
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021 2017

Spark-Enabled XDraw Viewshed Analysis
Jianbo Zhang , Subin Zhao , and Zhuangzhuang Ye

Abstract—Viewshed analysis is an indispensable part of digital
terrain analysis and widely used in many application domains.
High-resolution raster digital elevation model (DEM) data bring
significant computational challenges to the existing viewshed anal-
ysis algorithms, which are computationally intensive and require a
large memory space and massive computing power. The visibility
calculation can be accelerated using Apache Spark. In this article,
we present a Spark-based parallel computing approach for the
XDraw algorithm, which is composed of a tile-based raster data
storing strategy, an equivolume computing strategy, and a stream-
merging write-back strategy. The parallel implementation of the
XDraw algorithm mainly consists of three parts: partitioning a
raster DEM file into square tile sets and reorganizing these tile sets
to prevent tile overlap across data divisions of Hadoop Distributed
File System, subdividing the DEM into multiple equivolume data
sectors according to the viewpoint position, and performing the
XDraw algorithm on the corresponding tile sets of each sector
independently and writing back the viewshed results efficiently.
Experiments on real-world datasets show that the proposed com-
puting approach can achieve higher speedup and efficiency for
XDraw viewshed analysis as the raster DEM data volume is dra-
matically increased. The results also show that the approach has
also satisfactory scalability as the number of data nodes in clusters
is increased.

Index Terms—Parallel computing, Spark, viewshed analysis,
XDraw.

I. INTRODUCTION

IN RECENT years, Big Earth Data Analytics becomes neces-
sary for applying the rapidly increasing amount of Big Earth

Data [1], [2] to scientific research works and social lives. It can
discover patterns, correlations, principles, knowledge, and other
information for better responding to problems induced by global
and regional changes [3]. Viewshed analysis is a terrain-based
spatial modeling method, which can be performed on digital
elevation models (DEMs) to determine areas visible from one
or multiple specified observation viewpoints. It is a typical case
of Big Earth Data Analytics when dealing with big terrain data.
It has been widely used in scenic path planning [4], military
monitoring [5], locations selection for telecommunication facil-
ities [6], classification of cityscape areas [7], visibility of oceanic
blue space [8], forest practices planning [9], and some other
fields.

Manuscript received November 5, 2020; revised December 19, 2020; accepted
January 7, 2021. Date of publication January 12, 2021; date of current version
February 1, 2021. This work was supported in part by the National Natural
Science Foundation of China under Grant 41871304. (Corresponding author:
Jianbo Zhang.)

The authors are with the School of Geography Information Engineer-
ing, China University of Geosciences, Wuhan 430074, China (e-mail:
zjb_tigers@126.com; lostshy0@163.com; 963372120@qq.com).

Digital Object Identifier 10.1109/JSTARS.2021.3051210

The volume of digital terrain data has reached to an un-
precedented scale with the development of the data collection
techniques (such as LiDAR). For example, the global SRTM1
data with a resolution of one arc-second in latitude and longitude
have 1011 points [10]. However, mature commercial geographic
information system (GIS) software (such as ArcGIS) cannot
perform the viewshed analysis on this huge volume of data due
to its compute-intensive execution. A computing approach to
improve the computational efficiency of the viewshed algorithm
is necessary. Parallel and high-performance computing (HPC)
has persisted as a fundamental challenge for GIS [10]. It shows
tremendous potential in advancing parallel spatial data process-
ing [11]–[14].

The basic calculation procedure of the viewshed analysis is
implemented by a line-of-sight (LoS) algorithm implemented
on a raster DEM data [15], which calculates the visibility of a
specific location through emanating a ray from the viewpoint
to the target. It will cause a lot of repeated calculation if each
ray from the target viewpoint to the grid cell of the DEM is
calculated independently. The existing viewshed algorithms can
be classified into two categories according to whether the inter-
mediate calculation results are reused: nonreusable algorithm
and reusable algorithm.

The nonreusable algorithm is relatively accurate but time
consuming due to repeated calculations. The time complexity of
this algorithm is O(n3), where n is the number of topographic
points of the raster DEM. The R3 algorithm is a typical example
of the nonreusable algorithm [16]. It calculates the visibility of
each target cell by running a separate LOS emanating from the
viewpoint to every target cell on the grid terrain [16]–[19] It is
slow but excellent in accuracy. Although some improved algo-
rithms for the R3 were proposed to improve the computational
efficiency [20]–[22], there is still a problem for processing large
amounts of data.

The reusable algorithm reuses intermediate calculation results
to save the time cost of repeated computations but loss of accu-
racy. The R2 algorithm and the XDraw algorithm are both the
reusable algorithms and run on O(n2) time. The R2 algorithm
belongs to the reusable approximation point method, which re-
duces the complexity by calculating the intersection of the sight
line and the DEM grid boundary by reusing the intermediate
calculation results. It is faster but lower in accuracy [23] despite
some improvements, such as the radarlike algorithm [24]. The
XDraw algorithm belongs to the reusable point-by-point out-
ward method [25]. Instead of performing the LoS calculation
to any given point on the DEM and then progressing to its
neighboring points, it emanates from the observer position on
the DEM and gathers the LoS information, which can reduce

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5381-1024
https://orcid.org/0000-0001-5447-4103
mailto:zjb_tigers@126.com
mailto:lostshy0@163.com
mailto:963372120@qq.com

2018 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

the calculation time compared with the R3 algorithm and gain
better calculation accuracy compared with the R2 algorithm.
Meanwhile, the spatial independency of the XDraw algorithm
makes it possible to optimize the algorithm to attain a high level
of parallelization. Therefore, the XDraw algorithm was chosen
in our implementation.

In the last decade, HPC technology has been used to accelerate
these two category algorithms when massive terrain data are
treated. Most research has focused on the design and parallel
implementation of different viewshed analysis algorithms based
on general-purpose computation on graphics processing units
(GPGPUs) [26]. For the R3 algorithm, it can gain good perfor-
mance improvement through a proper spatial domain decom-
position strategy to achieve efficient I/O management [27], or a
parallel implementation using GPU-based architecture [28]. For
the R2 algorithm, some parallel implementations based on the
CUDA programming framework were presented to obtain better
computing efficiency [29], [30]. For the XDraw algorithm, many
research efforts focused on reducing I/O costs on large datasets,
including the scan-line filling method [31] and the minimum cir-
cumscribed rectangle of polygon method [32]. These efforts also
include improving the parallel efficiency and the computational
accuracy of the algorithm using GPUs [33] and optimizing the
algorithm to improve the computational efficiency for massive
DEM data [34].

