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Decomposition Model With Background Dictionary
Learning for Hyperspectral Target Detection
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Abstract—Representation-based target detectors for hyperspec-
tral imagery have attracted considerable attention in recent years.
However, their detection performance is still unsatisfactory due
to the independent manner of the recovery process on each test
pixel. Moreover, the background dictionary generated through the
dual windows is susceptible to target contamination. Aiming to
address these issues, in this article, we propose a decomposition
model (DM) with background dictionary learning (BDL) for hy-
perspectral target detection. The observed data are decomposed
into three parts: background, target, and noise. The background
and target dictionaries are utilized to represent the background and
target components, respectively. In order to achieve a satisfactory
recovery of the background and target components, the proposed
DM exploits the spatial smoothness of background pixels and the
scarcity of the targets of interest in the whole scene via the total
variation and the sparsity, respectively. Then, the separated target
image is directly used for the detection purpose. Furthermore, a
novel BDL method based on the locality-constrained linear coding
is presented, and a complete and compact background dictionary
can be learned with a low computational cost. Meanwhile, the
a priori target dictionary is also incorporated into the learning
process in order to suppress the contamination of the target sig-
nal on the learned background spectra. Extensive experiments on
both simulated and real hyperspectral datasets demonstrate the
superiority of the proposed detector in comparison with several
conventional and state-of-the-art target detectors.

Index Terms—Background dictionary learning (BDL),
hyperspectral imagery, locality-constrained linear coding (LLC),
target detection, total variation (TV).

I. INTRODUCTION

HYPERSPECTRAL imaging sensors capture the data from
the ground surface with hundreds of narrow bands, and

each pixel is characterized by a nearly contiguous spectral curve
[1]. Since all materials reflect electromagnetic energy at specific
wavelengths in distinctive patterns [2], the hyperspectral im-
agery with a fine spectral resolution is suitable for discriminating
substances with subtle spectral differences [3] and has proven
valuable in several applications, such as target detection and
classification.
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The objective of target detection is to determine whether a spe-
cific material is present in the scene on the condition of a known
target spectral signature. When the prior target information is
unavailable, the anomaly detection is applied with the goal of
searching for abnormal objects with different spectral features
from the natural background [3]. Generally speaking, with the
information of the targets of interest being provided, target detec-
tion (supervised) can achieve more accurate result than anomaly
detection (unsupervised). Target detection has been widely used
in various fields [4]–[6], for instance, detecting aircraft for the
purpose of search and rescue, land mines for defense and public
safety, and man-made objects in reconnaissance. In this article,
we focus on the target detection problem.

Theoretically, target detection can be considered as a binary
hypothesis testing problem where each test pixel is labeled as a
target (target present) or background (target absent) [2]. Over the
past decades, a number of classical target detection approaches
have emerged and they roughly fall into two categories, i.e.,
statistical or subspace-based, according to their ways to describe
the spectral variability [2]. In the statistical techniques, the
target and background spectra are assumed to follow specific
distributions, e.g., multivariate normal distribution. The spectral
matched filter (SMF) [7], [8] assumes that the target and back-
ground both follow the Gaussian distributions with the same co-
variance matrix but differ in their mean vectors. The constrained
energy minimization (CEM) [9] designs a finite-impulse filter
that highlights the response of targets and suppresses that of the
background signal. The formulation of CEM is equivalent to that
of SMF when the mean of the observed data is removed before-
hand in SMF [10]. The adaptive coherence/cosine estimator [11]
considers a scaled background covariance matrix in the case of
a subpixel target. However, the performance of these statistical
detectors is usually unsatisfactory since specific assumptions
on the distributions of the background and target spectra are
frequently violated in real hyperspectral data. Subspace-based
approaches consider that the background pixels or targets lie
in a low-dimensional subspace. The representative algorithms
include the orthogonal subspace projection [12] and matched
subspace detector (MSD) [13]. Unfortunately, the columns in the
background and target subspaces are required to be independent
in order to generate the projection operators, which limits their
generalization capability.

In recent years, representation-based target detectors without
any explicit assumptions on the statistical distribution of the
observed data have received extensive attention. The sparsity-
based target detector (STD) [14] models each test pixel as a
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linear combination of few atoms from both the target and back-
ground dictionaries, and the recovered sparse representation
is used for detection. Considering the correlations of pixels
in a small neighborhood, a joint sparse representation-based
detector [15] is proposed. Another detector named the spatially
adaptive STD [16] is established in a similar way where different
weights are assigned for neighboring pixels in heterogeneous
areas. Moreover, in order to incorporate the class information
of the training samples in the recovery process, several de-
tectors are developed based on the binary hypothesis model.
The sparse representation-based binary hypothesis (SRBBH)
detector [17] utilizes the background-only training samples to
represent the test pixel when the target is absent and both target
and background ones to approximate the test pixel when the
target is present. In the target detector by combining the sparse
and collaborative representation (CSCR) [18], each test pixel
is sparsely represented by target-only training samples or col-
laboratively represented by background-only training samples.
However, there are two main problems with the aforementioned
representation-based detectors. First, the recovery process is
performed in an independent manner for each test pixel. Undesir-
able conditions may occur without exploiting the relationships of
background pixels and targets in the whole scene due to the com-
plexity of hyperspectral data caused by the inherent variability
of spectral signatures. Second, the background training samples
are generated locally through dual windows centered at the test
pixel. However, it is not easy to set the appropriate window sizes
and the obtained background dictionary is susceptible to target
contamination, especially when the targets are of irregular shape
and distribute closely to each other.

