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Classification of Airborne Laser Bathymetry Data
Using Artificial Neural Networks

Tomasz Kogut and Adam Slowik

Abstract—The current development of technology allows for
extensive use of active remote sensing systems in water environment
research. The data obtained using airborne bathymetric scanning
are mainly used to build digital elevation models of the seabed. As
a result, their information potential is largely untapped, because
full-waveform data have considerably more information that can be
used for classification with different machine learning algorithms.
This article presents the process of classification and detection of
objects on the seabed using multilayer perceptron neural networks.
The features of full waveform and point cloud geometry were
considered for network training. The results obtained allow for
almost 100% correct classification of water surface and seabed.
The seabed object points were also classified with an accuracy
of over 80%. The obtained results increase the effectiveness of
object detection compared to the other well-known classification
algorithms.

Index Terms—Airborne laser bathymetry (ALB), classification,
neural networks, obstacles, underwater objects detection.

I. INTRODUCTION

S EABED topography measurements are one of the main
tasks of hydrographic organizations worldwide. The de-

velopment of sea transport and the associated increase in ship
traffic means that a great deal of attention is paid to ensuring
safety through periodic monitoring of the seabed on ships’
navigation routes. The occurrence of a possible catastrophe in
maritime traffic may contaminate the environment for many
years. Therefore, more and more attention is being paid to the
development of more effective methods for detecting objects
and monitoring possible obstacles along the transport route
[1], [2].

Airborne laser bathymetry (ALB) is fast, and is a partial
alternative method of measurement to echo sounding. There are
the following two main types of bathymetric scanners: 1) with a
green laser beam of 532 nm and 2) with two laser beams: green
(532 nm) and infrared (1064 nm). In the perfect case, each green
laser pulse should return an echo from the water surface and
seabed. But in practice, it is not always so, because it depends
on the water condition. The additional infrared beam cannot
penetrate through the water column and it is used to provide
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information about the water surface, but does not guarantee that
there is enough energy to be scattered back to the receiver [3].

The collected data are processed using appropriate algorithms
that allow the information contained in these datasets to classify
and detect objects [4], [5]. Attempts are being made to establish
optimal conditions for ALB data acquisition and processing [6],
however, there is a need for further research on the analysis of the
full waveform of airborne bathymetric scanning and processing
of the collected data [4]. The seabed return in an ALB waveform
can provide the information about bottom morphology [7]–[10].

In the literature, authors have tested various machine learning
techniques for their classification. Sun et al. [11] developed
a hybrid algorithm for seabed sediment type classification. In
the presented research experiment, they conducted a two-stage
process of ALB data classification using the K-means and
support vector machine (SVM) algorithms. Compared to the
SVM algorithm itself, the use of K-means + SVM hybrid
algorithm improved overall classification accuracy by 24%.
Kumpumaki et al. [12] clustered the return pulses of bathymetric
laser scanning based on the waveform shape. Similar shapes of
the reflected waveform may correspond to different types of
bottom coverage. A relatively sharp wave shape indicates, for
example, a high probability of silt or clay in deeper waters. The
authors used an algorithm of self-organizing networks to classify
types of marine substrates. Eren et al. [13] used the SVM to dif-
ferentiate between: 1) sand and rock bottoms and subsequently,
2) fine and coarse sand bottoms. They are based on waveform
features obtained from the bottom return residual analysis. The
classification results are 96% overall accuracy for sand and rock,
and 86% overall accuracy for fine and coarse. Kogut et al. [14]
used the random forest (RF) algorithm to classify point clouds
from ALB, obtaining better results compared to SVM.

The aim of the study presented in this article is to classify
and detect objects on the seabed in the point cloud obtained by
ALB. To achieve the goal, multilayer perceptron (MLP) artificial
neural networks (ANNs) with the softmax activation function
were used, which allowed the examination of the probability
of assigning objects to the appropriate class. The MLP neural
network and other classification machine learning algorithms
are very popular techniques and possess a very wide range
of engineering applications (including in remote sensing) such
as the integration of the spectral and spatial location features
for water bathymetry [1], identification of surface water in
Landsat 8 satellite images [15], automatic classification from
high-resolution images [16], predicting species diversity of ben-
thic communities within turbid nearshore using full-waveform
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Fig. 1. Location of the test object.

