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Tropical Cyclone Intensity Classification and
Estimation Using Infrared Satellite Images With
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Abstract—A novel tropical cyclone (TC) intensity classification
and estimation model (TCICENet) is proposed using infrared geo-
stationary satellite images from the northwest Pacific Ocean basin
in combination with a cascading deep convolutional neural network
(CNN). The proposed model consists of two CNN network modules:
a TC intensity classification (TCIC) module and a TC intensity
estimation (TCIE) module. First, the TCIC module is utilized to
divide TC intensity into three categories using infrared satellite
images. Next, three TCIE models based on the CNN regression
network that combine different intensity types of infrared satellite
images with the TC best track data are presented. The three TCIE
models consider classification error with the TCIC module in order
to improve TCIE accuracy. A total of 1001 TCs from 1981–2019
were used to verify the proposed TCICENet model, with 844
TCs from 1981–2013 employed as training samples, 76 TCs from
2014–2016 used as validation samples, and 81 TCs from 2017–2019
used as testing samples. In order to reduce the computation burden
of training the TCICENet model, various input image sizes were
explored. An image size of 170 × 170 pixels achieved the best
performance, with an overall root mean square error of 8.60 kt
and a mean absolute error of 6.67 kt compared to the best track.

Index Terms—Deep convolutional neural network (CNN),
intensity estimation, intensity grade classification, tropical cyclone
(TC).

I. INTRODUCTION

THE northwest Pacific Ocean basin is one of the most
active tropical cyclone (TC) areas in the world, generating

approximately 27 TCs per year. According to the TC stan-
dards (http://agora.ex.nii.ac.jp/digital-typhoon/help/unit.html.
ja#id2) released by the Japan Meteorological Agency (JMA),
TCs can be divided into six grades: tropical depression (TD;
∼33 kt), tropical storm (TS; 34–47 kt), severe tropical storm
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(STS; 48–63 kt), strong typhoon (STY; 64–84 kt), very strong
typhoon (VSTY; 85–104 kt), and violent typhoon (ViolentTY;
≥ 105 kt). In the 1940s, aircraft detection was first utilized as an
effective means of monitoring the current position, intensity,
and development status of TCs. However, aircraft detection
primarily focuses on the Atlantic Ocean basin. In recent years,
the development of various means of observation and numerical
forecasting has improved storm track prediction, but improving
intensity estimation has been very slow.

Current TC intensity estimation primarily depends on mi-
crowave data from polar-orbiting [1]–[6] and geostationary
satellite imagery. The microwave data are easily disturbed by
harsh environments, such as heavy rainfall. Compared with
polar-orbiting satellite data, the geostationary satellites are un-
able to obtain near-surface structure of TC but have a higher
temporal resolution and the stable image quality, thus are cur-
rently more commonly used for TC intensity estimation. Dvorak
proposed and developed methods [7]–[10] for TC intensity
estimation using infrared satellite images, which rely upon the
experience of the forecaster [11]. Although some improved
Dvorak techniques [12], [13] reduce the subjective steps, most
of them are not suitable for estimating the intensity of weak
TCs [14]. Olander and Velden [15] further improved the Dvorak
technique, creating a method known as the advanced Dvorak
technique (ADT) version 9 to improve the intensity estimation
for weak TCs. The deviation-angle variance technique (DAT)
introduced by Pineros et al. [16] is a method that quantifies
the axisymmetry of a TC from infrared satellite imagery in
order to investigate structural and intensity changes of TCs [17].
The DAT and its improved versions produce good TC intensity
estimation results [18], [19].

Researchers have utilized traditional machine learning with
infrared satellite images for TC intensity estimation. The multi-
variate linear regression models [14]–[20], the K-nearest neigh-
bors algorithm [21], [22], the multilayer perceptron [23], support
vector machine (SVM) [24], and relevance vector machine
(RVM) [25]–[27] have been successfully used to estimate TC
intensity. These methods mainly focus on the manual extrac-
tion of statistical features [1], [2], [14], [23], [25]–[27] or
structural features [7]–[10], [12], [13], [15]–[17], [42] of TC.
These characteristics are mainly as follows: the TC center, rain
band features, brightness temperature gradient of cloud tops,
statistics of radial cloud top brightness temperature, slope of TC
inner-core cloud top, the deviation angle, spiral rain band fitting,
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and the symmetry of inner core. Furthermore, these features
(usually <10) [36] are largely dependent on human subjectivity
and experience, as well as prior information concerning satellite
data. It is difficult for a meteorologist to determine whether one
feature is suitable for the intensity regression of all of the various
TCs in different basins and developing stages.

The convolutional neural network (CNN) of deep learning is
very suitable for extracting the deep features (usually more than
1000) from an image using convolutional, pooling, and fully
connected layers. It is unnecessary to extract the TC intensity
indicating factors from infrared satellite images in advance
for CNNs. Pradhan et al. [35], for example, used the CNN
classification output vector to directly weight the average the
intensity of the two highest possible categories in order to obtain
the estimated TC intensity. This is straightforward, but it is easy
to misclassify TCs. Recent studies [38]–[41] used CNN-based
models to estimate the TC intensity as a regression task. The
regression method is relatively simple and straightforward, but
TCs exhibit rich and varied forms as well as a wide range of
TC wind speed fluctuations, making it difficult for these single
models to fully cover TC changes, especially when the TC
samples of different intensities are not balanced. Existing TC
intensity estimation models based on CNNs have only focused
on basic and relatively simple deep learning network structures,
such as AlexNet or VGGNet [34]–[41].

Unlike the methods above, we propose a cascade-double CNN
model for estimating TC intensity (TCICENet) from infrared
geostationary satellite images. The infrared satellite images
are adopted as the input of the TCICENet model. The TCI-
CENet model consists of two modules: the TC intensity grade
classification (TCIC) module and the TC intensity estimation
(TCIE) module from three TC categories as a regression task.
Compared with the method of directly weighting the average TC
intensity of the two highest possible categories [35], TCIE takes
the characteristics of the infrared satellite image into account
again, which is more reliable because of rough classification
and fine-tuning.

