j) =

T∑
t=1

G (t)×
∥∥∥a(ω,μ,σ)

it
− a

(ω,μ,σ)
jt

∥∥∥
2

(5)

where i, j ∈ {1, 2, . . . , I}, G(·) represents the standard Gaus-
sian kernel, it denotes the tth pixel in the

√
T ×√

T region
centered at the pixel i, t ∈ {1, 2, . . . , T}. In (3) and (5), Gaussian
kernel filtering is applied to reduce the effect of speckle noise
on the distance measure [8]. Then, the final distance between
the pixel feature representations Ω(i) and Ω(j) is calculated by
combining the distances in (3)–(5)

D [Ω (i) ,Ω (j)] =

√√√√ R∑
r=1

(θr)
ξ[dr (i, j)]

2 (6)

where r = 1,2, …, R,R = 5 is the dimension of feature space,
0 < θr < 1 represents the weight of the rth feature,

∑R
r=1 θr =

1, ξ > 1 is the amplification factor [27] of weights, and i, j ∈
{1, 2, . . . , I}. Here, the amplification factor ξ > 1 aims at en-
hancing the features with large weights.

The distance measure in (6) may be affected by the dynamic
ranges of different features. The normalization strategy for
{dr(i, j), r = 1, 2, . . . , R} in (6) will be discussed in Section IV-
A.

IV. PROPOSED FVASS ALGORITHM

In this section, we introduce our new FVASS algorithm for
superpixel segmentation of marine SAR images. It integrates
the pixel feature representation strategy in (2) and the distance
measure in (6). The key improvements of FVASS compared
with other competing algorithms are the following ones: 1)
FVASS incorporates not only the (commonly used) intensity and
spatiality features, but also multiorder FV features to improve
segmentation performance; and 2) FVASS adaptively controls
the weights of the features according to the relative importance
of such features in each iteration. A flowchart of the proposed
FVASS algorithm is shown in Fig. 3.

FVASS is based on a linear iterative clustering strategy [26],
and aims at producing superpixels with internally consistent
features. We assume that there are L expected superpixels in
the SAR image, where the centers of superpixels are indexed by
{cl, l = 1, 2, . . . , L}. Based on the distance measure in (6), we
define an energy function E [27] to measure the compactness of
superpixels in the SAR image

E
Δ
=

L∑
l=1

I∑
i=1

R∑
r=1

υi,l(θr)
ξ[dr (i, cl)]

2 (7)

whereυi,l denotes the pixel label,υi,l = 1 if the ith pixel belongs
to the lth superpixel and 0 otherwise, and

∑L
l=1 υi,l = 1, ∀i.

The energy function in (7) reflects the sum of within-superpixel
variances of the SAR image. A smaller value of E in (7) is
generally preferred since it is helpful to improve the internal
consistency of the target and clutter superpixels in the SAR
images. Therefore, superpixels are generated by minimizing the
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Fig. 3. Flowchart of the proposed FVASS algorithm.

energy function E{
υ̂i,l, Ω̂ (cl) , θ̂r, ∀i, l, r

}
= min

{υi,l, Ω(cl), θr,∀i,l,r}
E

s.t.
R∑

r=1

θr = 1,

L∑
l=1

υi,l = 1 ∀i. (8)

The optimization function in can be minimized by iteratively
solving the following three subproblems (SBPs):

1) assigning the pixel labels;
2) updating the superpixel centers; and
3) adjusting the weights of features.

A. SBP-1: Pixel Label Assignment

First, we assign the pixel labels {υi,l, ∀i, l} with the fixed
superpixel centers and the weights of the features, i.e.,

{υ̂i,l, ∀i, l} = min
{υi,l,∀i,l}

E, s.t.
L∑

l=1

υi,l = 1 ∀i. (9)

The solution of the optimization problem in (9) can be obtained
by associating each pixel to its closest superpixel center in the
SAR image. Since a superpixel represents a local coherent re-
gion, the search operation for each superpixel center is achieved
in its neighboring 2S × 2S region instead of the global image
[9], where S is the expected size of the superpixel. Therefore, the
solution of the optimization problem in (9) can be formulated as
follows. For ∀i ∈ N2S×2S(cl) , we have⎧⎪⎨

⎪⎩
υ̂i,l = 1, if D [Ω (i) ,Ω (cl)]

≤ D [Ω (i) ,Ω (cl∗)] ∀ l∗ ∈ Θi

υ̂i,l = 0, otherwise

(10)

where l= 12, …,L,N2S×2S(cl) denotes the 2S× 2S neighboring
region centered at cl. In (10), Θi denotes the index set of
superpixel centers, where the distances from these centers to
the ith pixel, {D[Ω(i),Ω(cl∗)], l∗ ∈ Θi}, have been calculated
in advance. If Θi = ∅, then D[Ω(i),Ω(cl∗)] = +∞.