In the same period, distributed computing frameworks, such
as Apache Spark, have emerged. Compared with the expensive
GPU clusters, it could organize and utilize currently idle com-
puters to provide cheap and good quality computing service.
Resilient distributed dataset (RDD) of Spark can emulate any
distributed computing, and can give applications control of the
most common bottleneck resources in clusters, such as storage
I/O, which enable RDD to support effective emulation in mostly
situations and to optimize efficiency issues caused by I/O prob-
lems [35]. This is the reason why Spark is rapidly becoming
widely used as a fast and general-purpose cluster computing
framework for large-scale data processing, such as power grid
data [33] or spatial data [36]. Meanwhile, the cloud computing
framework also provides a good solution for raster-based big
data processing [37]–[39]. The research effort on evaluating
the performance of the existing viewshed algorithms on cloud
clusters using Spark has proved the possibility of distributed
geospatial computing [40]. However, little work has been done
to develop a Spark-based parallel computing approach for the
XDraw algorithm to achieve high performance.

This article aims to present a parallel computing approach to
implement the XDraw algorithm using Spark. The implementa-
tion of the XDraw algorithm includes the following three steps.

1) Partitioning a raster DEM file into square tile sets and
reorganizing these tile sets to prevent tile overlap across
data divisions of Hadoop Distributed File System (HDFS).

2) Subdividing the DEM into multiple equivolume data sec-
tors according to the given viewpoint position.

3) Retrieving the corresponding tile sets of each sector to
perform the XDraw algorithm, merging and writing back
the viewshed results.

Fig. 1. Principle of the XDraw algorithm.

The major original contributions of this article include the
following.

1) A tile-based data storing strategy is proposed to solve the
problem of utilizing the HDFS to manage raster data.

2) An equivolume computing strategy for the distributed
framework Spark is designed to achieve parallel accel-
eration for the XDraw algorithm.

3) A stream-merging write-back strategy is introduced to
deal with persistent storage of massive viewshed results.

The remainder of this article is organized as follows. In Sec-
tion II, the XDraw sequential algorithm for viewshed analysis is
illustrated, and both the principle of the three proposed strategies
and the implementation of the parallel algorithm are described
in detail. In Section III, the computational experiments that
are designed to evaluate the performance and the accuracy of
the Spark-based approach are presented. In Section IV, the
experimental results are presented and discussed. Conclusions
and future work are presented in Section V.

II. METHODS

A. XDraw Sequential Algorithm

The basic idea of the XDraw viewshed algorithm is to obtain
the visibility of each grid cell through diffusing out from the ob-
server to its neighboring points and reusing the LoS calculation
results of them. It divides the raster DEM data according to the
eight clockwise directions of north, north-east, east, south-east,
south, south-west, west, and north-west, as shown in Fig. 1.
Given a viewpoint V in the raster DEM, the algorithm takes it as
a center and diffuses outward in eight directions to form an initial
ring. Then, gradually diffuses out and reuses the visibility of
neighboring points to calculate the visibility of each point on the
ring. This computational process continues until the boundary
of the DEM is reached. The specific calculation process of the
algorithm is described as follows.

First, the initial ring R0 (rectangle ABCD) is obtained by
diffusing the viewpoint V outward by a grid cell in eight di-
rections (45◦ octants in each direction). Second, the initial ring

ZHANG et al.: SPARK-ENABLED XDRAW VIEWSHED ANALYSIS 2019

Algorithm 1: XDraw Algorithm.
Input: the raster DEM A, the viewpoint V
Output: the binary raster data B, where the cell value is 1
denotes it is visible

1: get viewpoint information
2: get initial ring based on the viewpoint
3: while the ring is in the DEM do
4: ring ← ring + 1
5: determine the order of the rectangles between the

two rings
6: for each RTi ∈ rectangles(RT) do
7: calculate whether cells in RTi are visible by Line

of visibility
8: if the cell is visible then
9: value← 1

10: else if the cell is not visible then
11: value← −1
12: else
13: value← 0
14: end if
15: end for
16: end while
17: Output the binary raster data

R0 (rectangle ABCD) is diffused outward to get a new ring R1

in eight directions with each step of a grid cell. Then, the ring
R1 is divided into eight 45◦ octants to form rectangles 0–7. The
visibility of points lying in the ring R1 is calculated based on the
visibility of points on the ring R0 and the elevation differences
between the points on the rectangle ABCD and the viewpoint V.
The computing sequence of the rectangles is 0, 1, 2, 3, 4, 5, 6,
and 7. By repeating the calculation steps above, the visibility of
points lying in the Ri+1 can be deduced from the visibility of
points on the ring Ri and the elevation differences of the points
on the ring Ri to the viewpoint V. The algorithm ends when the
boundary of the DEM is reached. More details of the XDraw
algorithm are described as follows.

In the aforementioned steps, steps 1 and 2 generate an initial
ring according to the viewpoint. Steps 3–16 perform the visibil-
ity calculation from the inner ring to the outer ring iteratively
until the boundary of the DEM is reached. Step 17 outputs the
binary visibility data, in which the cell value 1 represents visible,
value −1 represents invisible, and value 0 represents an invalid
value.

By analyzing the implementation of XDraw sequential algo-
rithm, we can find out that: first, the XDraw sequential algorithm
could be accelerated by means of the power of parallel comput-
ing. The eight subrectangles formed in each iterative diffusion
process do not overlap with each other, and their executions
of the viewshed algorithm are independent. Moreover, there
is no data communication and calculation results dependence
when executing. Second, the equiangular data partitioning strat-
egy adopted by the original XDraw algorithm, which could
cause load imbalance during the distributed computing process.
The location of the viewpoint may cause huge differences of the

Fig. 2. Flowchart of the XDraw algorithm on Spark.

data volume in the eight subrectangles. For instance, when the
viewpoint position is not in the central area of the DEM (such as
on the boundary), the data amount of each subrectangle varies
greatly, which could lead to a distinctly different amount of data
allocated to each computing node in the cluster environment.
The resulting load imbalance of the distributed computing will
reduce the efficiency of parallel computing. In order to solve
this problem, this article proposed an equivolume computing
strategy to improve the parallel computing performance of the
Spark-based XDraw algorithm effectively.