ALB [17], benthic classifications using bathymetric LIDAR
waveforms and integration of local spatial statistics and textural
features [10].

The original contribution of this article can be summarized as
follows.

1) An approach to the ALB point cloud classification using
geometric and full-waveform features.

2) A description of the ANN with the softmax layer, which is
applied to the determination of classification probability
values of a given input point to each of the three output
classes, respectively.

The rest of this article is organized as follows. Section II
describes the test area and ALB data. Section III presents features
description and the MLP neural network in detail. Section IV
describes the results obtained using the proposed approach and
some discussion. Finally, Section V concludes this article.

II. MATERIALS

A. Test Area

The test area is the artificial reef Rosenort on the Baltic Sea,
located approximately 25 km north of the city of Rostock in
Germany. The Rosenort reef is made up of four artificially
created zones. The zones were built from the following:

1) fifty two-ton concrete tetrapods;
2) one hundred and eighty tons of stones;
3) thirty cut concrete cones;
4) six six-ton concrete tetrapods [18] (see Fig. 1).
The objects are located about 2 km from the shoreline at a

depth of approximate 6 m.

B. ALB Data

The data were obtained in September 28–29, 2013 using an
AHAB Chiroptera I scanner with a 400 m flight altitude, which is
equipped with two beams (532 nm green and 1064 nm infrared)
and scans with an elliptical shape with a deviation from the nadir
by ±20◦ across and ±14◦ along the intended flight direction.

Fig. 2. Classified point cloud with detected objects at the seabed.

The horizontal nominal accuracy of the measurement is 0.75 m
for the green beam and 0.2 m for the infrared beam, while the
depth nominal accuracy is 0.15 m. The Secchi depth that can
be achieved with the scanner is 1.5. During the measurement,
the Secchi depth was about 6.3 m, which is close to the aver-
age value of Secchi depth for this region [19]. The secondary
full-waveform analysis was used for data processing [20]. The
first step of this approach is the Gaussian decomposition of a
full waveform. After that were a large number of missing points
of the seabed objects. Therefore, the beams with one peak need
a second analysis. The preliminary location of a second echo
in the full waveform with one peak was estimated based on the
location of the second return in the neighboring full waveform
with two peaks. To determine the exact position of the peak
the search window was used with 30 samples before and after
the approximated location. The last step of this approach is the
Gaussian function fitting to the samples in the search window.
After the calculations, 13 341 points were obtained on the water
surface, 16714 points on the seabed, and 285 points on the
seabed objects. In this research, we have analyzed the point cloud
obtained from the green beam. The average point cloud density
for the test object was 2.6 points/m2 on the water surface and
3.3 points/m2 on the seabed. The data used in the experimental
portion of this article were obtained within the framework of the
project, which is mentioned in the Acknowledgements section.

III. METHODOLOGY

The bathymetric dataset for training the ANN consisted of
6198 vectors (Fig. 2 data in the black box). A total of 80% of
these vectors was used for the ANN training, and the remaining
20% was used for ANN validating during error back-propagation
algorithm operation.

Each of the vectors contained 18 elements that described
values of 15 input attributes (fromU1 toU15) and 3 output classes
(from U38 to U40). These three classes were marked as follows:
class 1: “water surface” (U38) containing 2729 vectors, class 2:
“seabed” (U39) with 3396 vectors, and class 3: “seabed object”
(U40) represented by 73 vectors. Table I shows the numbering
and description of attributes (ANN inputs) and classes (ANN
outputs). Attributes can be divided into the following two groups
of features: based on the full reflected wave (U1−5) and resulting
from the geometry of the point cloud (U6−15) [21]–[23], which
were calculated by analyzing the position of each point together
with its neighborhood in a strictly determined region, defined by
a cylinder with a radius r = 5m (see Fig. 3: red color—analyzed
point, purple color—radius (r) of cylinder, green color—points
selected for analysis, gray color—other points).
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TABLE I
DESCRIPTION OF ANN INPUTS AND OUTPUTS

Fig. 3. Points in the area defined by cylinder with 5-m radius.