TC intensity grade classifications are different from the con-
ventional rigid targets (cars, animals, and etc.). TCs are not rigid
bodies, and the structure of it will change greatly in different
development stages with continuous rotation and translation.
The characteristics of adjacent intensity categories of TC are
quite similar, leading to a high probability of misclassification
between adjacent intensity categories. Also, TC images with
very different cloud structures may belong to the same intensity
category. Conversely, cloud structure images that look similar
may also belong to two different intensity categories, such as
in the life cycle of the same TC. For these reasons, LeNet
and other CNN networks with simple structure have difficulty
achieving high-precision classification of TC intensity grade. A
deeper and wider CNN network is required to extract more deep
semantic information. The Inception module of GoogLeNet
performs multiscale feature extraction on the input feature map.
This model is wider, but the problem of gradient dispersion
caused by network deepening still exists. ResNet learns the
difference between the input and output of the network, which
greatly alleviates performance degradation when the network

is deeper. Inception-Resnet-v2 combined inception and residual
structure, and achieved the best classification performance on
the ImageNet dataset in 2016 [33]. Some deeper and broader
CNN models have also been proposed recently, although no sig-
nificant improvement in image classification has been obtained.
Therefore, Inception-Resnet-v2 is suitable for the challenging
task for the challenging task of TCIC.

After obtaining more accurate classification results of a TCIC
module, the TCIE module need not be as deep and wide as
that of the TCIC module considering both the calculation cost
and intensity estimation accuracy of the TCIE module. Now,
simple CNN models mainly include LeNet [28], AlexNet [29],
and VGGNet [30]. Compared with LeNet, AlexNet has deeper
layers, and its activation function is Relu, which can acceler-
ate the convergence speed of stochastic gradient descent and
alleviate the problem of gradient dispersion. Finally, our TCIE
model combines the lightweight characteristics of AlexNet and
the advantages of the small convolution kernel of VGGNet to
increase the nonlinear expression ability of the network model,
which can meet the requirements of TC intensity estimation.

Our contributions can be summarized as follows.
1) We propose a cascading CNN model to objectively esti-

mate the TC intensity.
2) We improve Inception-ResNet-v2 using the channel and

spatial attention modules to implement the challenging
task of TC intensity grade classification.

3) We improve the AlexNet model and respectively build
TC intensity estimation models for different categories of
TCs. The misclassification ratio of the validation data of
TCIC is used to guide the training of the TCIE module.

II. TCICENET MODEL

A. Overall Model Architecture

The TCICENet model is used to implement the TC-image-to-
category-to-intensity estimation task. The TCICENet evolved
from an improvement of the Inception-ResNet-v2 [33] and
AlexNet [29] and is well suited to learning features of TC
representation and distinguishing different TC categories from
satellite images. The framework of the proposed TCICENet
model architecture is shown in Fig. 1. The TCICENet consists
of two modules: TC intensity classification (TCIC) and TC
intensity estimation (TCIE). First, infrared satellite images are
divided into three categories (category1, category2, and cate-
gory3) using the TCIC module, where category1 is comprised of
TS+STS, category2 consists of STY, and category3 comprises
VSTY+ViolentTY. Second, three TC intensity estimation mod-
els corresponding to the three different TC intensity categories
are respectively built using the TCIE module.

B. TCIC Module Architecture

Existing TC intensity estimation models rarely consider the
intensity grade classification before intensity estimation, al-
though some researchers have recently divided the TC intensity
grades into many categories using CNNs [34], [35]. Due to
the high misclassification probability when directly dividing
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Fig. 1. Framework of the proposed TCICENet model architecture.

TC intensity grades into too many categories, the accuracy of
the intensity estimation is bound to be affected. We classified
the TC intensity grades into three categories (TS+STS, STY,
and VSTY+ViolentTY) in order to improve the classification
accuracy. The Inception-ResNet-v2 was adopted as the basic
network of the TCIC module, which is a very deep and wide
CNN that has been successfully applied to different image
feature extraction tasks. In addition, the convolutional block
attention module (CBAM) [43] was integrated into the network
structure of the Inception-ResNet-v2. The CBAM includes the
channel attention module and the spatial attention module in
order to make the network focus on the important features of the
TC categories and suppress the unnecessary ones. The flowchart
of the TCIC internal network architecture is presented in Fig. 2.

First, the infrared satellite image is input through the Stem
module to initially extract the low-level features, and the out-
put size is 18 × 18 × 384 pixels. Next, five linearly stacked
Inception-ResNet-A+CBAM modules are used to extract richer
features, and then the Reduction-A module is used to reduce the
feature map size and increase the number of channels so that the
output size is 8 × 8 × 1152 pixels. After ten linearly stacked
Inception-ResNet-B+CBAM modules, the model further ex-
tracts richer features and semantic features. The Reduction-B
module then continues to reduce the size of the feature map,
while increasing the number of channels to improve the model
performance so that the output size is 3 × 3 × 2144 pixels. After
five linearly stacked Inception-ResNet-C+CBAM modules, fea-
ture extraction is complete. Average pooling is used to convert
the feature map into a one-dimensional vector. A dropout layer is
used to prevent overfitting, followed by a fully connected layer.
Finally, softmax outputs a one-dimensional vector with a size

Fig. 2. Flowchart of the TCIC internal network architecture (the numbers 5,
10, and 5 indicate that there are 5, 10, and 5 duplicate blocks.).

Fig. 3. Schematic block diagram of the TCIE network architecture.

of three, which represents the possibility of each category. The
category with the highest possibility is the final TC category.

C. TCIE Module Architecture

The TCIE module is based on AlexNet. Fig. 3 presents the
schematic diagram of the TCIE network structure. The network
structure parameters of the TCIE module are listed in Table I.
The network consists of six convolutional layers, two pooling
layers, and three fully connected layers. We discarded the large
11 × 11 convolutional layer in AlexNet layer 1 since large
filters tend to increase computation time and will lose too many
details in infrared (IR) images. The convolutional layer with a
convolution kernel size of 5 × 5 in the second layer of AlexNet
is directly used as the convolutional layer of the first layer of the
TCIE, which is used to extract low-level features (contours and
textures) from the input satellite image. We use a convolution
kernel size of 3× 3 from the second layer to the sixth layer. After
the first pooling layer, three consecutive convolutional layers
are used to extract the features of the satellite image, due to
the complex relationship between satellite image information
and TC intensity. After the pooling layer, two more successive
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TABLE I
NETWORK STRUCTURE OF TCIE MODELa

aTerms—Shape: Size of the convolutional filter; Activation: Nonlinear “signal gate”
processing method following the layer process; Leaky ReLU: “Leaky rectified linear
unit” (a type of activation function that prevents neuron saturation in deep networks);
Output size: Row×column size of the product of convolution/pooling/fully connected
layer.

bTerms—s: Stride (Spacing of the convolutional/pooling filter application); p: Padding
(Padding pixel to the edge of the input feature map)

convolutional layers are added in the TCIE. The first and fourth
convolutional layers are connected with the pooling layers, with
the goal of cutting down the size of the input image. The last
convolutional layer has no pooling layer. We also use max
pooling [29] to reduce the number of features by only keeping
the maximum value of features in a sliding window. After max
pooling the layers, the features are reduced sharply. “Leaky
ReLU” [44] activation is used for nonlinearity, which is a fairly
rapid and streamlined activation function.