More recently, some efforts have been devoted to addressing
the above-mentioned problems to some extent. In the anomaly
detection task, several commonly used properties about the
background pixels (low rank or spatially smooth) and anomalous
targets (sparse) [19], [20] have also been applied in the target
detection problem [21], in which a detector based on the sparse
and low-rank matrix decomposition (SLRMD) of the observed
data is established. However, the recovery of background is still
unsatisfactory without the use of an appropriate background
dictionary [22]. For the second issue, some approaches consider
designing an overcomplete background dictionary through the
k-means clustering [23], [24]. In order to achieve a satisfactory
representation of the background part, the background dictio-
nary is expected to cover all the ground materials in the scene,
i.e., the dictionary is complete. However, some background
classes cannot be represented well with an undercomplete back-
ground dictionary if the cluster number is underestimated. An-
other approach, namely, dictionary learning [25]–[32], alternates
between the sparse coding of the samples based on the current
dictionary and the update of dictionary atoms to better fit the
observed data. The learned dictionary that comprises the whole
scene is complete and compact. Nevertheless, these learning
algorithms require to solve an �1-norm minimization problem,
which has a high computational cost. Besides, the target spec-
trum may be also learned in the background dictionary.

In this article, we propose a decomposition model (DM) with
background dictionary learning (BDL) for hyperspectral target
detection. By using DM, the observed data are decomposed into

three parts: background, target, and noise. The background and
target dictionaries are utilized to represent the background and
target components, respectively. Since the background is dom-
inant and spatially homogeneous, while the targets of interest
are sparsely populated in the scene, two constraints, i.e., total
variation (TV) and the sparsity are imposed on the representa-
tion coefficient matrices to constrain the background and target
components, respectively. With the relationships regarding the
background pixels and targets in the whole scene being taken
into account, a satisfactory decomposition is expected to be
achieved. After that, the separated target component is directly
used to detect the targets. Moreover, we also present a novel BDL
method based on locality-constrained linear coding (LLC) [33]
to learn a complete and compact background dictionary. The
locality is more essential than sparsity since locality must lead
to sparsity but the reverse does not always hold [34]. Compared
with sparse coding, LLC just requires to solve an �2-norm
minimization problem, which is time-saving. Moreover, in order
to reduce the contamination of the target signal on the learned
background dictionary, we also incorporate the a priori target
dictionary into the learning process, and each pixel is encoded
over the union dictionary that is composed of the background
and target dictionaries. Only the coded vector corresponding
to the background dictionary is used to update the background
dictionary while the target dictionary is fixed. In this way, the
purity of the learned background dictionary can be guaranteed.

The main contributions of this article can be briefly summa-
rized as follows.

1) Based on the basic model by which the observed data
are decomposed into the background, target, and noise
components, the proposed DM exploits the relationships
about the background pixels and targets of interest in the
scene via the TV and sparsity regularizers, respectively,
in order to achieve a satisfactory decomposition, and then
the recovered target component is directly employed to
perform the target detection.

2) The BDL method based on LLC is proposed. Since the
locality can lead to the sparsity and the LLC just requires
to solve the �2-norm minimization problem, which can
be implemented very fast in practice. This efficiency
augments the practicability of the proposed method in
real applications. Moreover, the a priori target dictionary
is also incorporated into the learning process to reduce
the interference of the target signal and ensure that the
learned background dictionary does not contain the target
spectrum.

The rest of this article is arranged as follows. The pro-
posed method for hyperspectral target detection is elaborated in
Section II, including the BDL method and the DM. In Section III,
both the simulated and real data experiments are conducted,
and the corresponding experimental results are reported and
analyzed. Finally, the conclusion is included in Section IV.

II. PROPOSED METHOD

In this section, we first present a BDL method based on LLC
to learn a complete, compact, and pure background dictionary.
Then, given the learned background dictionary and a priori
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Fig. 1. Schematic flowchart of the proposed DM-BDL for hyperspectral target detection.

target dictionary, the DM is proposed to decompose the hy-
perspectral imagery into background, target, and noise images.
Finally, the detection is accomplished based on the separated tar-
get image. Fig. 1 shows the schematic flowchart of the proposed
DM-BDL for hyperspectral target detection. In what follows,
each part of the proposed method will be introduced in detail.

A. BDL Based on LLC

Suppose that a resized hyperspectral data with n pixels and
d spectral bands can be expressed as Y = {yi}ni=1 ∈ Rd×n, in
which each column stands for a pixel vector. Given the observed
data Y and background dictionary B = [b1,b2, . . . ,bm] ∈
Rd×m with m atoms, the sparse coding [26] aims to use as few
atoms as possible to approximate the data well. The optimization
problem of sparse coding can be written as

min
B,{xi}

n∑
i=1

‖yi −Bxi‖22 + γ‖xi‖1 (1)

where xi ∈ Rm×1 is the coded vector, the �1-norm is the
sparsity-inducing penalty, and γ is a scalar parameter trading off
between the residual and the sparsity. The optimal dictionary B
for sparse coding can be learned iteratively by solving the coded
vectors {xi}ni=1 given the current dictionary and updating the
dictionary B according to the following learning rule:

B← B+ η
〈
(yi −Bxi)x

T
i

〉
(2)

where η is the step length and 〈 · 〉 stands for the average
over all the pixels. After the learning step in each iteration,
the dictionary atoms are renormalized to have a unit norm to
avoid the trivial solution. The learned spectra can gradually
match the spectra of endmembers in the scene with a slowly
diminishing step length η [26]. However, as mentioned in [28],
this method is computationally expensive since it requires to
solve the �1-norm minimization problem. Besides, the learned
background dictionary may contain the target spectrum.