Having (6) in mind, we emphasize that the distance mea-
sure D[Ω(i),Ω(cl)] in (10) aggregates all the subdistances
{dr(i, cl), r = 1, 2, . . . , R}, ∀i, cl. The values of {dr(i, cl), ∀r}
should be normalized before (10) for fair comparison. Since
the search area for each superpixel center is given by the 2S ×
2S neighboring pixels, each value in {dr(i, cl), ∀r} for the lth
superpixel center is prenormalized by using its corresponding
maximum value in N2S×2S(cl).

B. SBP-2: Updating the Superpixel Centers

After the pixel labels have been assigned, the features of
superpixel centers {Ω(cl), ∀l} are updated with the obtained
(fixed) pixel labels and the weights of the features, i.e.,{

Ω̂ (cl) , ∀l
}
= min

{Ω(cl),∀l}
E. (11)

The solution of (11) is obtained by averaging the intensities,
spatial coordinates, and the multiorder FV features of all the
pixels corresponding to each superpixel

Ω̂r (cl) =

∑I
i=1 υi,lΩr (i)∑I

i=1 υi,l
(12)

where Ωr(i) denotes the rth feature in Ω(i), for r = 1,2, …,R,
l = 1,2, …,L.

C. SBP-3: Adjusting the Weights of the Features

At this point, the weights of the features {θr, ∀r} are adjusted
by minimizing the energy function E in (8) with the fixed pixel
labels and superpixel centers

{
θ̂r, ∀r

}
= min

{θr,∀r}
E, s.t.

R∑
r=1

θr = 1. (13)

The solution of (13) can be obtained by using the Lagrange
multiplier method [22]

θ̂r =
1∑R

r′=1 [sEr/sEr′ ]
1

ξ−1

(14)

where sEr =
∑L

l=1

∑I
i=1 υi,ld

2
r(i, cl)denotes the within-

superpixel variance of the rth feature in the SAR image, for r =
1,2, …,R. We refer readers to [27] for a detailed mathematical
derivation of (14).

From (14), we can see that the features with smaller within-
superpixel variances exhibit the larger weights values. In other
words, we tend to emphasize the importance of the features with
smaller within-superpixel variances, which are helpful to reduce
the value of energy function E (i.e., enhancing the compactness
of superpixels). Only a value of weight in {θ̂r, ∀r} is 1, while
the other weights are 0, with ξ → 1+. In this case, the most
important feature is the one used by FVASS. Each feature shares
the same weight with ξ → +∞. In Section V-A, we evaluate
the effect of the amplification factor ξ on the segmentation
performance of FVASS.

Compared with the superpixel segmentation methods [7], [8],
[10] involving the following two features: intensity and spatial
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locations of pixels, FVASS may relatively weaken the effect
of the spatiality feature, which is only one of five features
to be considered. The spatiality feature is also important for
superpixel generating because locally coherent superpixels are
expected. To strength the effectiveness of the spatiality feature
in superpixel generating, the within-superpixel variance sEr=2

of the spatiality feature is replaced by

sEr=2 =

L∑
l=1

I∑
i=1

υi,lΥ
[
d2r=2 (i, cl)

]
(15)

where Υ[a]
Δ
= exp(−ζa) denotes a loss-pass filter and ζ is

a constant. The loss-pass filter in (15) is helpful to remove
d2r=2(i, cl) with large coefficient and further increase the weight
of spatiality feature in (14). In this article, the constant ζ in (15)
is adaptively set to 0.01S, which works well in the experiments.
Note that the values of {sEr, ∀r} also need to be normalized
before (14) to guarantee that they fall within the same dynamic
range. Here, the normalization strategy for {sEr, ∀r} is

⎧⎪⎪⎨
⎪⎪⎩

sEr = sEr

/
max
i,l

{
d2r (i, cl)

}
, r = 1, 3, 4, 5

sEr = sEr

/
max
i,l

{
Υ
[
d2r (i, cl)

]}
, r = 2.