Compared to AlexNet, our model has the following differ-
ences. The TCIE model discards the large 11× 11 convolutional
layer in the first layer and adds the last two consecutive convo-
lutional layers Conv5 and Conv6. The number of channels in
Conv1 is 8, that in Conv2–Conv4 is 32, and that in Conv5 and
Conv6 is 64. The numbers of neurons in the full connection
layers are 512, 16, and 1, respectively.

D. Loss Function

The cross-entropy is used as the loss function of the TCIC, as
shown in the following equation:

Hy′ (y) = −
∑
i

y′ilog (yi) (1)

where y′i is the actual tag value and yi is the predict label value
of the output.

The L2 regularization term Ω is added to the loss function, as
shown in the following equation:

Ω = α ‖ω‖22 (2)

where ω is the total weight of the network model and α is the
weighted decay.

The weight decay of the regularization term Ω is expressed
as α, and has a value of 0.0005. By reducing the numerical

Fig. 4. Expansion of sample data set by different methods (original image
from 0000 UTC December 22, 2001). (a) Original. (b) Rotated 90°. (c) Rotated
180°. (d) Rotated 270°. (e) With added salt-and-pepper noise. (f) With added
Gaussian noise.

value of the weight, the complexity of the model is reduced and
overfitting is prevented. The total loss function is expressed as
follows:

L = Hy′ (y) + Ω. (3)

The loss function of the TCIE training process is smoothL1

loss [45]

smoothL1
(x) =

{
0.5x2, if |x| < 1

|x| − 0.5, otherwise
. (4)

L2 loss converges faster and has a derivative at 0 to facilitate
convergence. L1 loss makes the network more robust to outliers.
SmoothL1 loss combines the advantages of both L1 loss and L2

loss.

III. DATA

The data of 1001 TCs from 1981 to 2019, comprising five
categories—TS, STS, STY, VSTY, and ViolentTY—were ob-
tained from the National Institute of Informatics of Japan
(http://agora.ex.nii.ac.jp/digital-typhoon/year/wnp/), and were
then used to verify the performance of the proposed model.
The infrared satellite images used in this study derive from
the GMS1–5, GEO 9, MTSAT-1R, MTSAT-2, and Himawari 8
satellites in the northwest Pacific Ocean basin. The wavelength
of the images is 10.2–12.5 μm. A total of 19 451 satellite
images of 844 TCs from 1981 to 2013 were selected to train
the proposed TCICENet model, 1907 images of 76 TCs from
2014 to 2016 were selected for validation, and 1794 images of
81 TCs from 2017 to 2019 were selected for testing. Please refer
to http://www.jmanet.go.jp/sat/himawari/enkaku.html#nheader
for more information pertaining to our data. Since the deep learn-
ing training process requires a large dataset of balanced types,
the existing data did not meet the requirements of the training
samples. Therefore, the original 19 451 infrared satellite images
were expanded by rotation and were provided with additional
noise. Fig. 4 shows an example of the sample expansion. The

http://agora.ex.nii.ac.jp/digital-typhoon/year/wnp/
http://www.jmanet.go.jp/sat/himawari/enkaku.html&num;nheader
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TABLE II
NUMBER OF TRAINING AND TEST SAMPLES IN EACH CATEGORY

TABLE III
NUMBER OF TRAINING, VALIDATION, AND TEST SAMPLES IN TCIC MODULE

numbers of training and test samples in each intensity category
are listed in Table II.

In this investigation, we also explored the direct classification
of the five TC intensity grades. The original STY data were
expanded from 5036 to 6043 images after being rotated 90°
in order to balance the data proportions among the five TC
categories, as listed in Expanding_5 of Table II.

Furthermore, all of the imagery, including duplicate imagery,
was varied by rotating and adding noise, as delineated in Table II.
This approach is necessary for the model to assign equal impor-
tance to all of the TC intensities during training, and is common
practice in CNN training in order to prevent the model from
inherently increasing its skill with the greater sampled image
types at the expense of the lesser sampled image types. The
testing dataset did not need to be balanced in this way.

As previously mentioned, the TCICENet model proposed in
this study contains two modules: the TC intensity classification
module (TCIC) and the TC intensity estimation module (TCIE).
For the TCIC module, we divided the TC intensity level into
three categories according to the input infrared satellite images:
TS+STS, STY, and VSTY+ViolentTY. We then attempted to
balance the proportions of each of the three types of typhoon
data. Therefore, in the TCIC module experiment, the TS and STS
data were directly combined, so that the number of TS+STS
sample images was 11574. The original STY data were ex-
panded from 5036 to 10 072 after being rotated 90°. The VSTY
data were expanded from 2498 samples to 7494 by rotating
90° and 180°. After the ViolentTY data were rotated by 90°,
180°, and 270°, Gaussian noise and salt-and-pepper noise were
added to the rotated ViolentTY data to expand the original 343
samples to 4116. The data before and after the expansion are
listed in Table III. After the above expansion, the proportions of

the expanded sample data of the three categories were basically
balanced, as shown in Table III.

For the intensity estimation stage (i.e., the TCIE module),
our training data are still the data after the classification ex-
pansion. In the TCIE module, three intensity estimation models
are established for TS+STS, STY, and VSTY+ViolentTY, des-
ignated TCIE_Model_1, TCIE_Model_2, and TCIE_Model_3,
respectively. In order to enhance the diversity of the training
samples in the TS+STS category and improve the robustness of
its intensity estimation performance, we expanded the training
samples from the original 11 574 to 23 148 by rotating them 90°.
The training samples of the three categories without considering
the misclassification percent of the TCIC are listed in Table IV
by no wrong proportion (NWP), and comprise 23 148, 10 072,
and 11 610 images, respectively. Since the training samples of
the STY and VSTY+ViolentTY intensity levels were already
expanded in the TCIC module, their training samples were not
expanded in the TCIE module.