B. Principle of Spark-Based Computing Approach

The distributed XDraw algorithm combines a tile-based raster
data storing strategy, an equivolume computing strategy, and a
stream-merging write-back strategy on Spark for a raster DEM
data. First, the DEM data are partitioned into square tile sets
before submitted to HDFS. Second, the DEM data are logically
subdivided into multiple equivolume sectors according to the
position of the viewpoint. Then, the Spark-based XDraw algo-
rithm is performed on each sector and their viewshed results are
saved as multiple separate files. Finally, these files are merged
into an entire file using a write-back strategy. The flowchart of
the proposed implementation of the XDraw algorithm on Spark
is illustrated in Fig. 2.

1) Tile-Based Raster Data Storing Strategy: Hadoop is an
open-source software that could utilize currently idle computers
and storage resource to provide economic and high-quality
computing service. HDFS is suitable for applications with high-
throughput access requirements for large datasets. The reason

2020 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 3. Tile decomposition strategy.

for using HDFS to store raster data is that the data organization of
HDFS is similar to that of raster data. HDFS adapts a data block
as a minimum storage unit. Files are split into a series of fixed
size data blocks (the default block size is 64 MB) distributed over
a cluster of data nodes [41], which take care of replication for
fault tolerance and can minimize addressing overhead. Similarly,
a pyramid-band-tile hierarchical structure is often used for raster
data organization and can help to locate and access data tiles
quickly while performing raster-related analysis [42]. The size of
a tile is typically smaller than that of a data block. Consequently,
multiple raster tiles can be reorganized in the form of byte stream
to fill a 64-MB division, which can further reduce the access time
to raster tiles during spatial analysis calculation.

However, there is an inevitable problem in using HDFS to
store raster data. A HDFS file is divided into 64-MB partitions.
This division method can make a computation requested by an
application be executed near the data it operates on as far as
possible. It helps minimize network congestion and increase
overall system throughput [43]. If raster data are submitted to
HDFS without any treatment, a raster tile may lie across two
divisions on different data nodes of the cluster, which could bring
out additional communication overhead. Therefore, a proper
storing strategy for raster data on HDFS should be carefully
considered.

To address this problem, a storing strategy of HDFS divisions
was proposed [44]. The main idea is to adopt a raster tile (as
opposed to a single pixel) as a minimum process unit during the
distributed computing stage. The storing strategy was designed
to work in following two steps.

1) Partition the raster data into a sequence of tile sets with
equal rows and columns, including auxiliary metadata
information.

2) Improve the data access interface of HDFS to support the
user-defined binary data format, and then submit those tile
sets to data divisions of HDFS to persistent storage.

In step (1), how to determine the size of a raster tile is
essential to solve the problem of across-HDFS division. The
tile decomposition strategy is illustrated in Fig. 3. The raster

Fig. 4. Flowchart of the equal-volume computing strategy.

data are divided into multiple square tiles with a specified tile
size T

T = 2n, 1 ≤ n ≤ log2 min(Row,Col) (1)

where Row and Col denote the row and column numbers of the
raster data, respectively. If the row or column number of a tile is
less than T , the blank area of the tile will be filled with an invalid
value (such as −99 999) to ensure all tiles have the same size.
The tile size should be determined dynamically according to the
volume of raster data. In most commercial GIS software, the
byte length of a raster cell is often multiples or divisors of 4 B.
For instance, in ArcGIS, a pixel consists of 4-B floating point
or integer-type data. Therefore, in this article, 256 was selected
as the size of a raster tile in order to ensure each HDFS division
containing 512 whole raster tiles. The exceptional situation of
one tile across two divisions is thus avoided.

2) Equal-Volume Computing Strategy: The original 45◦

equiangular data partitioning strategy of the XDraw algorithm
could cause load imbalance during the distributed computing
process when the viewpoint lies on the boundary of the DEM.
Therefore, an equivolume computing strategy was proposed to
deal with this problem. The main idea is to adopt an equivolume
condition as a criterion for logical partitioning of the DEM.

A raster DEM with M rows and N columns can be regarded
as a rectangle whose height is M and width is N, which could
be subdivided into multiple equivolume sectors according to the
position of the viewpoint and the preset number of sectors. The
crucial step of the equivolume computing strategy is to determine
the starting point and ending point of each sector. Also, the lower
left corner point of the DEM is regarded as the reference coor-
dinate origin (0,0). The flowchart of the equivolume computing
strategy is illustrated in Fig. 4.

ZHANG et al.: SPARK-ENABLED XDRAW VIEWSHED ANALYSIS 2021

TABLE I
CALCULATION PROCESS OF THE LOCATION OF EACH SECTOR

Fig. 5. Equal-volume partitioning strategy.

The implementation of this strategy includes the following
four steps.

1) Calculate the area of each sector according to metadata
information of the DEM and the preset number of sectors

S = (Row ∗ Col)/N (2)

where Row and Col denote the row and column numbers
of the DEM separately, respectively, and N denotes the
number of sectors.

2) Divide the DEM into four triangles according to the view-
point and the minimum bounding rectangle (MBR) of the
DEM.

3) Calculate the vertex coordinates of each sector polygon.
The calculation starts with line VA and is carried out an-
ticlockwise. The starting point of the next sector polygon
is the ending point of the previous sector polygon, and
the ending point of the last sector polygon is the reference
coordinate origin A.
Specifically, the four basic triangles (triangles VAB, VBC,
VCD, and VDA composed of dotted lines shown in Fig. 5)
generated by Step 2) are the foundation of this calculation
process. The unknown vertices of each sector polygon
are determined by comparing the area of the three basic
triangles (SVAB, SVBC, and SVCD) with the area of the
sector S. According to the location of the sector, the
calculation process can be summarized in Table I.
Here, Ni denotes the number of each sector ranging from
0 to the number of sectors minus one.

4) Generate a metadata information list for each sector. The
MBR of each sector can be calculated according to the
viewpoint coordinate and the vertex coordinates of each
sector polygon. Take as an example, the MBR AEGH of
the sector VAE is obtained by comparing the minimum
and maximum values of its three vertex coordinates. By
repeating the steps above, a metadata information list for
each sector is formed in terms of the following format
described in Table II.

3) Stream-Merging Write-Back Strategy: In addition to data
organization and computation, the persistent storage of the
viewshed results is also an important issue. After each sector
has performed the Spark-based XDraw algorithm, its viewshed
results will be transformed from key-value RDDs to byte array
to save in a separate file, and then these files are merged into a
whole file on HDFS. This work needs to be done by launching a
Spark executor. An executor is responsible for carrying out the
tasks making up the Spark application and returning the results to
a Spark driver. In order to implement the conversion and merging
of viewshed results, each sector must allocate a chunk of memory
of the same size as the product of the rows and columns of
the raster DEM. When the memory space size required by all
sectors exceeds that of the current executor, the executor fails to
deal with massive output viewshed results. Therefore, a proper
write-back strategy on Spark should be concerned.