(16)

The strategy for weight adjustment in FVASS differs from that
in [13] and [14]. In (14), the weights of the features are controlled
based on the relative performances of all features, instead of the
performance of an individual feature (e.g., homogeneity degree),
like in [13] and [14]. In this regard, it is our introspection that
adjusting the weights using the relative importance of features
may provide more robust superpixel segmentation results than
only using the value of a specific feature. The strategy for weight
setting in FVASS is also different from that in [19], [22], and
[27], where the weight of the spatiality feature may be severely
suppressed by other competitive features. This results in many
tiny superpixels and increases the complexity of postprocessing.
In the proposed FVASS algorithm, a low-pass filter in (15) is
used to strengthen the effect of spatiality feature and generate
local coherent regions.

Given the initial pixel labels, superpixel centers, and weights
of features, the three SBPs in Section IV.A-C can be iteratively
performed. The iterations are terminated when the number of
iterations is larger than the predefined threshold Iter.

D. Postprocessing

Similar to other superpixel segmentation algorithms [7], [8],
[10], [13], [14], the proposed FVASS algorithm does not explic-
itly enforce connectivity. When the iterative process of FVASS
is terminated, a few disjoint superpixels may remain. To ad-
dress this issue, disjoint superpixels should be merged into their
neighboring superpixels to enhance connectivity. In this article,
the postprocessing step in [9] is used to eliminate the disjointed
pixels.

The detailed implementation of the proposed FVASS algo-
rithm is given in Algorithm 1.

Algorithm 1: FVASS.
Input: SAR image with I pixels, superpixel size S,
amplification factor ξ, number of Gaussian components
in GMM M, and maximum iteration count Iter.

Initialization: The expected number of superpixels in the
image is L = I/S2. Calculate FV for each pixel in the
image by (1). Initialize the pixel labels υi,l = 0, for
i = 1, 2, . . . , I, l = 1, 2, . . . , L. Set the center of
superpixels {cl, ∀l} with a regular grid interval S. The
initialized weights are {θr = 1/R, r = 1, 2, . . . , R}.

Iteration: 1) Assign pixel labels. The temporary
distances recorded by all the pixels are {Di = +∞, ∀i}.

1.a) For the l-th superpixel center, cl , calculate the
distance D[Ω(i),Ω(cl)] between the i-th pixel and the
center cl via (6), for ∀i ∈ N2S×2S(cl).

1.b) If D[Ω(i),Ω(cl)] < Di, then Di = D[Ω(i),Ω(cl)],
υ̂i,l = 1, else υ̂i,l = 0, for ∀i ∈ N2S×2S(cl).

Repeat steps 1.a) and 1.b) for all the superpixel centers in
the SAR image.

2) Update the intensities, spatial coordinates and
multi-order FV features of superpixel centers {cl, ∀l}
via (12).

3) Adjust the r-th weight θr via (14), for r = 1,2, …,R.
Until the number of iterations exceeds Iter.
Postprocessing: Merge disjoint superpixels into their
neighbors via the postprocessing step as [9].

Output: Superpixels of the SAR image.

V. EXPERIMENTAL RESULTS

In this section, we compare the superpixel segmentation
performance and complexity of SLIC [10], pixel intensity and
the location similarity (PILS) [8], exponential-SLIC (E-SLIC)
[7], adaptive superpixel segmentation (ASS), and the proposed
FVASS algorithm. The ASS algorithm is a degenerated version
of FVASS, where the FV feature is not considered but the
weights of the intensity and spatiality features are adaptively
selected like in FVASS. Then, the five algorithms mentioned
above are used for the superpixel generation module in existing
superpixel-based ship detectors [4], [20] to evaluate the detec-
tion performance. Here, the results of superpixel segmentation
algorithms based on image gradients [14] are not provided,
since they are more suitable for SAR images in urban/land
environments. C-band Gaofen-3 SAR images are used in this
section to demonstrate the superiority of the proposed FVASS
method. The key parameters of SAR images used in this section
are shown in Table I. The ground truth of ship targets for
Figs. 4–11 is provided in Fig. 4(b). The ground truth for Table II
and Figs. 13–17 is obtained from [28], [31].