In addition, in order to improve the accuracy of the TCIE
intensity estimation, we considered the percent of intensity level
misclassification in the three categories of the TCIC validation
set in the TCIE module. Finally, the three training datasets of the
intensity estimation model were expanded. In total, 3443 sam-
ples were selected from the original STY training samples in or-
der of wind speed from low to high, along with 101 samples from
the original VSTY+ViolentTY training samples in order of wind
speed from low to high to join the training set of the intensity
estimation model TCIE_Model_1. From the original TS+STS
training samples, 3046 samples were selected in order of wind
speed from high to low, and from the original VSTY+ViolentTY
training samples, 2977 samples were selected in order of wind
speed from low to high to join the training set of TCIE_Model_2.
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TABLE IV
NUMBER OF TRAINING, VALIDATION, AND TEST SAMPLES FOR THE THREE TCIE MODELS

From the original TS+STS training samples, 69 samples were
selected in order of wind speed from high to low, and from the
original STY training samples, 1374 samples were selected in
the order of wind speed from high to low to join the training set of
TCIE_Model_3. When adding the wrong-proportion samples, if
the raw samples were insufficient (mainly VSTY+ViolentTY),
the selection was continued in the same way to expand the
dataset. The training data (WP) for the three intensity estimation
models in the TCICENet model were expanded to 26 692, 16
095, and 13 053 sample images, respectively (listed in Table IV).
In Table IV, NWP indicates that the wrong-proportion samples
were not added, whereas WP indicates that the wrong-proportion
samples were added.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

All of the models were trained using the TensorFlow frame-
work (in Python 3.6), running on an NVIDIA 2080 Ti. The
TCICENet model contains two modules: the TCIC and the
TCIE. The experiment was divided into two stages: the training
stage and the testing stage. Each stage employed the same data
preprocessing method. In the data preprocessing stage, the mean
value and the normalized satellite image data ranged from [-1,1]
in order to improve the training speed and accuracy. Both the
TCIC and TCIE were trained from scratch. The batch size of the
TCIC training was 8, we used the Adadelta Optimizer (Zeiler)
[46], the learning rate was 0.1, and the learning rate was reduced
0.1 times every 50 epochs. The batch size of the TCIE training
was 64, we used the Adam optimizer [47] with the default
parameters in the experiment, and the learning rate was 0.001.

A. Effect of Input Image Size on TCIC and TCIE Performance

We designed a two-stage experiment to investigate the effect
of input image size on TC intensity classification and TC in-
tensity estimation. In both stages, we compared the precision
input images of seven sizes, including the 256 × 256 pixel input
images cropped from the original satellite images, which were
then reduced in size to between 230 × 230 and 80 × 80. The
impacts of scaling the image size on the performance of the
TCIC and TCIE modules are presented in Fig. 5.

The accuracy of TCIC classification is low when the input
image size is 110× 110 or 140× 140, whereas the classification
accuracy can reach approximately 80% for an image size of 170
× 170. The accuracy of TC intensity classification is basically
the same for input image sizes of 170 × 170 and 200 × 200. On
the premise of ensuring classification accuracy while reducing

Fig. 5. Classification accuracy in the TCIC module and the intensity estimation
of the MAE and RMSE in the TCIE module of the input image size.

computation, we selected 170 × 170 as the input image size
of the TCIC. During the reduction of the input image size, the
MAE and RMSE of the intensity estimated by the TCIE decrease
initially and then rise, reaching minimum values at 170 × 170.
Therefore, input images with a size of 170 × 170 pixels were
used for the TCIC and TCIE modules.

B. TC Intensity Grade Classification

As mentioned above, the existing TC intensity classification
models based on deep learning are divided into multiple cate-
gories based on the TC intensity grade classification standard.
According to the JMA’s TC intensity classification standard,
TC intensity grade is divided into a total of six categories.
In this study, we only focused on TC intensity estimation for
systems with an intensity level of TS and above, i.e., TC intensity
estimation with five intensity levels. In order to explain the
reason for our three-category classification, we designed di-
rect five-category classification and three-category classification
experiments in the TCIC module. We used the Expanding_5
training, validation, and test data presented in Table II to verify
the performance of the TCIC module. Precision (P), recall (R,
probability of detection), and F1-score (F1) were utilized to
evaluate the performance of our model.

After the iteration of 35 epochs for the TCIC module, the val-
idation data loss reached its minimum and the accuracy levels of
the five classifications reached their maximum. Table V lists the
results of the five classifications. For these classifications, the av-
erage precision, recall, and F1-score ranged from approximately
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TABLE V
PRECISION, RECALL, AND F1-SCORE FOR THE FIVE TC CATEGORIES, AND THE

TOTAL NUMBER OF SAMPLE TEST TC IMAGES FOR THE TCIC MODULE

0.60 to 0.62. Thus, if the five classification results were directly
applied to the subsequent classification intensity estimation, this
would lead to a large intensity estimation error. Fig. 6(a) is the
confusion matrix of the five classifications for the test samples.
The recall levels from weak to strong intensity of the five TC
categories were 0.81, 0.42, 0.58, 0.54, and 0.75, respectively. As
can be seen from Fig. 6(a), TCs of all five intensity levels were
misclassified. Misclassification to an adjacent intensity level was
the most likely occurrence. Therefore, we combined TS and STS
into one category. Although the misclassification ratio between
STY and VSTY was also high, VSTY and ViolentTY also tended
to be misclassified for one another. Considering that the number
of ViolentTY samples is small, VSTY and ViolentTY were
combined into one category, and STY was taken as a separate
category. Hence, we divided the TC intensity levels into three
categories: TS+STS, STY, and VSTY+ViolentTY.