A stream-merging write-back strategy was proposed to ad-
dress this problem. Its main idea is to first allocate a memory
space with equal size to that of the viewshed results of each
sector, and then calculate the global position of each valid grid
cell relative to the raster DEM and finally write the viewshed
results of each sector into a complete result file on HDFS. There
is a crucial step that needs to be considered in the implementation
of the write-back strategy. The number of a grid cell in a sector
is a local value calculated in terms of the vertex coordinates
of each sector polygon. It should be converted into a global
offset according to metadata information of the sector before its
viewshed results are written to the final result file. The flowchart
of the proposed write-back strategy is illustrated in Fig. 6.

The implementation of this strategy includes the following
four steps.

1) Read the columns of tiles in the DEM and the preset
number of sectors from DEM metadata information.

2) Obtain the MBR from the metadata information of each
sector.

3) Read grid cells in the sector in turn, and calculate the global
offset for each valid cell in the final result file based on the

2022 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE II
METADATA INFORMATION LIST OF THE SECTOR

TABLE III
METADATA INFORMATION

Fig. 6. Flowchart of stream-merging write-back strategy.

following formula:

index = [RectangleStart.Y

+ i/(RectangleEnd.X − RectangleStart.X)]

× TileColNum + [RectangleStart.X

+ i%(RectangleEnd.X − RectangleStart.X)]
(3)

where i denotes the number of a grid cell in a sector,
TileColNum denotes columns of tiles illustrated in Ta-
ble III, and RectangleStart and RectangleEnd denote the
left lower and upper right corner of the sector’s MBR
illustrated in Table II, respectively.

4) Merge and write the viewshed results each sector into a
complete result file on HDFS, and loop till all sectors have
been processed.

C. Algorithm Implementation

1) Partition Algorithm for Raster Data on HDFS: The tile
partitioning algorithm includes the following three steps.

1) Obtain the metadata information of the given raster file,
and calculate the rows and columns of tiles using a prede-
fined tile size (TileSize = 256)

TileRowNum =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

RowNum/TileSize + 1

if (RowNummodTileSize �= 0)

RowNum/TileSize

if (RowNummodTileSize = 0)

(4)

TileColNum =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ColNum/TileSize + 1

if (ColNummodTileSize �= 0)

ColNum/TileSize

if (ColNummodTileSize = 0)

.

(5)

Then, generate a metadata file according to this infor-
mation to provide sufficient information for subsequent
implementations. Table III lists the information of the
metadata file.

2) Partition a raster file into tile sets according to a tile
with 256 rows and 256 columns. Note that the tile size
(256× 256) gives rise to the condition of less than one
tile during the execution of the partition algorithm. It could
be resolved by filling the blank with an invalid value. The
procedure is as follows.

ZHANG et al.: SPARK-ENABLED XDRAW VIEWSHED ANALYSIS 2023

Fig. 7. Partitioning method for georaster.

1) Create a tile dataset file, and partition the raster file in
terms of the method shown in Fig. 7.

2) Calculate the rows and columns of invalid values added

AddRowNum =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TileRowNum ∗ TileSize− RowNum

if (RowNum mod TileSize �= 0)

0

if (RowNum mod TileSize = 0)

(6)

AddColNum =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TileColNum ∗ TileSize− ColNum

if (ColNum mod TileSize �= 0)

0

if (ColNum mod TileSize = 0)

.

(7)

3) For each tile, perform the following steps.
1) If the column number of a tile is less than TileSize,

the blank at the end of each row is filled with an
invalid value set by the number of AddColNum to
form a whole tile.

2) If the row number of a tile is less than TileSize, the
blank at the end of each column is filled with an
invalid value set by the number of AddRowNum to
form a whole tile.

3) Other complete tiles are derived from the raster file
directly.

3) Upload these two files to HDFS. The metadata file is
stored at the master node, whereas the tile dataset file is
distributed throughout all data nodes.

2) Equivolume Computing Algorithm on Spark: In order to
reduce the data transferring overhead during the execution of
the Spark task, the DEM is divided into multiple equivolume
sectors using the proposed strategy described in the part 2 of
Section II-B. More details of the algorithm are described in
Algorithm 2.

In the aforementioned steps, steps 1–3 carry out the equivol-
ume division on the DEM to obtain multiple sectors and their
metadata information list. In Steps 4–17, a series of RDD opera-
tions are performed on each sector to get its RDD〈index, value〉
prepared for the following viewshed algorithm, where index

Algorithm 2: Equal-Volume Computing Algorithm on
Spark.

Input: the tile sets T , the viewpoint V
Output: sector RDD 〈index, value〉

1: get metadata information of DEM and the preset
number of sectors

2: get sectors using the equal-volume computing strategy
3: store the metadata information of all sectors
4: for each Si ∈ sectors(S) do
5: retrieve tiles by MBR of the Si

6: for each Ti ∈ tiles(T) do
7: tile RDD〈index, value〉 ←

binary Records(tile)
8: real RDD〈index, value〉 ← map(tile RDD)
9: end for

10: rectangle RDD〈index, value〉 ←
union(real RDD)

11: for each cell〈index, value〉 ∈ rectangle RDD do
12: if the cell is not in the Si then
13: index← −1, value← invalid value
14: end if
15: end for
16: sector RDD〈index, value〉 ←

rectangleRDD.filter(index > 0)
17: end for
18: Output the sector RDD〈index, value〉

denotes the global index of each grid cell and value denotes
the elevation of the cell. Specially, the map (tile RDD) in step 8
represents the calculation procedure of the global index of each
grid cell.

3) XDraw Algorithm Based on Spark: Each sector performs
the Spark-based XDraw algorithm. The viewshed results of all
sectors are merged using the proposed write-back strategy to
generate the visibility raster data saved in HDFS. More details
of the implementation of the Spark-based XDraw algorithm are
described in Algorithm 3.

In the aforementioned steps, steps 1–23 carry out the XDraw
viewshed algorithm on the RDD of each sector, and save the
sector’s viewshed results as a separate file on HDFS. Steps 24–33
merge and write back the viewshed results of all sectors into a
whole file on HDFS. Step 34 outputs the visibility rater data.