Aiming to solve these issues straightly, in the following, we
present a novel BDL method based on LLC. To be specific, the

LLC solves the �2-norm minimization problem [33] as

min
x
‖y −Bx‖22 + γ ‖s� x‖22 (3)

where� denotes the Hadamard product, i.e., elementwise prod-
uct, and s ∈ Rm×1 is the locality adaptor [33] that measures
the similarity between the test pixel and each dictionary atom.
Here, the Euclidean distance is utilized to calculate the locality
adaptor

s = [‖y − b1‖2, . . . , ‖y − bm‖2]T . (4)

Intuitively, if si (the ith element of s) is small, which means
that the ith atom in B is similar to the pixel vector, and then
the corresponding coefficient is allowed to be large. For the
atoms that are different from the test pixel, the corresponding
coefficients will be enforced to be small. As a result, the locality
can lead to sparsity since the coded vector x is sparse in the
sense that there are only few elements with significant values.
The solution to (3) has an analytical form as

x =
(
BTB+ γ diag

(
s2
))−1

BTy (5)

where diag(s2) returns a square matrix with the elements of s2

on the diagonal. An important advantage of LLC over sparse
coding is that it can be executed very fast in practice. Ad-
ditionally, in the sparse coding process, quite different atoms
might be selected to represent similar pixel vectors for favoring
sparsity [33]. However, the locality adaptor in LLC explicitly
enforces similar coded vectors for the similar test pixels, and
thus, preserving the correlations between the coded vectors.

Furthermore, in order to avoid the target spectrum being
learned in the background dictionary, we incorporate the a priori
target dictionary T = [t1, t2, . . . , tq] ∈ Rd×q that is composed
of q available target spectra into the learning process. The union
dictionary containing the background and target dictionaries is
then utilized to represent the test pixel

min
x,z

∥∥∥∥y − [BT]

[
x
z

]∥∥∥∥
2

2

+ γ

∥∥∥∥s�
[
x
z

]∥∥∥∥
2

2

(6)
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Algorithm 1: BDL Based on LLC.

Input: observed data Y ∈ Rd×n, a priori target dictionary
T ∈ Rd×q, learning parameter γ, the number of
background atoms m.

Initialize: background dictionary B ∈ Rd×m is set to have
random positive values.

For i = 1 to n, do
1) Calculate the locality adaptor

s =
[‖yi − b1‖2, . . . , ‖yi − bm‖2, ‖yi − t1‖2, . . . ,
‖yi − tq‖2]T .

2) Solve the coded vector
[xT zT ]T =

([B T ]
T
[B T ] + γdiag(s2))−1[B T ]Tyi.

3) Update the background dictionary
B← B+ η(yi −Tz−Bx)xT ,
B = max(B,0).

4) Renormalize each column of B to have a unit
norm.

5) Slowly diminish the step length η.
end for
Output: learned background dictionary B.

where x ∈ Rm×1 and z ∈ Rq×1 are the representation vectors
associated with the background and target dictionaries, respec-
tively, and s ∈ R(m+q)×1 is now the similarity between the test
pixel and each atom in the union dictionary. In the learning
process, only the background dictionary is updated while the
target dictionary is fixed.

In practice, it is memory-consuming to hold all the coded
vectors together in each iteration when the number of pixels n is
large. In our implementation, we handle a single pixel y in each
iteration and incrementally update the background dictionaryB.
The learning rule for updating the background dictionary can be
written as

B← B+ η (y −Tz−Bx)xT . (7)

Note that here the input can be viewed as y −Tz with
the target signal being removed. Therefore, the contamination
of targets on the learned background dictionary can be well
reduced. Consequently, a complete, compact, and pure back-
ground dictionary can be obtained.

The detailed procedure of the proposed BDL algorithm is
described in Algorithm 1, in which the dictionary elements are
enforced to be nonnegative to maintain the physical meaning
in accordance with spectral reflectance [26]. It is worth men-
tioning that the iteration number is exactly the total number of
pixels n. The discussion and concrete design for a sequence of
diminishing step length η will be given in Section III.

B. Decomposition Model

According to the replacement signal model [35], for a subpixel
target, in which the known target t replaces a fraction α of the

background b, the observed pixel vector y can be expressed as

y = (1− α)b+ αt+ n, 0 < α ≤ 1 (8)

where n is the additive noise. For a background pixel in which
the target is absent (α = 0), the observed spectrum can be written
as y = b+ n. Since the background and target components of
all the pixels can be linearly represented by some common
background and target spectra, respectively, the replacement
model in (8) can be rewritten in a representation-based form

H0 : y = Bx+T · 0+ n, (Target absent)

H1 : y = Bx′ +Tz′ + n, (Target present) (9)

where x′ = (1− α)x and z′ = αz. In the following, the super-
script will be omitted for simplicity. Taking all the pixels into
consideration and writing (9) in a unified form as

Y = BX+TZ+N (10)

where X = [x1,x2, . . . ,xn] and Z = [z1, z2, . . . , zn] concate-
nate the representation vectors corresponding to the background
and target dictionaries, respectively.

In order to achieve a satisfactory separation of the background,
target, and noise components from the observed data, the char-
acteristics of these components in hyperspectral imagery should
be properly exploited. Since the background is spatially smooth
in the sense that the neighboring pixels usually consist of similar
materials, and, therefore, if two background pixels yi and yj are
adjacent in spatial domains, their representation vectors xi and
xj associated with the background dictionary B are expected to
be similar. The TV regularizer [36]–[39], which is effective in
preserving the piecewise smoothness, provides an appropriate
means to characterize the background part

TV (X) =
∑
i

‖xi − xih‖1 + ‖xi − xiv‖1. (11)

Intuitively, the TV term sums up the differences between
the representation vector of each pixel and those of its spatial
neighbors (in both horizontal and vertical directions). For the
convenience of subsequent calculation, two linear operators
Hh and Hv are introduced to simplify the TV term in (11).
Specifically,Hh is designed such thatHhX = [d1,d2, . . . ,dn],
in which di = xi − xih is the difference between the represen-
tation vectors of the ith pixel and its horizontal neighbor. The
operator Hv computing the vertical differences can be designed
in a similar way. Here, the boundaries are assumed to be periodic
[39]. In this way, the TV term in (11) can be written in a compact
form

TV (X) =

∥∥∥∥
[
HhX
HvX

]∥∥∥∥
1,1

= ‖HX‖1,1 (12)

where ‖ · ‖1,1 is defined as the sum of �1-norm of each column
in a matrix.