Without loss of generality, the size of the Gaussian kernel in
(3) and (5) is 3 × 3. The amplification factor in FVASS is ξ = 7,
and the number of Gaussian components in GMM is set to M =
7. The robustness of FVASS to the selection of hyperparameters,
i.e., ξ and M, will be investigated in Figs. 9 and 10, respectively.
The maximum number of iterations for FVASS is Iter = 10. The
balancing parameters in SLIC, PILS, and E-SLIC are well tuned
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TABLE I
KEY INFORMATION OF SAR IMAGES USED FOR EXPERIMENTS IN SECTION V

Fig. 4. (a) SAR image in a multitarget scenario. (b) Ground truth of ship
targets.

Fig. 5. Visualization of the (a) zero-order, (b) first-order, and (c) second-order
FV features, where the number of Gaussian components in GMM is M = 7.

Each column in (a)–(c) represents a(ω)
i , a(μ)

i , and a
(σ)
i , respectively. There are

20 target pixel samples and 20 clutter pixel samples in each subfigure, which
are randomly selected from Fig. 4(a).

Fig. 6. BR and UE curves of the segmentation results in Fig. 4(a) with
different SCR values, where S = 24. BR and UE values are averaged over
100 semicontrolled SAR images.

Fig. 7. BR values averaged over 100 semicontrolled SAR images, based on
the reference image in Fig. 4(a) with SCR = −6dB and S = 24. The second to
fourth columns represent that only the zero-order, first-order, or second-order
FV feature is considered in FVASS, respectively. The fifth column denotes the
full version of FVASS with the multiorder FV features.

in the high-SCR case (see Fig. 13), which are 0.1, 0.32, and 0.1
in the hereafter experiments, respectively.

The segmentation performance is quantitatively evaluated by
two metrics, which are commonly used in the existing literature,
i.e., boundary recall (BR) and undersegmentation error (UE) [9].
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Fig. 8. BR and UE curves of the segmentation results in Fig. 4(a) with different
values of the superpixel size S, where SCR = 3 dB. BR and UE values are
averaged over 100 semicontrolled SAR images.

Fig. 9. Superpixel segmentation performance of the proposed FVASS algo-
rithm versus the amplification factor ξ, where M = 7, S = 20, and SCR = 5 dB.
(a) BR, (b) UE. BR and UE values are averaged over 100 semicontrolled SAR
images, based on the reference image in Fig. 4(a).

Fig. 10. Superpixel segmentation performance of the proposed FVASS algo-
rithm versus the number of Gaussian components in GMM, where ξ = 7, S =
24, and SCR = 10 dB. (a) BR, (b) UE. BR and UE values are averaged over 100
semicontrolled SAR images, based on the reference image in Fig. 4(a).

Fig. 11. Superpixel-based detection performance: AUC of SLCM [4] detector
as a function of: (a) SCR, where S = 24, and (b) superpixel size S, where SCR
= 3 dB. The AUC values are averaged over 100 semicontrolled SAR images,
based on the reference image in Fig. 4(a).

TABLE II
AUC VALUES OF THE SLCM AND LCFV DETECTORS USING 1723

GAOFEN-3 IMAGES

Fig. 12. Superpixel-based detection performance: AUC of LCFV [20] detector
as a function of: (a) SCR, where S = 24, and (b) superpixel size S, where SCR
= 3 dB. The AUC values are averaged over 100 semicontrolled SAR images,
based on the reference image in Fig. 4(a).

Fig. 13. Two SAR image samples [28] for visualization of superpixel seg-
mentation and superpixel-based detection as shown in Figs. 14 and 15. (a) High
SCR scenario. (b) Low SCR scenario.
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Fig. 14. Visualization of the superpixel segmentation and superpixel-based detection results of Fig. 13(a). (a)–(e) Superpixel segmentation results of E-SLIC,
PILS, SLIC, ASS, and the proposed FVASS method, respectively, where S= 26. (f)–(o) Binary detection results of SLCM and LCFV detectors using the superpixels
generated by the five above segmentation methods, respectively.

Fig. 15. Visualization of the superpixel segmentation and superpixel-based detection results of Fig. 13(b). (a)–(e) Superpixel segmentation results of E-SLIC,
PILS, SLIC, ASS, and the proposed FVASS method, respectively, where S= 22. (f)–(o) Binary detection results of SLCM and LCFV detectors using the superpixels
generated by the five above segmentation methods, respectively.