The objective of full-waveform processing is to obtain the
most precise information on the location and characteristics
of the object (target) based on the received signal, the quality
of which depends, among others, on the emitted beam, the
reflecting object (target), and the receiver.

For the purpose of training the ANN, the number of vectors
in each class was made equal by a random down-sampling of
vectors from class 1 and class 2 to the number of vectors in class
3. The dataset prepared in this way, consisting of three equal
classes, consisted of 3 × 73 = 219 vectors. In a further stage of
data processing, the data were normalized in accordance with
the relationship

U ∗
i =

Ui − meani

stdevi
(10)

where i ∈ {1, . . ., 15}, U ∗
i —new value of attribute Ui after its

normalization, meani—the mean value of all attribute valuesUi,
stdevi—standard deviation of the attribute Ui.

The meani and stdevi data characterizing the distribution of
the ith attribute data were stored to use their values to normalize
new data during the pattern recognition process by a trained
ANN.

The architecture of the adopted ANN is MLP [24]–[26] and
consists of 15 inputs and three outputs (see Fig. 4). It has three
layers of neurons with full connections in each layer. The first
(input) layer has 15 neurons, the second (intermediate) layer
contains seven neurons, and the third (output) layer contains
three neurons. Neurons in the first-two layers have a unipolar
sigmoid activation function of the following form:

Ui = f (Si) =
1

1 + e−Si
(11)

where i ∈ {16, . . ., 37}, Si—weighted sum determined by rela-
tionship

Si =

y∑
k=x

(wi,k × Uk) (12)

where x = 1 and y = 15 (for the first layer of neurons from U16

to U30) or x = 16 and y = 30 (for the second layer of neurons
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Fig. 4. ANN architecture.

from U31 to U37), wi,k—the value of the weight that supply the
signal to the ith neuron from the kth neuron output or from the
kth input of an ANN, Uk—the value from the kth neuron output
or from the kth input of an ANN.

Neurons in the third layer (from U38 to U40) have a softmax
activation function, which is described by the relationship

Ui = f (Si) =
eSi∑40

i=38 f (Si)
(13)

where i ∈ {38, . . ., 40}, Si—weighted sum calculated by rela-
tionship (12) and assuming the value x = 31 and y = 37. By
using a softmax layer (from U38 to U40) at the output of an
ANN, the classification process results in probability values
at the outputs of the ANN, which indicate the degree of be-
longing of a given input vector to each of the three classes.
ANN from Fig. 4 was trained using an error back-propagation
algorithm with a learning coefficient of ro = 0.01. The training
algorithm was stopped after 1750 iterations. In each iteration,
a randomly selected training vector (vector selected from a
previously prepared set of 3 × 73 = 219 vectors) was given to
the input of the ANN. Then, a forward-propagation phase was
carried out, which consisted of determining the values of all the
weighted sums Si (i ∈ {16, . . ., 40}) and all the output values
Ui (i ∈ {16, . . ., 40}). After the forward-propagation phase, the
backward-propagation phase began, which consisted of deter-
mining the deltai coefficient for each ith neuron.

For the neurons of the output layer (i ∈ {38, . . ., 40}), the
deltai coefficients were determined according to the relationship

deltai = (Ci − Ui)× f ′ (Si) (14)

where Ci—the correct value at the Ui output resulting from the
currently processed vector taken from the training set, Ui—the

TABLE II
CONFUSION MATRIX

TABLE III
DESCRIPTION AND VALUE OF PARAMETER SETTINGS FOR

COMPARATIVE METHODS

value at the ith output of the ANN obtained after the forward-
propagation phase, f ′(Si)—value of the derivative activation
function for the ith neuron.