We used the training, validation, and test data in Table III
to verify the performance of the TCIC module for the three
classifications of TC intensity grades. The iterative curves for
recognition rate and loss function are presented in Fig. 7. As
shown in Fig. 7(a) and (b), the total loss function value of the
training set gradually decreased with the increasing number of
epochs, stabilizing after 80 epochs. The accuracy of the training
set gradually increased with the increasing number of epochs,
increasing rapidly during the early stage with high accuracy,
which is related to the fact that our TCIC module is good
at extracting complex features from infrared images. After 50
epochs, the classification accuracy of the TCIC module had
basically stabilized. As can be seen from Fig. 7(c) and (d),
the loss function value of the validation set initially exhibited
a decreasing trend and then rose slowly after 50 epochs due
to overfitting. In the 31st epoch, the loss of validation data
reached its minimum and the classification accuracy reached
its maximum, which are denoted by red dots in Fig. 7(c) and (d).
We saved the model of the 31st epoch, and the validation results
of this epoch were then employed to guide the subsequent three
TCIE models in order to produce the proper training samples
according to the misclassification percentages among the three
intensity categories.

We used the test samples listed in Table III to analyze the
classification performance of the trained TCIC module. The
average accuracy of the three classifications for the test set was

Fig. 6. (a) Confusion matrix of the test samples of five intensity categories for
the TCIC. (b) Confusion matrix of the test samples of three intensity categories
for the TCIC.

TABLE VI
PRECISION, RECALL, AND F1-SCORE FOR THE THREE TC CATEGORIES, AND

THE TOTAL NUMBER OF SAMPLE TEST TC IMAGES FOR THE TCIC MODULE

80.49%, which was a substantial improvement over the accuracy
of the previously derived direct division into five categories.

It can be seen from Table VI that the classification indices
of the TS+STS category were the highest, followed by the
VSTY+ViolentTY category. The precision, recall, and F1-score
of the STY category were significantly lower, indicating that it
had more classification errors. The average precision, recall, and
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Fig. 7. Accuracy curve and loss function curve for the TCIC module.
(a) Training loss function curve. (b) Training accuracy curve. (c) Validation
loss function curve. (d) Validation accuracy curve.

F1-score ranged from approximately 0.74 to 0.77. Fig. 7(a) and
(b) reveal that the misclassifications of the TCIC module for
the three classifications of TC intensity grades were smaller.
Therefore, in this study, we divided the TC intensity grades into
three categories based on infrared satellite images.

C. TC Intensity Estimation

In order to illustrate the advantages and performance of
the proposed TCICENet model, three other models were ex-
plored: the TCIDENet, TCICENet-NWPS, and TCICENet-S.
The TCIDENet is a method of direct intensity estimation by
the TCIE module without classification. The TCICENet-NWPS
uses the TCIC module for classification, in which the TCIE mod-
ule for intensity estimation does not include the misclassified
proportion of the TCIC module. The TCICENet-S represents
the TCICENet model whose intensity estimation results are
smoothed with the results of adjacent satellite images prior to the
current time. Among these models, the training data of the TCI-
DENet and TCICENet-NWPS consisted of the data in Table IV
without the addition of the misclassification samples, whereas
the training data of TCICENet and TCICENet-S consisted the
data in Table IV with the misclassification samples added. In
order to verify the performances of the different models, the
RMSE, MAE, bias (the difference between the best-track data
and the estimated intensity), and absolute error were employed
as evaluation indicators on the test dataset. RMSE, MAE, and
absolute error measure the differences between two variables,
whereas bias indicates the absolute degree of overestimation and
underestimation of each variable.

1) TCIDENet: All three TC intensity categories were com-
bined to create an intensity estimation model known as the TC
direct intensity estimation model (TCIDENet). The intensity
estimation error of the STY category was the largest, with
an MAE of 10.2 kt and an RMSE of 12.6 kt. The intensity
estimations of the other four categories were not appreciably
different. The TCIDENet achieved an overall MAE of 7.89 kt
and an RMSE of 10.25 kt, exhibiting an intensity estimation
accuracy similar to that of the models in Chen et al. [36] and
Zhang et al. [26].

2) TCICENet-NWPS: The STY category was the largest,
with an MAE of 11.42 kt and an RMSE of 14.15 kt. The
TCICENet-NWPS achieved an overall MAE of 7.85 kt and an
RMSE of 10.18 kt. The MAE and RMSE values of TS, STS, and
ViolentTY for the TCICENet-NWPS were less than those of the
TCIDENet, although the TCIDENet was better at estimating
STY and VSTY.

3) TCICENet: In this study, we separately built three TC
intensity estimation models to correspond to the three TC in-
tensity categories, referred to as the separate models of the
TCICENet. Fig. 8 shows the loss function curves of the training
and validation data of the three intensity estimation models,
revealing that the loss of the training set gradually converged.
The validation set loss of the three TCIE models reached its
minimum value at 19, 82, and 71 epochs, respectively. The TC
intensity estimation results of the proposed TCICENet are listed
in Table VII.

Compared with the TCIDENet and TCICENet-NWPS, the
final TC intensity estimation performance of the TCICENet
achieved an MAE of 7.45 kt and an RMSE of 9.59 kt, due to
the addition of misclassification samples during the training of
the three intensity estimation models. With the exception of no
obvious improvement to STS, the intensity estimation accuracy
of all the other four categories improved.

4) TCICENet-S: In order to reduce the influence of model
time evolution and TC intensity noise over time, we used the
weighted average of the estimated TC intensity values of the
TCICENet at the current time and the previous two times as
the TCICENet-S intensity estimation at the current time. Since
the data used in our model were not interpolated, the previous
two times were the previous 6 h and the previous 12 h. This
smoothing scheme is similar or equivalent to those of some
existing TC intensity estimation models [12]–[21]. In this study,
the TC intensity estimation at time t was smoothed by the
following formula:

p (xt) = 0.49f (xt) + 0.29f (xt−1) + 0.22 f (xt−2) . (5)

5) Comparison of the Four Models: In order to facilitate
the comparison of the performances of the above four mod-
els, the structure and intensity estimation evaluation indices of
the models are listed in Table VIII. It can be seen from this
table that the intensity estimation capabilities of the TCIDENet
and TCICENet-NWPS models were basically the same. This
indicates that the effect of direct TCIE intensity estimation after
TCIC classification is not significantly improved compared with
the direct TCIE module. The TCIDENet model is also the current
model used for most TC intensity estimation based on deep
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Fig. 8. Loss function curves of training and validation for each TC category using the TCICENet model. (a) TS+STS. (b) STY. (c) VSTY+ViolentTY.