BR measures the boundary consistency between the produced
superpixels and the ground truth of ship targets

BR
Δ
=

1∣∣B(g)
∣∣

∑
b∈B(g)

1

[(
min

a∈B(s)

√
(xa − xb)

2 + (ya − yb)
2

)
≤ ε

]
(17)

where B(s) and B(g) are the sets of boundary pixels in the
produced segmentation result and the ground truth, respectively,
ε represents the bound parameter, 1[·] is 1 if the input is true and

0 otherwise, and | · | represents the number of elements in a set.
A larger value of BR indicates that the generated superpixels
provide higher accuracy to maintain the boundaries of targets. In
turn, UE evaluates the conciseness of the generated superpixels

UE
Δ
=

∑Z
z=1

∑L
l=1 |sl| × 1 [|sl ∩ gz| > ϑ |sl|]∑Z

z=1 |gz|
− 1 (18)

where sl and gz denote the lth generated superpixel and
zth ground truth segment in the SAR image, respectively,
l = 1, 2, . . . , L, z = 1, 2, . . . , Z, and ϑ is the scale factor. A
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Fig. 16. Large SAR image [31] with four faint ship targets for the visualization
of superpixel segmentation and superpixel-based detection as shown in Fig. 17.

smaller value of UE means that the produced superpixels have
less overlapping between ship targets and the sea clutter. Note
that the ground truth of SAR images may contain slight devi-
ations or ambiguities, due to the motion and sidelobe of ship
targets. This negligibly affects the quantitative evaluation of
different methods because we set ε = 3 and ϑ = 0.01 for (17)
and (18), respectively, like in [9] and [22], instead of ε = ϑ = 0.

We evaluate the performance of ship detection by using the
area under the (receiver operating characteristic) curve (AUC)
[29]. The probability of detection Pd and the probability of
false alarm Pfa in AUC are defined by Pd = IDectar/ITar , and
Pfa = IFalsala/(I − ITar), respectively, where IDectar, IFalsala,
and ITar are the number of correctly detected target pixels,
number of false alarm pixels, and number of target pixels in
ground truth, respectively. Improvement of detection perfor-
mance increases the value of AUC accordingly.

A. Experimental Results Based on Semicontrolled Data

In this section, we compare the superpixel segmentation
performance and the further superpixel-based detection perfor-
mance of different methods via semicontrolled data.

In Fig. 4, the SAR image in a multitarget scenario and the
corresponding ground truth of ship targets are provided. Taking
Fig. 4(a) as a reference image, semicontrolled SAR images
are generated based on the guidelines in [29] to evaluate the
performance of the proposed FVASS method in different SCR
scenarios. Given the reference SAR image U, the (pure) sea
surface SAR image V and the value of SCR in dB, the semicon-
trolled SAR image is generated by

Ū = U+ ςV (19)

where ς =
√

10−SCR/10
∑

i∈U δ2i /
∑

j∈V δ2j . From (19), it can
be observed that the reference image is deteriorated with the
decrease of SCR. In (19), the additive sea clutter [10], [29] is
considered. We can also convert the multiplicative clutter/noise
in SAR images to additive clutter/noise, as reported in [30]. We
refer readers to [29, Fig. 8] for semicontrolled SAR images with
different SCRs.

In Fig. 5, we visualize the vectors of a
(ω)
i , a(μ)i , and a

(σ)
i

in (1) to show the effectiveness of the multiorder FV features
used in the proposed FVASS method. It is observed that target
and clutter pixels show dissimilarity in terms of zero-order,
first-order, and second-order features in FVs. This benefits the
superpixel generation task because the blend between target and
clutter pixels within a superpixel can be reduced based on FVs.