On the other hand, the representation vector z corresponding
to the target dictionary T is null when the target is absent and
has nonzero elements when the target is present according to (9).
Since the targets of interest usually occupy a few pixels in the
whole scene [40],Z is actually a sparse matrix in which there are



1876 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

very few entries with significant values. Obviously, for a pixel
with high target fraction α, the corresponding column in Z has
greater values. Therefore, the columns of Z naturally measure
the degree of a pixel belonging to the target. In order to enable
this scheme to work, we further incorporate a weight matrix W
to suppress the false alarms that reside in Z and highlight the
response of true targets depending on the distances of the atoms
in target dictionary T from each pixel vector

[W]i,j = ‖yj − ti‖2. (13)

Finally, the additive noise N is assumed to be densely dis-
tributed and follow the identically and independently Gaus-
sian distributions. The mean-squared error is utilized to model
the noise. In consideration of the above-stated characteristics
regarding the background, target, and noise components, the
proposed DM can be formulated as

min
X,Z
‖Y −BX−TZ‖2F + λ‖HX‖1,1 + β‖W � Z‖1,1

(14)
where ‖ · ‖F is the Frobenius norm, λ andβ control the spatial

smoothness ofX and the sparsity level inZ, respectively. It is ex-
pected that a satisfactory decomposition can be achieved by DM
since the intrinsic characteristics of the background and target
parts have been explicitly imposed. After the decomposition, the
separated target component TZ is directly used to accomplish
the target detection. The degree of the ith pixel being claimed
to be the target can be determined by the magnitude of the ith
column of TZ as

∥∥∥[TZ] :,i

∥∥∥
2
=

√∑d

j=1

(
[TZ]j,i

)2

. (15)

It is expected to alternately perform the BDL and DM to
achieve more accurate detection results. However, in view of
the computational burden, we only perform one round of BDL
and DM since it is sufficient to obtain satisfactory results.

In what follows, we solve the optimization problem in (14) via
the alternating direction method of multipliers [41]. In order to
make the objective function separable, three auxiliary variables
V1, V2, and V3 are introduced. The problem (14) is then
converted to the following equivalent formulation:

min
{V},X,Z

‖Y −BX−TZ‖2F + λ‖V2‖1,1 + β‖W �V3‖1,1,

s.t. V1 = X,V2 = HV1,V3 = Z. (16)

The augmented Lagrangian formulation for the above-
mentioned optimization problem can be written as

min
{V},X,Z

‖Y −BX−TZ‖2F + λ‖V2‖1,1 + β‖W �V3‖1,1

+
μ

2

(
‖V1 −X−D1‖2F + ‖V2 −HV1 −D2‖2F

+ ‖V3 − Z−D3‖2F
)

(17)

where (D1, D2, D3) are the Lagrange multipliers and μ is a
positive penalty parameter. The minimization of this multiple-
variable problem can be achieved by alternately minimizing the
objective function with respect to one variable while fixing other

Algorithm 2: Optimization Procedure for DM.

Input: observed data Y ∈ Rd×n, learned background
dictionary B and a priori target dictionary T, and tradeoff
parameters λ and β.

Initialize: all variables X, Z, V1, V2, V3, D1, D2, D3

are set to zero matrices, μ0 = 1e−3, μmax = 1e10,
ρ = 1.2, ε = 1e−4, iter = 0.

While not converged, do
1) Update X and Z

X =
(2BTB+ μI)−1(2BT (Y −TZ) + μ(V1 −D1))
Z =

(2TTT+ μI)−1(2AT (Y −BX) + μ(V3 −D3)).
2) Update V1, V2, and V3

V1 = (HTH+ I)−1(HT (V2 −D2) +X+D1)
V2 = soft(HV1 +D2, λ/μ)
V3 = soft(Z+D3, (β/μ) ·W).

3) Update Lagrange multipliers and penalty
parameter
D1 = D1 − (V1 −X),
D2 = D2 − (V2 −HV1),
D3 = D3 − (V3 − Z) , μ = min(ρμ, μmax).

4) Check for convergence
‖V1 −X‖F + ‖V2 −HV1‖F + ‖V3 − Z‖F <

ε.
5) iter← iter + 1.
end while
Output: an optimal solution (X∗, Z∗).

variables. Since the objective function in (16) is closed, proper,
and convex, the convergence of the solution can be guaranteed
[41].