TABLE VII
RMSE, MAE, AND BIAS (KT) FOR EACH TC CATEGORY, AND THE NUMBER OF TEST TC IMAGES OVERESTIMATED AND UNDERESTIMATED IN

EACH CATEGORY USING THE TCICENET MODEL

TABLE VIII
FOUR TC INTENSITY ESTIMATION MODELS AND THEIR COMPREHENSIVE EVALUATION INDICES

The bold entities in tables represent our proposed method.

learning [36], [38], [41]. Compared with the TCIDENet and
TCICENet-NWPS, the TCICENet exhibited the best intensity
estimation performance, indicating that the misclassification
percent of TC intensity classification can be effectively used
to improve the intensity estimation performance. As mentioned
above, utilizing three categories of TCs will produce different
degrees of misclassification. This phenomenon is particularly
obvious for the STY category, because this category is very
similar in terms of cloud structure and inner core features, such
as spiral rain bands, appearing on satellite images during certain
development stages of the TS+STS and VSTY+ViolentTY
categories. Compared with the VSTY+ViolentTY category, the
possibility of misclassifying the STY category as the TS+STS
category is high. The probability of the TS category being
misclassified as VSTY+ViolentTY is very small because the
TS+STS and VSTY+ViolentTY categories differ greatly in
intensity level, cloud pattern, and inner core characteristics. The

same is true for the VSTY+ViolentTY category. After classi-
fication, the TCICENet takes into account the misclassification
of the intensity classification, expands the training samples of
the TCIE model according to the misclassification percent, and
reduces the subsequent intensity estimation error caused by the
classification error to a certain extent. Therefore, the comprehen-
sive performance of the TCICENet intensity estimation is better
than the performances of the TCIDENet and TCICENet-NWPS
models.

The TC is a dynamic system, exhibiting continuous devel-
opment and change over time. The current intensity of a TC
is not only closely related to the cloud pattern and inner core
characteristics it displays in the most recent satellite image,
but is also related to the development and change of the cloud
and inner core characteristics of the previous several temporally
adjacent satellite images, a relationship that is not considered
in the first three models. Therefore, the performance of the
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Fig. 9. (a) Scatter plot of best-track intensities versus estimated intensities using the TCICENet model. (b) Bias curve between the best track intensities and
the estimated intensities using the TCICENet model for 2017–2019 TC samples. (c) Absolute error curve related to the percentage of absolute errors using the
TCICENet model.

TCICENet-S model can be significantly improved when the
sequential characteristics of intensity changes are considered.

V. ANALYSIS AND DISCUSSION

A. Analysis of Error Distribution

Fig. 9(a) shows the scatter plot of the best track intensities
versus the estimated intensities. The red straight line is a linear
fitting line of the estimated intensities versus the best track
intensities. The linear fitting equation can be expressed as y =
1.0164x−1.0839. Its correlation coefficient (CC) is 0.891. The
estimated intensities ranged from 30.11 to 113.15 kt. Fig. 9(b)
shows the bias curve of the test samples. Based on Fig. 9(b),
the difference between overestimation and underestimation was
not very obvious. The average bias of the test samples was 0.13
kt. Fig. 9(c) represents the probability distribution curve of the
absolute error. The percentages of absolute error between the
best track intensity and the estimated intensity less than 3, 5, 10,
and 15 kt were 27%, 43%, 73%, and 89%, respectively.

B. Intensity Estimation for Different TC Categories

The box plot of the bias in each TC category is presented in
Fig. 10(a). The green line represents the position of the median,
the black lines at both ends represent the upper and lower limits
of the deviation, and the blue boxes represent the first and third
quartiles of the deviation. Consistent with the MAE of each TC
category, the TS category exhibited the lowest MAE, with a
median of 4.82 kt (except for outliers; the same below). The
lower and upper limits of the TS category bias were −8.08 and
18.57 kt, respectively. The maximum absolute error in the TS
category was 39.51 kt, which was the largest of all of the test TC
samples. Meanwhile, the bias of the STY category displayed the
highest MAE, with a median of −6.50 kt and lower and upper
limits of −37.09 and 22.66 kt, respectively. The bias of the STS
category exhibited a distribution ranging from −18.72 to 21.38
kt, with a median of 0.89 kt. The bias of the VSTY category
showed a distribution ranging from −28.42 to 15.53 kt, with a
median of −4.88 kt. The bias of the ViolentTY category had
the lowest RMSE, with a median of –6.97 kt and lower and
upper limits of−14.55 and 8.79 kt, respectively. The overall bias

Fig. 10. Box plot and violin plot of bias in each TC category using the
TCICENet model.

fluctuated around 0. The upper and lower limits of the deviation
distributions of STS, STY, and VSTY were large, whereas the
upper and lower limits of the deviation distributions of TS and
ViolentTY were small. The median deviation of the TS category
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was positive, whereas the median prediction deviations of the
other categories were negative.

The violin plot of the bias of each TC category is shown
in Fig. 10(b). The violin plot can help us to understand the
predicted bias distribution more intuitively. The deviations of
TS and ViolentTY were concentrated, with the TS deviation
concentrated between 0–10 kt, and the ViolentTY deviation
concentrated from 0 to –15 kt. The STS and VSTY deviations
were relatively dispersed, generally ranging from –20 to 10 kt.
STY was the most dispersed, with most of deviations ranging
from –20 to 10 kt.

The TC intensity estimation results of the TCICENet,
TCICENet-S, and the best track intensities for the 81 TCs
from 2017 to 2019 are presented in Fig. 11. TCs in 2017 were
estimated by the TCICENet with an MAE of 6.86 kt, an RMSE
of 8.77 kt, and a bias of 0.95 kt. TCs in 2018 were estimated
by the TCICENet with an MAE of 7.62 kt, an RMSE of 9.73
kt, and a bias of 0.07 kt. TCs in 2019 were estimated by the
TCICENet with an MAE of 7.63 kt, an RMSE of 9.89 kt, and
a bias of 0.16 kt. Overall, we can see that the intensity curves
estimated by the TCICENet and TCICENet-S were basically
consistent with the intensity of JMA’s best track data, and the
intensity estimation results of the TCICENet-S were superior to
those of the TCICENet. The satellite image of the TS category
was overestimated and the ViolentTY category was clearly un-
derestimated. The estimated bias was not large, so the estimated
MAE of these two categories was small. For the satellite images
of STS, STY, and VSTY, the bias distributions of the intensity
estimation ranges were larger, and the overestimation and under-
estimation were almost balanced. The TCICENet-S estimated
results were slightly lower than those of the TCICENet during
the TC formation stage, i.e., the stage in which the TC intensity is
increasing, whereas the TCICENet-S results were slightly higher
than those of the TCICENet during the TC dissipation stage. This
is because the TCICENet-S estimation results are those of the
smoothed TCICENet using the previous two adjacent intensities.