Fig. 6 depicts the BR and UE curves of SLIC, PILS, E-SLIC,
ASS, and the proposed FVASS algorithm with different SCR
values, where BR and UE values are obtained by averaging
over 100 semicontrolled SAR images. In Fig. 6, PILS, E-SLIC,
and ASS perform better than SLIC in low-SCR case since they
contain smoothing filters to suppress the speckle noise in SAR
images, while SLIC does not. The proposed FVASS method
provides larger BR and smaller UE values than other methods.
This is because the newly added multiorder FV features in
FVASS improve the discrimination between ship targets and the
sea clutter, and the weights of the features considered in FVASS
are adaptively adjusted to enhance its robustness to different
SCRs. It is worth mentioning that FVASS provides a better
segmentation performance than ASS especially in low-SCR
cases. This demonstrates the robustness of FV to the strong sea
clutter background in SAR images. In Fig. 7, we further show
the effectiveness of the multiorder features in FVs, where the BR
value produced by ASS is used as a reference due to its good
performance in Fig. 6(a). From Fig. 7, we can see that FVASS
provides a better segmentation performance even with only one
of the multiorder FV features in low-SCR cases. This confirms
the superiority of FVs for the superpixel segmentation in marine
SAR images again.

The value of S is a key input parameter determining the
expected size of superpixels. The authors in [4], [10], and [20]
suggest that the superpixel size S can be selected based on a
predefined percentage (e.g., 25%) of the number of pixels in the
area occupied by a ship target. Due to the diversity of the size
of ship targets, we also evaluate the segmentation performance
of different methods versus the value of superpixel size S. As
depicted in Fig. 8, the proposed FVASS algorithm provides
larger BR and smaller UE values than other methods, with
different values of the superpixel size. Besides, FVASS is less
sensitive to the superpixel size S than SLIC, E-SLIC, and PILS.

Fig. 9 shows the effect of the amplification factor ξ in (14)
on the performance of the proposed FVASS method. BR and
UE values are averaged over 100 semicontrolled SAR images,
where the reference image is Fig. 4(a). It can be observed that
the perturbations of BR and UE values are only 0.005 and 0.003,
respectively, in the case of ξ ∈ {2, 3, . . . , 8}. In Fig. 10, we in-
vestigate the performance of FVASS versus the hyperparameter
M, i.e., the number of Gaussian components in GMM. FVASS
provides similar BR and UE values with M ∈ {3, 4, . . . , 9},
where the perturbations of BR and UE values are only 0.02 and
0.006, respectively.

In Figs. 11 and 12, we show the detection performance of
two recently proposed superpixel-based ship detectors, i.e.,
superpixel-based local contrast measure (SLCM) [4] and local
contrast of FV (LCFV) [20], respectively. The SLCM detector
is developed based on the difference of intensities between
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Fig. 17. Visualization of the superpixel segmentation and superpixel-based detection results of Fig. 16. (a)–(e) Superpixel segmentation results of E-SLIC, PILS,
SLIC, ASS, and the proposed FVASS method, respectively, where S = 38. (f)–(o) Binary detection results of SLCM and LCFV detectors using the superpixels
generated by the five above segmentation methods, respectively. The ground truth of targets is represented using green ellipses.

the target and its surrounding clutter superpixels. The LCFV
detector exploits the contextual dissimilarity of superpixel-based
FVs. The detection frameworks of SLCM and LCFV both
require the superpixel segmentation step as the preprocessing
of SAR images. We refer readers to [4] and [20] for the
implementations of SLCM and LCFV, respectively. Here, five
superpixel segmentation algorithms, i.e., SLIC, PILS, E-SLIC,
ASS, and FVASS are used for the superpixel segmentation step
in the aforementioned two detectors. As shown in Figs. 11 and
12, the proposed FVASS algorithm results in improved detection
performance, thanks to its better superpixel segmentation per-
formance, as reported in Figs. 6 and 8. Note that FVASS achieves
a better detection performance than ASS especially in low-SCR
cases (e.g., SCR = −5dB), which is consistent with results in
Fig. 6. This demonstrates the superiority of FVASS again.

B. Experimental Results Based on Real Data

In this section, we compare SLIC, PILS, E-SLIC, ASS, and
the proposed FVASS algorithm by using Gaofen-3 images [28],
[31] in terms of the superpixel-based detection performance
and the running time. The aforementioned five segmentation
algorithms are employed in the superpixel generating step of
SLCM [4] and LCFV [20] detectors, respectively. The ground
truth of ship targets for SAR images is provided as rectangle
regions (see [28, Fig. 7]), which may contain a few clutter
pixels. Therefore, the following steps are used to remove the
potential clutter pixels in rectangle target regions labeled by
[28]: 1) The Ostu method is applied to segment the rectangle
target regions and obtain the binary results, where the areas
of “1” (coarsely) represent the target pixels. 2) Isolated clutter
pixels are eliminated via the opening operation. The target areas

generated by using the abovementioned two steps are considered
as the ground truth of ship targets.