Algorithm 2 outlines the step-by-step optimization procedure
for the proposed DM. Note that the update rule for V1 can
be applied for each band in an independent manner, and the
discrete Fourier transform diagonalization is adopted for effi-
cient implementation [39]. In the update rules for V2 and V3,
soft(·, ·) represents the shrinkage operator [42]. The MATLAB
implementations for the proposed Algorithm 1 and Algorithm 2
have been made available online.1

III. EXPERIMENTAL RESULTS

In this section, we conduct both the simulated and real
data experiments to evaluate the performance of the proposed
DM-BDL in hyperspectral target detection. Specifically, one
simulated hyperspectral dataset is generated and used to give
a comprehensive analysis of the proposed DM-BDL, while
two real-world hyperspectral datasets are utilized to validate its
effectiveness in real scenarios. The receiver operating charac-
teristic (ROC) curve [43] is employed to evaluate the detection
performance quantitatively, which describes the relationship
between the probability of detection and the false alarm rate.
The ROC curve closer to the upper left corner indicates the better

1[Online]. Available: https://github.com/FDU-ctk/HSI-detection

https:&sol;&sol;github.com&sol;FDU-ctk&sol;HSI-detection
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Fig. 2. Simulated hyperspectral dataset. (a) False color image of the whole scene. (b) Buried target spectrum t (Jarosite GDS101), and the other eight spectra of
the jarosite mineral. (c) False color image of the simulated data. (d) Ground-truth map for the embedded targets.

detection result. The area under the ROC curve (AUC) [44] that
provides an intuitive and quantitative evaluation of detection
performance is also considered. The experimental platform is a
computer with an eight-core Intel CPU Xeon CPU 3.07-GHz and
3.06-GHz processors, 48-GB memory, and 64-bit Windows
10. All the experiments are executed in the environment of
MATLAB R2013b.

A. Simulated Data Experiments

In this section, a simulated dataset is generated based on the
real hyperspectral imagery, which was collected by the airborne
visible/infrared imaging spectrometer over San Diego airport in
California, USA. It consists of 224 spectral channels spanning
wavelengths from 370 to 2510 nm. The spatial resolution is
3.5 m per pixel. Before making some analysis with this imagery,
the spectral bands with indices 1–6, 33–35, 97, 107–113, 153–
166, and 221–224 are removed due to low SNR or water vapor
absorption. As a result, a total of 189 spectral bands are left.
The whole imagery has a size of 400 × 400 pixels, as shown
in Fig. 2(a). A 100 × 100 region (pixels in rows 71–170 and
columns 41–140) is selected from the original image (encircled
by the red square) to construct the simulated data. The targets
are embedded according to the replacement signal model in (8).
The target spectrum t is selected from the U. S. Geological
Survey (USGS) digital spectral library,2 in which each kind of
material contains a number of similar spectral signatures, and
well illustrate the spectral variability. A sulfate mineral known as
“jarosite” contains nine spectra and the fourth Jarosite mineral
(Jarosite GDS101) is considered as the buried target t in our
experiment. The other eight spectra of the jarosite mineral will
be used to investigate the detection performance when inaccurate
prior target spectrum is provided. Fig. 2(b) shows these spectra
of the jarosite mineral.

In the simulated data, 20 target blocks distributed in five rows
and four columns have been embedded. The sizes of the targets
in each column are 2 × 2, 2 × 1, 1 × 2, and 1 × 1 from left to
right, respectively. The fill fraction α remains unchanged for the
same row and takes the value of 0.05, 0.1, 0.3, 0.5, and 0.8 from
top to bottom, respectively. Finally, the white Gaussian noise is

2[Online]. Available: http://speclab.cr.usgs.gov/spectral-lib.html

added to the simulated data with SNR = 40 dB. The SNR is
defined as follows:

SNR ≡ 10log10
E
[
yTy

]
E [eT e]

(18)

where E[·] denotes the expectation operator, y represents the
pixel vector, and e is the additive noise. The false color image
of the simulated data as well as the ground-truth map for the
embedded targets is given in Fig. 2(c) and (d), respectively.

In the following subsection, the spectrum of Jarosite GDS101
is served as the a priori target dictionary (q = 1). The generated
simulated data is first used to test the proposed BDL method
and the DM. Then, the detection performance of the proposed
DM-BDL is compared with several classical and state-of-the-
art target detectors. Finally, the other eight jarosite spectra are
used one by one to investigate the detection performance under
the circumstance of inaccurate prior target information (spectral
variability of target).

1) Analysis of the Proposed BDL Method: There are several
parameters that need to be set in the proposed BDL method,
including the diminishing step length η, the learning parame-
ter γ, and the number of atoms m. Fortunately, a satisfactory
learning result can be generally obtained with a series of slow
descent η [27]. In our experiment, the initial η is set to 5, and
we use η ← ση for every 50 iterations (pixels) to decrease the
step length. The decay parameter σ is set adaptively to the data
size such that the ultimate η is about 0.001 at the end of the
iteration. Consequently, we set σ for the generated simulated
data with 1e4 pixels to 0.96. The number of background atomsm
is crucial to the learning algorithm. A small m cannot guarantee
the completeness of the learned dictionary to comprise the whole
scene, while a large m may result in some noise spectra being
learned and also the computational burden in a later decompo-
sition process. Fig. 3 illustrates the learning results when jointly
taking m and γ into consideration. Here, the detection result
obtained by DM-BDL in terms of the AUC score is used to
evaluate the learning result, and the tradeoff parameters λ and β
in the DM are, respectively, fixed at 0.01 and 0.1, which will be
analyzed in the following section. It is apparent that the proposed
BDL method can achieve stable and satisfactory results when m
is larger than ten and γ greater than five. For simplicity, in the

http:&sol;&sol;speclab.cr.usgs.gov&sol;spectral-lib.html


1878 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 3. Detection performance of the proposed DM-BDL under different
combinations of m and γ in the BDL algorithm with the simulated dataset.

Fig. 4. Learned spectra obtained by the proposed BDL method. (a) With the
target dictionary. (b) Without the target dictionary in the learning process.

following experiments, m and γ are empirically fixed at 20 and
20, respectively.