C. Comparison to Other Satellite Estimation Methods

In order to verify the performance of our model, it was
compared with the existing TC intensity estimation models listed
in Table IX. Using our IR satellite image dataset, the perfor-
mance between our model and nine other models—the ETCI
[22], DAVT [18], PHURIE-SVR [24], MLR [20], RVM+DADI
[27], RVM+DAGCOM [26], DeepCNN [35], VGG19 [41], and
Deep-PHURIE [38]—was compared.

It can be seen from Table IX that the intensity estimation
results based on deep learning were generally better than the
results of traditional machine learning, such as ETCI [22], DAVT
[18], PHURIE-SVR[24], MLR[20], RVM+DADI [27], and
RVM+DAGCOM [26]. Most TC intensity estimation models
based on traditional machine learning mainly focus on extracting
some statistical features from infrared satellite images, such as
infrared brightness temperature gradient, deviation angle vari-
ance, or probability density of mean deviation angle (P_MDA).
Although linear regression, support vector regression (SVR),

and RVM exhibited good performance in TC intensity estima-
tion, compared with the CNN models, the performance of these
models still have a large amount of room for improvement. Some
CNN models have been applied to TC intensity estimation. For
example, a CNN-based hurricane intensity estimation network
known as Deep-PHURIE [38] from IR satellite imagery can
reduce the dependence on the artificial labeling of the TC
center. The estimated intensity can be directly determined as the
weighted average of the two highest possible categories with
respect to their probabilities, a method known as the DeepCNN
model [35]. In contrast, we can obtain more accurate results
using our three TCIE models.

Our TC intensity model only uses infrared satellite images
as the input data of the model. The datasets of the other nine
models in Table IX mainly focus on microwave datasets [4],
[5], [40] or combinations of various datasets (e.g., infrared,
water vapor, and microwave data) [6], [15], [34], [36], [39],
[48]. For example, the Hong WS algorithm used a combination
of satellite-observed microwave data to estimate TC intensity
[4]. The PMW-IE combined model employed both Tropical
Rainfall Measuring Mission Microwave Imager (TMI) 85-GHz
brightness temperatures and near-surface rain-rate retrievals to
estimate TC intensity [5]. The MLR-TB-SS model used both
sea surface wind speed and SSMIS microwave radiometer data
to estimate TC intensity [6]. The CNN-TC model used both
infrared and microwave images to estimate TC intensity [36].
The TCIENet model [34] and WIRa-based model [39] used both
the water vapor channel and infrared satellite images for TC
estimation.

Dvorak is the most mature TC intensity estimation technique
in the world. Olander and Velden [15] further improved the ADT
in combination with aircraft observation data, microwave data,
and multispectral satellite images, an approach that is known
as the ADT version 9. This method is used to analyze many
typhoon-intensive regions in the world. Our model is only for the
northwest Pacific Ocean basin, and the results are slightly better.
The state-of-the-art objective method from several different
satellite sources is known as Satellite Consensus (SATCON),
which is used operationally at TC analysis centers worldwide
(Herndon and Velden [48]). Wimmers et al. [40] used a CNN
model known as “DeepMicroNet” to explore the possibilities
of estimating TC intensity from satellite imagery of the 37 and
85–92 GHz bands. The uncertainty of TC best track information
is considered when making TC classifications and calculating
classification losses. Microwave images are often obscured and
not very clear, so our method based on infrared satellite images
can be used as a supplement to this method.

Strictly speaking, it is not fair to directly compare our model
with these nine models [4]–[6], [15], [34], [36], [39], [40],
[48], due to the use of different datasets. However, in order
to illustrate the performance and advantages of our model, we
still listed the performance indices of these nine models in
Table IX (these indices were taken directly from the correspond-
ing literature). The objective was to demonstrate that relatively
satisfactory results could still be obtained using only infrared
channel data combined with the CNN model to estimate TC
intensity.
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Fig. 11. TC intensity estimation results of the TCICENet, TCICENet-S, and the best-track intensities for 81 TCs from 2017 to 2019. The black solid line
represents best track, the blue solid line represents the intensity curve estimated by the TCICENet, and the red dashed line represents the intensity curve estimated
by the TCICENet-S.
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TABLE IX
COMPARISONS OF RMSE AND MAE OF TC INTENSITY ESTIMATION OF THE TCICENET MODEL AND OTHER SATELLITE-BASED MODELS

In summary, the RMSE and MAE values of the intensities
estimated by the TCICENet model were both smaller than those
of the machine learning model [4]–[6], [20], [22], [24], [27],
WIRa model [39], deviation angle variance model [18], SAT-
CON model [48], Dvorak model [15], and deep learning model
[34]–[36], [38], [40], [41]. The overall performance of our model
is roughly comparable to the performances of the SATCON,
CNN-TC, TCIENet, and Deep-PHURIE (smoothed) models.

Our model is a promising TC intensity estimation technique
compared to other similar models using only infrared satellite
images.

D. Error Analysis of Individual Cases

We selected three typical TCs to verify the performance of
the TCICENet model.
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Fig. 12. (a) Time evolution of the estimated intensities and best track inten-
sities for ViolentTY Mangkhut. (b) Mangkhut satellite image at 0600 UTC 8
September 2018. (c) Mangkhut satellite image at 1800 UTC 13 September 2018.

Fig. 13. (a) Time evolution of the estimated intensities and best track intensi-
ties for STY Kalmaegi. (b) Kalmaegi satellite image at 1200 UTC 14 November
2019. (c) Kalmaegi satellite image at 0600 UTC 18 November 2019.