In Table II, we show the AUC values obtained for the SLCM
and LCFV detectors, respectively, based on 1723 Gaofen-3 SAR
images. We can observe from Table II that the proposed FVASS
superpixel segmentation method leads to a better ship detection
performance as compared with other competing methods. In
Fig. 13, we provide two SAR image samples from the dataset in
Table I to visually show the superiority of the proposed FVASS
method. Fig. 14 illustrates the superpixel segmentation maps and
superpixel-based detection results corresponding to SLIC, E-
SLIC, PILS, ASS, and FVASS in the scenario with the high SCR.
From Fig. 14(a)–(e), we can see that the outline of the ship target
is well marked by all the superpixel segmentation methods in
the high-SCR case. Besides, the ship target is correctly detected
by using superpixel-based SLCM [4] and LCFV [20] detectors,
as shown in Fig. 14(f)–(o). Fig. 15 shows the segmentation and
detection results in the low SCR scenario. From Fig. 15(a)–
(e), we can observe that FVASS approximately maintains the
boundary of the weak ship target and generates compact clutter
superpixels. However, PILS, SLIC, E-SLIC, and ASS provide
irregular boundaries of superpixels. Fig. 15(f)–(o) shows that
the ship detectors based on the superpixels generated by FVASS
provide a better detection performance, i.e., fewer false alarms
and more correctly detected target areas. This demonstrates the
superiority of FVASS in low-SCR cases, thanks to the newly
considered FV feature and the adaptive weights of the features.

Fig. 16 shows an SAR image with 1000 × 1000 pixels, in
which four faint ship targets are contained. In Fig. 17, we illus-
trate the superpixel segmentation results and the corresponding
detection results based on Fig. 16. For SLIC, PILS, and E-SLIC,
we continue to use the balancing parameters well-tuned in
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Fig. 18. Comparison of the running time (seconds) with different values of
the superpixel size S. Each value of the running time is averaged over 1723 SAR
images. Each SAR image contains 256 × 256 pixels.

Fig. 13 with a high SCR. Note that the sizes of superpixels are
much smaller than that of the large SAR image. Accordingly,
each pixel in the superpixel maps of Fig. 17(a)–(e) is replaced
by the average intensity of its corresponding superpixel to effec-
tively visualize the segmentation results. From Fig. 17(a)–(e),
it can be observed that the proposed FVASS method highlights
better the weak ship targets than other existing methods. As
shown in Fig. 17(f)–(o), E-SLIC, PILS, SLIC, and ASS lead
to some missed targets and false alarms, while FVASS still
accurately locates ship targets.

In Fig. 18, we compare the running times of SLIC, PILS,
E-SLIC, ASS, and the proposed FVASS method, where each
value is calculated by averaging over 1723 Gaofen-3 SAR
images. Experiments are performed in a desktop with a 64-b
Windows operating system, a 128-GB of RAM, and an Intel
Xeon CPU. The software platform is MATLAB (2019a). From
Fig. 18, it can be seen that SLIC is the fastest algorithm due to its
simplicity. Compared with the other methods, FVASS requires
the calculation of FVs, which results in an affordable increase of
computational burden. The FVs calculated for superpixel seg-
mentation can also be used for the subsequent superpixel-based
target detection [10], [20] saving computational time.

VI. CONCLUSION

In this article, a new algorithm called FVASS was developed
for superpixel segmentation of SAR images. In addition to the
commonly used intensity and spatiality features, the multiorder
characteristics contained in FVs are incorporated in FVASS (for
the first time in the literature) to enhance the performance of
pixel representation in SAR images. Besides, FVASS iteratively
adjusts the weights of the features by minimizing the global
within-superpixel variance of features, to guarantee the com-
pactness of superpixels. Experimental results verify the effec-
tiveness of the proposed FVASS method compared with existing
approaches especially in low-SCR cases (in terms of not only
superpixel segmentation performance, but also the subsequent
superpixel-based ship detection performance) with an affordable
increase of computational complexity. The extension of our
newly developed FVASS to more complex backgrounds, e.g.,

ship targets in inshore and surrounding-the-island scenarios, will
be pursued in future research.
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