For the neurons of the intermediate layer (i ∈ {31, . . ., 37}),
and for the neurons of the input layer (i ∈ {16, . . ., 30}), the
deltai coefficients were determined according to the relationship

deltai =

⎛
⎝ y∑

j=x

wj,i × deltaj

⎞
⎠× f ′ (Si) (15)

where x = 38 and y = 40 (for the neurons of intermediate layer
U31 to U37) or x = 31 and y = 37 (for the neurons of the input
layer U16 to U30).

Once the deltai values for all neurons were determined, all
weight values were modified according to the relationship

w∗
i,k = wi,k + ro× deltai × Uk (16)

where w∗
i,k—new weight wi,k.

The weight update process completes the calculations related
to the algorithm in a single iteration. Then, the algorithm goes
to the next iteration and the whole process is repeated until the
maximal number of iterations is reached. When the maximal
number of iterations is reached the training algorithm stops.

IV. RESULTS AND DISCUSSION

The proposed approach was tested by conducting the training
of MLP neural network (see Section III) 11 times. The error
back-propagation algorithm is an algorithm with a random start-
ing point. Therefore, for results to be meaningful, the training
process had to be repeated several times.

After each training, the quality of the obtained neural clas-
sifier was tested on the basis of a set of 24142 vectors with
the following distribution in particular classes: class 1: “water
surface” (10612 vectors), class 2: “seabed” (13318 vectors), and
class 3: “seabed object” (212 vectors). The class for which the
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TABLE IV
CLASSIFICATION ACCURACY FOR DIFFERENT METHODS AND POINTS DISTRIBUTION FOR SEABED OBJECTS AFTER CLASSIFICATION (MANUAL CLASSIFICATION:

OBJECT 2–79 POINTS, OBJECT 3–97 POINTS, OBJECT 4–36 POINTS)

TABLE V
AVERAGE CLASSIFICATION ACCURACY FOR DIFFERENT METHODS

highest probability was obtained at the output of the ANN was
chosen. Results were compared to manual classification. The
overall classification accuracy (Accov [%]) was computed using
following equation:

Accov =
Accwater + Accseabed + Accseabedobject

3
(17)

Accwater =

(
Inputwater

Vectorswater

)
· 100% (18)

Accseabed =

(
Inputseabed

Vectorsseabed

)
· 100% (19)

Accseabedobject =

(
Inputseabedobject

Vectorsseabedobject

)
· 100% (20)

where Accwater—the classification accuracy for class 1: “wa-
ter surface,” Accseabed—the classification accuracy for class 2:
“seabed,” Accseabedobject—the classification accuracy for class
3: “seabed object,” Inputwater—the number of input vectors
correctly classified to class 1: “water surface,” Inputseabed—the
number of input vectors correctly classified to class 2: “seabed,”
Inputseabedobject—the number of input vectors correctly classi-
fied to class 3: “seabed object,” Vectorswater—the number of
all vectors belonging to class 1: “water surface” in testing
dataset (Vectorswater = 10612), Vectorsseabed—the number of
all vectors belonging to class 2: “seabed” in testing dataset
(Vectorsseabed = 13318), Vectorsseabedobject—the number of all
vectors belonging to class 3: “seabed object” in testing dataset
(Vectorsseabedobject = 212).

The conducted tests reached 100% correctness for the class
“water surface.” For the “seabed,” this result ranged between
99.3% and 98%, while for the “seabed object” class, it ranged
between 84.9% and 72.6%. Table II shows the results of the clas-
sification obtained using the proposed MLP neural network (we
have chosen the neural network having the median of accuracy
value from 11 training repetitions) in the form of an error matrix,
where the result of “seabed objects” detection remains high at
82.1%.

The ANN significantly improves the classification of seabed
object points and this directly affects the detection of objects,
which was the purpose of this study. The applied softmax layer
allows determining for a given point, the probability values of
its belonging to the particular classes (“water surface,” “seabed,”
and “seabed object”).