1) Well-Performing Case: Typhoon Mangkhut in 2018 was
chosen as a case to verify the performance of the TCICENet
model. Its intensities estimated by the TCICENet had MAE,
RMSE, and bias values of 5.38, 7.22, and –0.96 kt, respec-
tively, as shown in Fig. 12(a). During the development period,
Mangkhut’s estimated intensities were near 35 kt. At this point,
it was slightly overestimated, after which the wind speed in-
creased. The period 0600 UTC 9 September–0600 UTC 10
September was continuously underestimated. From 1800 UTC
10 September–0600 UTC 14 September, the estimated intensi-
ties were almost the same as those of the best-track. Fig. 12(b)
and (c) shows two infrared satellite images of Mangkhut. In
Fig. 12(b) and (c), the absolute error of the wind speed estimation
was <2.3 kt. The absolute error in Fig. 12(b) was smaller than
that of Fig. 13(b). By comparison, the weaker Typhoon Kalmaegi
was more likely to be overestimated. In Fig. 12(b), Mangkhut’s
cloud system was more scattered and its spiral structure was not
obvious, which is the reason it was not easily overestimated at
this stage. Fig. 12(c) shows the cloud image of Mangkhut when
its best track intensity was 110 kt. At this time, the wind speed

Fig. 14. (a) Time evolution of the estimated intensities and best-track intensi-
ties for VSTY Kammuri. (b) Kammuri satellite image at 0000 UTC 29 November
2019. (c) Kammuri satellite image at 0600 UTC 02 December 2019.

was high, the cloud system size was large, and the cloud structure
was relatively sprawling and uniform. Our model could obtain a
good intensity estimation result for the development stage shown
in Fig. 12(c).

2) Overestimation Case: Typhoon Kalmaegi in 2018 was
estimated by the TCICENet with an MAE of 5.40 kt, an RMSE
of 6.87 kt, and a bias of 3.45 kt, as shown in Fig. 13(a). During
the entire life cycle of Kalmaegi, there were a total of 28 satellite
images, and 79% of the TC intensities were overestimated. In
particular, the best tracks corresponding to the satellite images
with wind speeds of 35 kt constituted a high proportion, totaling
12 images, and all of them were overestimated. Fig. 13(b) and
(c) is the infrared satellite images at 1200 UTC November 14,
2019 and 0600 UTC November 18, 2019, respectively. Although
the spiral cloud structure is not obvious, the cloud structure
is compact and the brightness is high, resulting in intensity
overestimation. In Fig. 13(c), the TC is more compact and the
spiral structure is obvious, resulting in intensity overestimation.
In addition, as can be seen from Fig. 13, our method failed to
estimate the rapid intensity changes that occurred in Kalmaegi,
such as a sudden weakening, resulting in overestimation.

3) Underestimation Case: It can be seen from Table VII
that our TCICENet model has estimated bias of -6.20 kt and
-4.66 kt for the intensity of the satellite images in STY and
VSTY, respectively, indicating that the model underestimates
the satellite images at these two stages. The main reason can
be seen from Fig. 6 that 32% of the STYs in the test set were
misclassified to a weaker category (TS+STS).

As show in Fig. 14(a), 31 satellite images of Typhoon Kam-
muri belonging to the STY category were misclassified as the
TS+STS category. This was the main reason for the under-
estimation of Kammuri. For the complete life cycle of it, the
RMSE was 13.52 kt, and approximately 64% of the samples
were underestimated. During the TC formation stage, the wind
speed gradually increased, and the wind speed was continuously
underestimated from 0600 UTC November 27–1200 UTC De-
cember 1, 2019. In particular, during Kammuri’s life cycle, 31%
of the samples had best track wind speeds of 80 kt, of which 92%
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were underestimated. In Fig. 14(b), the satellite image appears
as a cloud cluster with no obvious spiral structure and no eye,
which may also have caused the underestimation. In Fig. 14(c),
the TC image is more compact, the spiral rain band is obvious,
and the eye has begun to appear. The TC wind speed estimated
by the TCICENet model also increased rapidly, as shown in
Fig. 14(a), approaching that of the best track intensity.

VI. CONCLUSION

In this study, TCIC and TCIE cascaded CNN models were
used to construct TCICENet models for TC intensity estimation.
Based on the analysis of the intensity estimation error, the
following conclusions were drawn.

1) There is essentially no significant difference between di-
rect CNN intensity estimation and CNN intensity esti-
mation after intensity classification without considering
the misclassification percent. The classification accuracy
of TC intensity categories had a greater impact on the
final intensity estimation results. In addition, in terms
of the TCICENet model, the intensity estimation error
of the TCICENet-S model was smaller after applying
time-weighted smoothing to the estimated intensities of
the TCICENet model. This indicates that the current TC
intensity is strongly correlated with previous adjacent
intensities.

2) The RMSE and MAE values of the TCICENet model for
the test samples were 9.59 kt and 7.45 kt, respectively.
Compared with the TCICENet model, the intensity es-
timation results of the TCICENet-S model were more
consistent with the best track data of the JMA, as indicated
by the CC of 0.891. The RMSE and MAE of the test
samples were 8.60 kt and 6.67 kt, respectively.

Although the proposed TCICENet model has achieved good
accuracy in the estimation of TC intensity, there is still additional
work to be done in order to further improve its TC intensity
estimation accuracy.

1) We will further expand the training dataset in order to
enhance the generalization ability and robustness of the
TC intensity estimation model. All of the data used in our
intensity estimation model have been from the northwest
Pacific Ocean basin, and best track data have been used
as the reference intensities. Subsequently, we can extend
our model to other basins, such as the Atlantic Ocean, and
use aircraft observations to guide, verify, and improve our
model performance.

2) Next, we will attempt to combine a CNN with along
short-term memory model [49], [50], which can efficiently
extract the temporal features from the adjacent TC satel-
lite images, in order to further improve the TC intensity
estimation accuracy.

3) At present, we only use infrared satellite images for in-
tensity estimation. In the future, we will consider com-
bining other data, such as water vapor channel data and
microwave data, and make full use of the advantages of
various data to improve the performance of the model.

4) Currently, our intensity estimation model does not con-
sider some physical factors, such as vertical wind shear
[51], [52], ocean surface temperature [53], latitude and
longitude of the TC center [36], and TC size [54], even
though they may be important influencing factors for the
rapid change of TC intensity. In the future, the above
physical characteristics will be added to our model in order
to improve its TC intensity estimation performance, and
especially to provide new ideas for investigating sudden
changes of TC intensity.
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