Then, we investigate the effect of the target dictionary that
is incorporated in the learning process. To illustrate this, we
plot the learned background spectra with and without the target
dictionary, as shown in Fig. 4(a) and (b), respectively. It can be
observed that a potential target spectrum is learned without the
suppression of target contamination induced by the target dictio-
nary. We utilize the spectral information divergence (SID) [45]
to quantitatively describe how similar each learned spectrum is
to the buried target spectrum t. The closer the SID value is to
zero, the higher the similarity of two spectra. The minimum SID
values in regard to the results in Fig. 4(a) and (b) are 0.0310 and
0.0081, respectively. These facts indicate that the incorporated
target dictionary in the learning process indeed can reduce the
interference caused by target samples and thereby ensure the
purity of the learned background dictionary.

2) Analysis of the Proposed DM: In this subsection, we first
investigate the separated background and target components
when the tradeoff parameters λ and β in the DM are set to 0.01
and 0.1, respectively. The false color shows for the rearranged
background and target images are displayed in Fig. 5(a) and
(b), respectively. It can be seen from Fig. 5(a) that the textures
have been well preserved in the recovered background image.
Several darker blocks appear in Fig. 5(a) since the filled target
fractions have been removed, leaving the dimmer fraction of the
background. In Fig. 5(b), the target fractions have been almost
entirely extracted from the imagery and deposited in the target
image with very few false alarms.

Fig. 5. False color shows for the separated (a) background image and (b) target
image by the DM when λ = 0.01 and β = 0.1.

Fig. 6. Detection performance variation of the proposed DM-BDL under
different combinations of tradeoff parametersβ and λ with the simulated dataset.

Fig. 7. False color shows for the separated target images by the DM with
λ = 0.01 and (a) β = 0.01 and (b) β = 1.

Next, we analyze the influence of λ and β on the decomposi-
tion result. The detection result based on the target component
is considered to evaluate the separation result. Fig. 6 illustrates
that when λ takes relatively large values, the performance shows
an apparent decline. This can be explained by the fact that the re-
covered background image is oversmoothing, and some textures
may be smoothed out and deposited in the target image, thus
resulting in a large number of false alarms. Another observation
is that the separation result seems unchanged under different
values of β. In order to better illustrate the role of sparsity that
is imposed on the target component, Fig. 7(a) and (b) shows the
separated target images obtained by the DM under β = 0.01 and
β = 1 when λ is fixed at 0.01, respectively. There are some false
alarms deposited in the target image caused by the background
and noise when β is small. On the other hand, when β takes a
large value, i.e., β = 1, some targets with low fractions, such as
α = 0.05 and α = 0.1 may be further removed to favor sparsity
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Fig. 8. 2-D plots of detection results obtained by different target detectors on the simulated data.

in the separated target image. It is worth noting that the detection
result remains satisfactory since the false alarms have been fully
suppressed, and thus the targets with very weak response in the
separated target image can still be detected. Despite this fact, a
moderate value of β is desirable to avoid the possible missed
detections.

According to the above-mentioned analysis, we empirically
set λ = 0.01 and β = 0.1 in the DM throughout the following
experiments for the consideration of convenience and simplicity
since the parameter tuning is usually a computationally expen-
sive task.

3) Detection Performance Compared With Other Hyperspec-
tral Target Detectors: Here, we compare the detection perfor-
mance of the proposed DM-BDL for hyperspectral imagery
with several classical and state-of-the-art target detectors: CEM,
MSD, SRBBH, CSCR, and SLRMD. The CEM and MSD are
two conventional detectors. The SRBBH and CSCR are two
typical representation-based detectors, in which the background
dictionary is generated via the dual windows for each test
pixel. In the SLRMD, the separation of target and background
components is established on the sparse and low-rank matrix
decomposition.

For the compared detectors, the involved parameters are ad-
justed to achieve the best possible detection accuracy [17], [18],
[21]. In the MSD implementation, the background and target
subspaces are generated using the eigenvectors corresponding to
the significant eigenvalues of the covariance matrices obtained
from the atoms in background and target dictionaries B and T,
respectively [46]. In the case of SRBBH, the sizes of the dual
windows (wout, win) are set to (7, 5) and the orthogonal matching
pursuit [47] algorithm is utilized to recover the sparse vectors
with the sparsity level of 10. For the CSCR, the setting for the
dual windows (wout, win) is consistent with that in SRBBH, and
the balance parameters λ1 for the sparsity under H1 and λ2 for
the collaborative representation under H0 are set to 0.1 and 1,
respectively [18]. In SLRMD, the tradeoff parameters τ and λ

that constrain the low rankness and sparsity are, respectively, set
to 0.5 and 0.05 through global searching [21].

Fig. 8 shows the 2-D plots of the detection results obtained
by the proposed DM-BDL as well as the compared target de-
tectors. It is obvious that all the detectors can distinguish the
target samples at the bottom of the scene, i.e., the targets with
high fractions α = 0.8. However, the effectiveness of a specific
detector mainly relies on its ability to detect the targets with
low fractions, such as α = 0.05 and α = 0.1, which is more
challenging. The proposed DM-BDL provides a clear discrim-
ination between all the embedded targets and the background.
The SRBBH achieves a comparable detection result, which is

Fig. 9. ROC curves obtained by different target detectors on the simulated
data.

TABLE I
AUC SCORES OF THE DETECTION RESULTS REPORTED IN FIG. 9

owing to that the background dictionary generated via the dual
windows is adaptive to the local statistics and therefore effective
in suppressing the background. However, the SRBBH is unable
to distinguish the targets with low fractions well. The response
of all the targets in the detection maps of SLRMD is high,
whereas that of background pixels also exhibits high values since
the recovery of the background component is unsatisfactory
without utilizing an appropriate background dictionary. The
quantitative assessments of the detection results by means of
ROC curves are presented in Fig. 9. Compared with the SLRMD,
the proposed DM-BDL shows a slightly lower probability of
detection when the false alarm rate is very low. Nevertheless,
our method performs the best in terms of the overall detection
accuracy and achieves a much lower false alarm rate than other
detectors when the probability of detection reaches 100%, which
should indicate the effectiveness of the proposed DM-BDL. The
corresponding AUC scores are reported in Table I, from which
a similar conclusion can be drawed.