III. EXPERIMENTS AND RESULTS

A. Datasets

The performance and accuracy of the proposed computing
approach in this article were evaluated using the DEM of
Australia.1 To determine the impact of varying the data volume
on the parallel performance, four elevation datasets of different
size were used to test the effectiveness of the proposed approach
via data resampling. Meanwhile, to determine the variation

1[Online]. Available: https://data.gov.au/data/dataset/da926e47-1cd8-4dc9-
b859-cbc18c29d858

https://data.gov.au/data/dataset/da926e47-1cd8-4dc9-b859-cbc18c29d858

2024 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Algorithm 3: Spark-Based XDraw Algorithm.
Input: sector RDD, the viewpoint V
Output: the visibility raster B

1: for each Si RDD ∈ sector RDD(S) do
2: hashmap RDD〈1, hashmap〈index, value〉〉 ←

aggregateByKey (Si RDD)
3: calculate reference coordinates of the viewpoint V
4: get initial ring based on the viewpoint
5: while the ring is in the DEM do
6: ring ← ring + 1
7: determine the order of the rectangles between the

two rings
8: for each RTi ∈ rectangles(RT) do
9: for each cell ∈ RTi do

10: calculate the elevation value of the cell
11: end for
12: calculate whether cells in RTi are visible by the

XDraw algorithm
13: if the cell is visible then
14: value← 1
15: else if the cell is not visible then
16: value← −1
17: else
18: value← 0
19: end if
20: end for
21: end while
22: write the sectors viewshed results to a file
23: end for
24: get metadata information of DEM and the pre-set

number of sectors
25: for each Fi ∈ sector result files(F) do
26: read Fi and get the metadata information list of a

sector
27: for each cell ∈ sector cells(C) do
28: if the cell is visible then
29: calculate the global offset of the cell
30: end if
31: end for
32: Merge and write the sectors viewshed results to the

final file
33: end for
34: Output the visibility raster data

of computation time over different topographic features, three
different kinds of viewpoints were selected for each dataset.
They included a pit, a peak, and a point in flat areas. All dataset
files listed in Table IV were saved in extended GRD format (the
Surfer grid file format of GoldenSoft).

The elevation map of Australia is shown in Fig. 8.

B. Hardware Environment

A computer cluster with two name nodes and eight data nodes
was used as the hardware platform. These nodes are linked by
100-Mb/s Fast Ethernet. There are 57 cores in the compute

Fig. 8. Elevation map of Australia.

nodes of this cluster in all. The CentOS 6.5 operating system,
Hadoop 2.6.0, and JDK 1.7 are used for each computer node.
Meanwhile, a workstation with ArcGIS 10.1 installed was used
to execute the experimental algorithm to compare preprocessing
and calculation time with those of the cluster. It has 1 Intel(R)
Xeon(TM) E3-1225 CPU, 12 GB of memory, and 1 TB of
storage.

C. Experimental Designs

Five experiments were conducted to test the parallel perfor-
mance of the three proposed strategies, which are as follows.
Note that each experiment was repeated five times to obtain
an average computing time. The computing time here refers
to the execution time for running spark tasks, and the data
preprocessing time was also recorded to be compared with it.

1) To investigate the effectiveness of the proposed comput-
ing approach on parallel performance, both the viewshed
analyst tool of ArcGIS on the workstation and the XDraw
algorithm implemented on the cluster were executed using
four datasets and three kinds of viewpoints.

2) To compare the preprocessing time and the calculation
time of ArcGIS with those of the cluster, the respective
time overheads in two environments described in experi-
ment 1) were recorded.

3) To verify the calculation accuracy of the Spark-based
XDraw algorithm, the R3 algorithm implemented on the
workstation was chosen as a reference. The viewshed
analyst tool of ArcGIS on the workstation and the XDraw
algorithm implemented on the cluster were both executed
using four datasets and three kinds of viewpoints.

4) To test the scale-up performance of the proposed approach,
the Spark-based XDraw algorithm was executed using
four datasets and three kinds of viewpoints on two clusters
with four and eight computational nodes, respectively.

5) To examine the effectiveness of the stream-merging write-
back strategy, the Spark-based XDraw algorithm was car-
ried out on four datasets and three kinds of viewpoints by
adopting the strategy or not.

ZHANG et al.: SPARK-ENABLED XDRAW VIEWSHED ANALYSIS 2025

TABLE IV
AUSTRALIA ELEVATION DATASETS

Fig. 9. Viewshed overlapping maps generated by three algorithms. (a) Pit viewpoint. (b) Peak viewpoint. (c) Flat viewpoint.

D. Performance Evaluation

The speedup ratio and accuracy ratio were used to measure
the performance of the proposed approach. The speedup ratio is
defined as the ratio between the computing time of the viewshed
analysis executed not on the cluster and that of implemented on
the cluster. Its equation is as follows:

S =
Tnot on cluster

Ton cluster
(8)

where S is the speedup ratio, Tnot on cluster is the computing time
of the viewshed algorithm not on the cluster, and Ton cluster is
the computing time of the viewshed algorithm adopting the
proposed strategies on the cluster.

The accuracy ratio is defined as the ratio between the numbers
of visible grid cells calculated by not using the R3 algorithm and
those of using the R3 algorithm. Its equation is as follows:

AR =
Nnot using R3

Nusing R3
(9)

where AR is the accuracy ratio,Nusing R3 is the numbers of visible
cells of the R3 algorithm, and Nnot using R3 is the numbers of
visible cells calculated by other algorithms (ArcGIS or XDraw).

E. Results

The viewshed overlapping maps are shown in Fig. 9, which
employs the R3, and the Spark-based XDraw and the ArcGIS
algorithm implemented on the same dataset Grid3 and three
different viewpoints. When computing such a large dataset as
Grid4, the viewshed analyst tool of ArcGIS fails to obtain the
viewshed results. Detailed experimental results and discussions
are shown in Section IV.

IV. DISCUSSIONS

For all five experiments in this section, 256× 256 is selected
as the tile size. Except for the experiment shown in scale-up
performance of the approach, which uses 4 and 8 computational
nodes for comparative experiments, the other four experiments
use eight computational nodes.