In Table IV, we have presented the classification accuracy
comparison between the proposed MLP approach and other
methods. The comparative methods were running with their
default parameter values and were implemented using MATLAB
2019b Classification Learner tool. The description and value of
parameters settings for the comparative methods are presented
in Table III.

As we can see (from Table IV) the results obtained by the
proposed method are better or comparable to the results obtained
using other methods. Additionally, in relation to Fig. 1, the
distribution of points for individual objects is presented. The
object number 1 was not included in the list, because it was
included in the training data. The proposed MLP approach has
the best results on the objects 2 and 3. On the object 4 closest to
the reference data is the RUSBoosted Trees method.
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TABLE VI
VALUES OF t-STUDENT TEST AND STATISTICAL IMPORTANCE EVALUATION OF DIFFERENCES BETWEEN THE ACCURACY RESULTS OBTAINED USING THE PROPOSED

MLP AND THOSE OBTAINED USING THE OTHER METHODS FOR DIFFERENT SIGNIFICATION LEVEL (SIG. LEVEL): α = 0.01, β = 0.05, AND γ = 0.10
(“
√

”—RESULT IS STATISTICALLY SIGNIFICANT; “✗”—RESULT IS NOT STATISTICALLY SIGNIFICANT)

Fig. 5. Probability distribution for seabed class (A) and seabed object class (C). B and D represent probability in the range [0.4–0.6].
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For better presentation of the results obtained using the
proposed method and other comparative methods, the average
values (Average) and standard deviation values (St. deviation)
were presented in Table V. Each result was obtained after 11-fold
repetition of each method. We can see that result obtained using
the proposed MLP method is better or comparable to the results
obtained using other methods.

In order to check the statistical importance of the results
obtained using the proposed method, the t-Student statistical test
was performed (see Table VI). The hypotheses on the equality
of average values is true: with a trust level of 99% (α = 0.01)
when the absolute value of t-value is lower than 3.11, with a trust
level of 95% (β = 0.05) when the absolute value of t-value is
lower than 2.20, and with a trust level of 90% (γ = 0.10) when
the absolute value of t-value is lower than 1.80.

Based on the t-Student test values (t-values), we can see that
in terms of overall accuracy, for all but one of the other methods
tested and all significance levels tested, the differences are
statistically significant. However, when comparing the proposed
MLP method’s overall accuracy assessment results against those
of RUSBoosted Trees, the differences are not statistically sig-
nificant. When this analysis is extended to the individual classes
(water surface, seabed, and seabed object), for the water surface
classification, the differences between methods were, in several
cases, not statistically significant, but this is due to the fact that
every algorithm tested performed very well in classifying the
water surface. In terms of seabed classification, the proposed
MLP method actually did a bit worse than the others, and the
differences were all statistically significant. However, since all
of the seabed classification accuracies were >98.5%, it can
be said that all methods performed well. The seabed object
classification was the most challenging and this was where the
proposed MLP method was shown to outperform the others,
again with the exception of RUSBoosted Trees, for which there
was no statistically significant difference in the results from the
proposed MLP algorithm.

In Fig. 5, we have analyzed these points for which the final
decision about the classification is not clear. In this case, these
are only points from the classes 2 and 3 for which the probability
values for belonging to the given class are from the range 0.4–
0.6. Within this range, 70% of points in class 2 were correctly
classified to the “seabed.” In the class of “seabed objects” in the
same range, about 50% of points are correctly classified. From
the obtained results, it can be observed that the points on the
border of the “seabed object” and the “seabed” have the least
certainty of classification.

V. CONCLUSION

The MLP neural network was used in the study to classify air-
borne bathymetric scanning data to detect objects at the seabed.
The classifications show that the selected features classify the
point cloud well and allow the detection of objects on the
seabed with an accuracy of about 80%. The results obtained
significantly increase the effectiveness of object detection in
relation to the most comparative algorithms. Additional prob-
ability analysis allows for further assessment of points whose
classification certainty is low.
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