In the following, we randomly change the positions of the
embedded targets and repeat the preceding experiment for
20 times under SNR = 40 dB to investigate the stability of all
the compared detectors. Table II reports the average values and
the standard deviations of AUC scores obtained by different
target detectors. The algorithms based on local background
dictionary, i.e., SRBBH and CSCR, exhibit a large deviation of
the detection accuracy since the issue of target contamination
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TABLE II
AUC SCORES AND EXECUTION TIME FOR DIFFERENT TARGET DETECTORS BASED ON 20 RUNS USING THE SIMULATED DATA WITH

RANDOMLY EMBEDDED TARGETS

TABLE III
AUC SCORES OBTAINED BY DIFFERENT TARGET DETECTORS WITH EACH INACCURATE SPECTRUM OF JAROSITE MINERAL IN THE USGS SPECTRAL LIBRARY

in the background dictionary is inevitable when the targets
reside in close proximity. It can be seen from Table II that the
proposed DM-BDL shows a much more stable result, which can
be attributed to two aspects: first, the recovery of background
and target components is performed on the whole scene with the
relationships of background pixels and targets being explicitly
considered; second, compared with the local background dictio-
nary generated by dual windows, the proposed BDL algorithm
is not affected by the distribution of targets. Furthermore, the
execution time of all the detectors is also listed in Table II. Note
that the reported result for the proposed DM-BDL includes the
time spent on the BDL (3.50 s) and that on the DM (7.11 s).
It can be observed that the DM-BDL takes less time than the
state-of-the-art target detectors. This efficiency results from two
points: first, based on LLC, the BDL algorithm can be performed
very fast; second, compared with the case of overcomplete back-
ground dictionary where a heavy computational cost is spent on
the background recovery due to a large redundant dictionary,
the learned background dictionary is complete and of small size
(compact), and thus, accelerating the decomposition process.

4) Robustness to the Prior Target Information: In real sce-
narios, the accuracy of the prior target information cannot be
guaranteed due to the inherent variability of spectral signatures.
Therefore, it makes sense to investigate the robustness of the
detection result of a specific target detector to an inaccurate
prior target spectrum. As described above, there are another
eight spectra corresponding to the jarosite mineral in the USGS
spectral library. We repeat the preceding experiment for eight
trials. In each trial, one out of eight jarosite spectra is taken as
available target specturm to form the a priori target dictionary.

The average values and the standard deviations of AUC scores
obtained by different detectors are given in Table III. Comparing
the results of CEM in Tables I and III, it can be concluded that
CEM can achieve a satisfactory result under exact prior knowl-
edge of targets while shows a significant degradation when inac-
curate prior target spetrum is provided. The performance of MSD
is unsatisfactory, which may due to the generated dictionaries
composed of eigenvectors cannot represent the background and
target well. The CSCR exhibits a greater variation than SRBBH.
It is expected since only target training samples are used to
represent the test pixel under H1 in CSCR, which makes the
CSCR sensitive to the prior target information. The proposed
DM-BDL and SLRMD are both based on the separation of
background and target components from the whole scene. The

Fig. 10. HYDICE urban dataset. (a) False color image of the whole image.
(b) False color image of the detection area. (c) Ground-truth map for the targets
of interest.

SLRMD shows a large deviation under inaccurate prior target
spectrum since the recovery of the background is not satisfactory.
However, in the case of DM-BDL, the background estimation is
achieved by the representation of the learned dictionary and the
intrinsic characteristics of background and target parts have been
properly exploited, making the recovery process of background
and target components more stable and less affected by the
spectral variability.

B. Real Data Experiments

In this section, two widely used real-world hyperspectral
datasets are utilized to evaluate the detection performance of
the proposed DM-BDL in practical situations.

The first real dataset was collected by the hyperspectral digital
imagery collection experiment (HYDICE) sensor over an urban
area. The spatial resolution is about 1 m per pixel. The imagery
has a spectral resolution of 10 nm and consists of 210 spectral
bands in wavelengths ranging from 400 to 2500 nm. The low-
SNR and water vapor absorption bands (1-4, 76, 87, 101-111,
136-153, and 198-210) are discarded, leaving 162 bands. The
whole image contains 307 × 307 pixels and a region of interest
with 80 × 100 pixels (rows 1–80 and columns 188–287) is
cropped to perform the target detection. The whole image scene
and the selected region are displayed in Fig. 10(a) and (b),
respectively. In this dataset, the targets to be detected are the
vehicles with 19 pixels, as shown in Fig. 10(c).

The second data used in the real experiments are also a portion
of the aforementioned San Diego imagery. The region in the
upper left corner with the size of 150 × 150 pixels is chosen
as the test imagery. The targets of interest in this dataset are



CHENG AND WANG: DECOMPOSITION MODEL WITH BDL FOR HYPERSPECTRAL TARGET DETECTION 1881

Fig. 11. Real San Diego dataset. (a) False color image of the detection region.
(b) Ground-truth map for the targets of interest.

three airplanes with 62 pixels to be detected. There are full-pixel
targets in the airplanes as well as some subpixel targets on the
edge of the airplanes. The false color image and the ground-
truth map for the targets are provided in Fig. 11(a) and (b),
respectively.