A. Effectiveness of the Approach on Parallel Performance

The computing performance results shown in Fig. 10 and
Table V indicate that the computational efficiency of the Spark-
based XDraw algorithm is improved significantly as the amount
of data increases. First, the use of the proposed tile-based storing
strategy has a compounded influence on the acceleration of
the XDraw algorithm because the basic unit of storage and
computation is a raster tile rather than a grid cell. This approach
is more suitable for coarse-grained data access requirements and
computing characteristics of the distributed framework Spark.
Second, the influence of the amount of data on the performance
of the algorithm cannot be ignored. A larger amount of input
data corresponds to a higher potential speedup. This is due to
the time cost in job initialization for the distributed framework
occupies a high percentage of the overall computing time when
the data size is relatively small. The initialization work includes
allocating CPU, memory, and other resources for each container
before the task is started. Finally, the position of the viewpoint
on the terrain directly affects the performance of the algorithm.
In this experiment, when the viewpoint is a pit, the execution
time of the XDraw algorithm is fewest under the conditions of
three kinds of viewpoints. By contrast, when the viewpoint is
a peak, the execution time of the algorithm is longer than that
of the two other kinds. This is because the XDraw algorithm
is based on the LoS algorithm and diffuses outward based on
the visibility of adjacent points around the viewport. When the
viewpoint is a pit, the visible areas are relatively small and the

2026 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 10. Comparisons of the execution time of ArcGIS and the XDraw algorithm. (a) Pit viewpoint. (b) Peak viewpoint. (c) Flat viewpoint.

TABLE V
RESULTS OF THE COMPUTING TIME AND SPEEDUP RATIOS OF ARCGIS AND XDRAW (TIME UNIT: MIN)

TABLE VI
TIME COMPARISON OF THE PREPROCESSING AND CALCULATION (TIME UNIT: MIN)

computational overhead is less. Instead, the visible areas are
relatively large when the viewpoint is a peak, which increases
the computational overhead as a result.

B. Time Comparison of the Preprocessing and Calculation

The time spent on preprocessing cannot be ignored either in
a single machine environment or under a Hadoop cluster. In this
experiment, the main jobs of preprocessing in ArcGIS include
reading from HDD, partitioning data into blocks, performing
pixel statistics, and compressing data. In contrast, the main job
of the proposed storing strategy is to partition a raster file with
Surfer grid file format into tile sets, and submit them to HDFS.
The time-consuming results shown in Table VI indicate that
with the increase of the amount of data, the preprocessing time

of ArcGIS is nearing one-third of the entire calculation time in
a single computer environment, and is much longer than that of
the cluster. Instead, the time cost of tile partitioning is only a
small portion of the computing time when using the proposed
strategy under Hadoop. Although the preprocessing time is not
short, this process only needs to be done once. Once multiple
input raster data layers have been preprocessed, they can be
manipulated repeatedly with diverse terrain analysis algorithms,
and the performance improvement is obvious.

C. Accuracy Comparison of Algorithms

In the experiment, the R3 algorithm was selected as a ref-
erence because of its superior accuracy. The R3 algorithm
calculates the visibility of each grid cell by running a separate

ZHANG et al.: SPARK-ENABLED XDRAW VIEWSHED ANALYSIS 2027

TABLE VII
NUMBERS OF VISIBLE GRID CELLS OF THREE ALGORITHMS

Fig. 11. Comparisons of the execution time of different number of computational nodes. (a) Pit viewpoint. (b) Peak viewpoint. (c) Flat viewpoint.

LoS emanating from the viewport to every grid cell on the raster
DEM. Similarly, the R3 algorithm fails to work when dealing
with dataset Grid4. In Table VII, the accuracy ratios of ArcGIS
and the XDraw algorithm are calculated by using the numbers
of visible grid cells of the R3 algorithm as a benchmark.

The accuracy ratio results listed in Table VII show that overall
computational accuracy of the Spark-based XDraw algorithm is
relatively higher than that of ArcGIS implemented on the first
three datasets. Furthermore, the position of the viewpoint on the
terrain has a direct influence on the accuracy of the calculation.
When the viewpoint is a pit, the accuracy of ArcGIS is the
lowest under the conditions of three kinds of viewpoints, and the
accuracy of the XDraw algorithm is the highest. The accuracy
of the XDraw algorithm is 4.3% higher than that of ArcGIS
on the whole. By contrast, when the viewpoint is a peak, the
accuracy of the XDraw algorithm is the lowest among the three
conditions, and that of ArcGIS is the highest. In this case, the
accuracy of the XDraw algorithm is only 1.8% higher than that
of ArcGIS. This is due to the principle and implementation of
the XDraw algorithm. When the viewpoint is a pit, the invisible
areas are relatively large and errors caused by the algorithm are
reduced accordingly. Instead, the invisible areas are relatively
small when the viewpoint is a peak, which leads to errors in the
algorithm increasing as a result.

D. Scale-Up Performance of the Approach

In this experiment, the Spark-based XDraw algorithm was
carried out under the condition that the number of computational
nodes is four and eight, respectively, due to the constraints

of the cluster hardware environment, also using four datasets
and three kinds of viewpoints. In Fig. 11, the horizontal axis
represents four datasets of different size, and the two broken lines
represent the number of computational nodes. The execution
time results in Fig. 11 and Table VIII indicate that the proposed
computing approach exhibits satisfactory scalability on Hadoop
clusters. The computing time decreases stably as the number of
computational nodes increases. It is because additional nodes
improve task parallelism and distribute the raster tile sets more
evenly on these nodes, which contribute to computation near
storage under Spark.

E. Effectiveness of the Stream-Merging Write-Back Strategy

The computing performance results shown in Table IX in-
dicate that the acceleration of XDraw algorithm under Spark
also derives a lot of benefit from the use of stream-merging
write-back strategy. First, the implementation based on the
proposed strategy writes the viewshed results of each sector
to multiple small files and then merge them into a large file.
Compared with the conventional method that needs allocating
a large memory space according to the rows and columns of
the raster DEM, the write-back strategy has obvious advantages
in processing big data. Second, a larger amount of output data
corresponds to a higher potential speedup. It is because the time
cost of job initialization and information exchange occupies a
high percentage of the overall write-back time when the data
size is relatively small. As the amount of data increases, the
parallel efficiency employing the write-back method is improved
significantly.

2028 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE VIII
TIME COMPARISON OF DIFFERENT NUMBER OF COMPUTATIONAL NODES (TIME UNIT: MIN)

TABLE IX
RESULTS OF THE COMPUTING TIME AND SPEEDUP RATIOS (TIME UNIT: MIN)

V. CONCLUSION

Viewshed analysis plays an important role in the study of the
digital terrain model. Its execution process can become compu-
tationally intensive as data size increases. The XDraw algorithm
can achieve desirable computing performance for analyzing
large terrain datasets by exploiting the distributed computing
capability of Apache Spark. In this article, we presented a
Spark-based parallel computing approach for the XDraw al-
gorithm, which integrated a tile-based raster data storing strat-
egy, an equivolume computing strategy, and a stream-merging
write-back strategy. First, the basic idea of the proposed tile-
based storing strategy is to take a raster tile as the minimum
process unit during the calculation phases to reduce the data
transferring overhead of the distributed computation. Second,
the equivolume computing strategy is beneficial for achieving
efficient load balancing to improve the parallel performance of
the viewshed analysis. Finally, the proposed write-back strategy
contributes to deal with persistent storage of massive viewshed
results. The experimental results showed that the Spark-based
XDraw algorithm dramatically reduced the computing time and
achieved satisfactory speedups, and it had higher computational
efficiency and accuracy than the commercial GIS software.

In future work, we will plan to collect additional high-
resolution data and conduct assessment of the proposed com-
puting approach using real-world geospatial applications. Then,
we will conduct the experiment in a cluster, which is composed
of better configured computational nodes. Furthermore, through
the experiment, we found that the overhead of the I/O operation
of the viewshed analysis was much higher than that of the
calculation. We will also investigate how to further optimize our
strategies to gain higher efficiency and accuracy. In addition,

whether the proposed computing approach has a suitable adapt-
ability to other global operators of map algebra, such as surface
or hydrologic analysis, would be verified through follow-up
experiments. The last but not the least, the experimental com-
parison with the GPU-based implementation was not presented
in this article because of the huge differences between the two
computational frameworks (Spark and GPGPU) in the princi-
ple and implementation methods. On the other hand, existing
geodistributed computing frameworks presented in the literature
(such as Hadoop-GIS, Spatial Hadoop, Spatial Spark, GeoSpark,
and STARK) rarely involve the georaster analysis. We will
continue to search for some suitable georaster computational
frameworks and conduct quantitative comparisons with them.

V. ACKNOWLEDGMENT

The authors would like to thank D. Xia and Y. Li from the
China University of Geosciences for their earlier research work.

REFERENCES

[1] H. Guo, Z. Liu, H. Jiang, C. Wang, J. Liu, and D. Liang, “Big Earth Data:
A new challenge and opportunity for digital earth’s development,” Int. J.
Digit. Earth, vol. 10, no. 1, pp. 1–12, 2017.

[2] M. Sudmanns et al., “Big Earth Data: Disruptive changes in earth obser-
vation data management and analysis?,” Int. J. Digit. Earth, vol. 13, no. 7,
pp. 832–850, 2020.

[3] S. Bhattacharyya and D. Ivanova, “Scientific computing and big data
analytics: Application in climate science,” in Distributed Computing in
Big Data Analytics. Berlin, Germany: Springer, 2017, pp. 95–106.

[4] J. L. D. Stucky, “On applying viewshed analysis for determining least-cost
paths on digital elevation models,” Int. J. Geograph. Inf. Sci., vol. 12, no. 8,
pp. 891–905, 1998.

[5] M. V. Andrade, S. V. Magalhaes, M. A. Magalhaes, W. R. Franklin,
and B. M. Cutler, “Efficient viewshed computation on terrain in external
memory,” Geoinformatica, vol. 15, no. 2, pp. 381–397, 2011.

ZHANG et al.: SPARK-ENABLED XDRAW VIEWSHED ANALYSIS 2029

[6] J. Łubczonek, W. Kazimierski, and M. Pałczyński, “Planning of combined
system of radars and CCTV cameras for inland waterways surveillance by
using various methods of visibility analyses,” in Proc. 12th Int. Radar
Symp., 2011, pp. 731–736.

[7] K. Czyńska and P. Rubinowicz, “Classification of cityscape areas accord-
ing to landmarks visibility analysis,” Environ. Impact Assessment Rev.,
vol. 76, pp. 47–60, 2019.

[8] Y. Qiang, S. Shen, and Q. Chen, “Visibility analysis of oceanic blue space
using digital elevation models,” Landscape Urban Planning, vol. 181,
pp. 92–102, 2019.

[9] K. Y. Lee, J. I. Seo, K.-N. Kim, Y. Lee, H. Kweon, and J. Kim, “Application
of viewshed and spatial aesthetic analyses to forest practices for mountain
scenery improvement in the Republic of Korea,” Sustainability, vol. 11,
no. 9, 2019, Art. no. 2687.

[10] “The shuttle radar topography mission (SRTM) collection user guide,”
2015. Accessed: Mar. 2020. [Online]. Available: https://lpdaac.usgs.gov/
documents/179/SRTM_User_Guide_V3.pdf

[11] E. Shook et al., “Parallel cartographic modeling: A methodology for
parallelizing spatial data processing,” Int. J. Geograph. Inf. Sci., vol. 30,
no. 12, pp. 2355–2376, 2016.

[12] Q. Guan and K. C. Clarke, “A general-purpose parallel raster processing
programming library test application using a geographic cellular automata
model,” Int. J. Geograph. Inf. Sci., vol. 24, no. 5, pp. 695–722, 2010.

[13] C. Yang, R. Raskin, M. Goodchild, and M. Gahegan, “Geospatial cyber-
infrastructure: Past, present and future,” Comput., Environ. Urban Syst.,
vol. 34, no. 4, pp. 264–277, 2010.

[14] T. Cheng, J. Haworth, and E. Manley, “Advances in geocomputation
(1996–2011),” Comput., Environ., Urban Syst., vol. 36, no. 6, pp. 481–487,
2012.

[15] L. De Floriani, P. Marzano, and E. Puppo, “Line-of-sight communication
on terrain models,” Int. J. Geograph. Inf. Syst., vol. 8, no. 4, pp. 329–342,
1994.

[16] W. R. Franklin and C. Ray, “Higher isn’t necessarily better: Visibility
algorithms and experiments,” in Proc. Adv. GIS Res., 6th Int. Symp. Spatial
Data Handling, 1994, vol. 2, pp. 751–770.

[17] M. Van Kreveld, “Variations on sweep algorithms: Efficient computation
of extended viewsheds and class intervals,” in Proc. 7th Int. Symp. Spatial
Data Handling, 1996, pp. 13–15.

[18] A. Shapira, “Visibility and terrain labeling,” Ph.D. dissertation, Dept.
Elect., Comput., Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA,
May. 1990.

[19] D. Izraelevitz, “A fast algorithm for approximate viewshed computa-
tion,” Photogrammetric Eng. Remote Sens., vol. 69, no. 7, pp. 767–774,
2003.

[20] J. Wang, G. J. Robinson, and K. White, “A fast solution to local viewshed
computation using grid-based digital elevation models,” Photogrammetric
Eng. Remote Sens., vol. 62, no. 10, pp. 1157–1164, 1996.

[21] H. Wu, M. Pan, L. Yao, and B. Luo, “A partition-based serial algorithm
for generating viewshed on massive DEMs,” Int. J. Geograph. Inf. Sci.,
vol. 21, no. 9, pp. 955–964, 2007.

[22] Y. Zhi, L. Wu, Z. Sui, and H. Cai, “An improved algorithm for computing
viewshed based on reference planes,” in Proc. 19th Int. Conf. Geoinformat.,
2011, pp. 1–5.

[23] J. Yu, J. Wu, and M. Sarwat, “GeoSpark: A cluster computing framework
for processing large-scale spatial data,” in Proc. 23rd SIGSPATIAL Int.
Conf. Adv. Geograph. Inf. Syst., 2015, pp. 1–4.

[24] M. V. Larsen, “Viewshed algorithms for strategic positioning of vehicles,”
Master’s thesis, Norwegian Defence Res. Establishment (FFI). Univ. Oslo,
Oslo, Norway, 2015.

[25] Z. Xu and Q. Yao, “A novel algorithm for viewshed based on digital
elevation model,” in Proc. Asia-Pacific Conf. Inf. Process., 2009, vol. 2,
pp. 294–297.

[26] T. Axell and M. Fridén, “Comparison between GPU and parallel CPU
optimizations in viewshed analysis,” Master’s thesis, Dept. Comput. Sci.
Eng., Chalmers Univ. Technol., Gothenburg, Sweden, 2015.

[27] Y. Zhao, A. Padmanabhan, and S. Wang, “A parallel computing approach
to viewshed analysis of large terrain data using graphics processing units,”
Int. J. Geograph. Inf. Sci., vol. 27, no. 2, pp. 363–384, 2013.

[28] N. Stojanović and D. Stojanović, “Performance improvement of viewshed
analysis using GPU,” in Proc. 11th Int. Conf. Telecommun. Modern Satell.,
Cable Broadcast. Serv., 2013, vol. 2, pp. 397–400.

[29] L. Toma, “Viewsheds on terrains in external memory,” SIGSPATIAL Spe-
cial, vol. 4, no. 2, pp. 13–17, 2012.

[30] A. Osterman, L. Benedičič, and P. Ritoša, “An IO-efficient parallel imple-
mentation of an R2 viewshed algorithm for large terrain maps on a CUDA
GPU,” Int. J. Geograph. Inf. Sci., vol. 28, no. 11, pp. 2304–2327, 2014.

[31] X. Song, G. Tang, X. Liu, W. Dou, and F. Li, “Parallel viewshed analysis on
a PC cluster system using triple-based irregular partition scheme,” Earth
Sci. Informat., vol. 9, no. 4, pp. 511–523, 2016.

[32] J. C. C. Bravo, T. Sarjakoski, and J. Westerholm, “Efficient implementation
of a fast viewshed algorithm on SIMD architectures,” in Proc. 23rd
Euromicro Int. Conf. Parallel, Distrib., and Netw.-Based Process., 2015,
pp. 199–202.

[33] A. J. Cauchi-Saunders and I. J. Lewis, “GPU enabled XDraw viewshed
analysis,” J. Parallel Distrib. Comput., vol. 84, pp. 87–93, 2015.

[34] K. Mills, G. Fox, and R. Heimbach, “Implementing an intervisibility
analysis model on a parallel computing system,” Comput. Geosci., vol. 18,
no. 8, pp. 1047–1054, 1992.

[35] M. Zaharia et al., “Apache Spark: A unified engine for big data processing,”
Commun. ACM, vol. 59, no. 11, pp. 56–65, 2016.

[36] R. Shyam, B. G. HB, S. Kumar, P. Poornachandran, and K. Soman,
“Apache spark a big data analytics platform for smart grid,” Procedia
Technol., vol. 21, pp. 171–178, 2015.

[37] D. Lunga, J. Gerrand, L. Yang, C. Layton, and R. Stewart, “Apache
Spark accelerated deep learning inference for large scale satellite image
analytics,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13,
pp. 271–283, Jan. 2020.

[38] J. Sun et al., “An efficient and scalable framework for processing remotely
sensed big data in cloud computing environments,” IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 7, pp. 4294–4308, Jul. 2019.

[39] Z. Wu et al., “Scheduling-guided automatic processing of massive hy-
perspectral image classification on cloud computing architectures,” IEEE
Trans. Cybern., to be published, doi: 10.1109/TCYB.2020.3026673.

[40] E. Johansson and J. Lundberg, “Distributed viewshed analysis an eval-
uation of distribution frameworks for geospatial information systems,”
Master’s thesis, Dept. Comput. Sci. Eng., Chalmers Univ. Technol.,
Gothenburg, Sweden, 2016.

[41] Y. Wang and S. Wang, “Research and implementation on spatial data
storage and operation based on Hadoop platform,” in Proc. 2nd IITA Int.
Conf. Geosci. Remote Sens., 2010, vol. 2, pp. 275–278.

[42] S. Ladra, J. R. Paramá, and F. Silva-Coira, “Scalable and queryable com-
pressed storage structure for raster data,” Inf. Syst., vol. 72, pp. 179–204,
2017.

[43] D. Borthakur, “The Hadoop Distributed File System: Architecture and
design,” Hadoop Project Website, vol. 11, 2007, Art. no. 21.

[44] J. Zhang, S. Zhou, T. Liang, Y. Li, C. Chen, and H. Xia, “A two-level stor-
age strategy for map-reduce enabled computation of local map algebra,”
Earth Sci. Informat., vol. 13, pp. 479–492, 2020.

Jianbo Zhang received the Ph.D. degree in cartogra-
phy and geographical information engineering from
the China University of Geosciences, Wuhan, China,
in 2006.

He is currently an Associate Professor with
the School of Geography Information Engineering,
China University of Geosciences. His research inter-
ests include high-performance geocomputation and
spatiotemporal analytics, and big data mining.

Subin Zhao received the B.E. degree in software en-
gineering from the China University of Geosciences,
Wuhan, China, in 2018, where she is currently work-
ing toward the master’s degree in major of software
engineering.

Her current research interests include spatial online
analytical processing and big data mining.

Zhuangzhuang Ye received the B.E. degree in in-
formation engineering from the China University of
Geosciences, Wuhan, China, in 2019, where he is
currently working toward the master’s degree in major
of software engineering.

His current research interest includes geocompu-
tation.

https://lpdaac.usgs.gov/documents/179/SRTM_User_Guide_V3.pdf
https://dx.doi.org/10.1109/TCYB.2020.3026673

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