For the HYDICE dataset, the a priori target dictionary is
collected from two target samples with locations (21, 79) and
(16, 87). In the BDL process, the decay parameter in η ← ση is
set to 0.95 according to the adaptive setting mentioned in Sec-
tion III-A1. The spectra of the targets of interest as well as those
in the learned background dictionary are plotted in Fig. 12(a) and
(c), respectively. In the CEM implementation, the single input
target spectrum is obtained by averaging the prior target spectra.
For the SRBBH, the dual windows (wout, win) are set to (11, 7)
and the sparsity level is 4. In the case of CSCR, the parameters
λ1 and λ2 are 0.001 and 0.1, respectively. As for SLRMD, we
set the parameters τ and λ to 1 and 0.01, respectively, after
parameter tuning. The 2-D plots of the detection results obtained
by all the detectors are shown in Fig. 13(a). Obviously, the
response of targets exhibits a high contrast with the background
in the detection result of the proposed DM-BDL, which indicates
that the signals that reside in the subspace spanned by the
target dictionary have been well separated and deposited in the
separated target image. The false alarms in the detection result
of DM-BDL are much less than those of SLRMD, which is
owing to the learned dictionary is effective in representing the
background. Note that the detection map of CSCR seems quite
different from others. This is due to that the decision of CSCR is
achieved by computing the difference between the residuals of
CR and SR. Some pixels, which have very high response values
in SR, will show extremely low response values (negative) in the
final detection result. Thus, most pixels exhibit relatively high
response values after a linear stretch to [0, 1]. Nevertheless, for
the true targets, their response values are generally higher and
the detection result is acceptable. To quantitatively compare the
results of these detectors, the ROC curves and the AUC scores
are provided in Fig. 14(a) and Table IV, respectively. The highest
probability of detection is always achieved by our method over
other target detectors under all values of the false alarm rate.
The AUC scores also demonstrate that the proposed DM-BDL
performs the best among the compared detectors.

For the real San Diego dataset, we select one pixel in the
center of each plane as the available target spectra to form the a
priori target dictionary with q = 3. The spectra of the targets to

TABLE IV
AUC SCORES AND EXECUTION TIME OF DIFFERENT TARGET DETECTORS ON

THE TWO REAL DATASETS

be detected and those in the learned background dictionary are
displayed in Fig. 12(b) and (d), respectively. Note that the decay
parameter σ is set to 0.982 for this dataset. The dual windows
(wout, win) and the sparsity level in SRBBH are set to (13, 11)
and 10, respectively. For the CSCR, the parameters λ1 and λ2

are set to 0.001 and 0.1, respectively. In the case of SLRMD,
the optimal setting for the tradeoff parameters τ and λ is 1
and 0.01, respectively. With these configurations of the involved
parameters in each target detector, the detection results can be
obtained in Fig. 13(b). The detection performance of SRBBH
and CSCR that are based on dual windows is unsatisfactory due
to that the targets in this dataset are irregular and reside closely
to each other. The targets in the detection result of DM-BDL
are more distinct compared with SLRMD since the background
has been well represented and removed from the scene. The
quantitative assessments in terms of the ROC curves and AUC
scores are provided in Fig. 14(b) and Table IV, respectively.
Clearly, there is a large margin between the ROC curve of the
proposed DM-BDL and those of the compared detectors. When
the probability of detection reaches 100%, the false alarm rate
of our method is about 0.007, which is the lowest among all
the detectors. The AUC scores also confirm that the proposed
method is very promising in detecting the targets of interest in
hyperspectral imagery.

The execution time on the two real datasets is also provided
in Table IV. The reported time cost for the DM-BDL com-
prises the portion on the BDL (2.78 s for HYDICE and 8.13 s
for San Diego) and the rest on the DM. Compared with the
representation-based detectors, i.e., SRBBH and CSCR, and
SLRMD that is based on the decomposition of the whole scene,
our method shows an improved efficiency, particularly when the
observed data are of large size, that is, the real San Diego dataset.

C. Summary

The extensive experiments have been carried out on both
simulated and real hyperspectral datasets. According to the
experimental results, the main advantages of our proposed DM-
BDL can be summarized as follows.

1) Effectiveness: The DM decomposes the observed data into
background, target, and noise components. Based on the
complete and pure background dictionary obtained with
the proposed BDL algorithm, a satisfactory decomposition
result can be achieved by DM with the characteristics
of these components being explicitly considered. Then,
based on the recovered target image, the proposed DM-
BDL is effective in identifying the targets, especially for
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Fig. 12. Spectra of the targets of interest in the (a) HYDICE and (b) real San Diego datasets. The learned background spectra in (c) HYDICE and (d) real San
Diego datasets.

Fig. 13. 2-D plots of detection results obtained by different target detectors on (a) HYDICE and (b) real San Diego datasets.

Fig. 14. ROC curves obtained by different target detectors on (a) HYDICE and (b) real San Diego datasets.

those with low fractions and maintains a very low false
alarm rate.

2) Efficiency: The proposed BDL method based on LLC
just requires to solve the �2-norm minimization problem,
which can be implemented very fast. Besides, the learned
background dictionary is complete and compact, thus
saving the computational burden in the DM.

3) Robustness to inaccurate prior target information: The
proposed detection algorithm is based on the separation
of background and target components from the whole
scene. The full exploitation of the characteristics of these
components along with the learned background dictionary

benefit for obtaining a satisfactory and stable decompo-
sition result, and thus enables the detection result based
on the recovered target image more robust to the prior
target information with the inherent variability of spectral
signatures.

4) Convenience in selecting parameters: The proposed
method includes two parts, i.e., the BDL and DM. In the
BDL process, the initial step length η is fixed at 5 and
diminishes as η ← ση for every 50 iterations (pixels). The
decay parameter σ is adaptive to the data size such that the
ultimate η is about 0.001. The learning paramter γ and the
number of atoms m are fixed at 20 and 20, respectively.
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Moreover, the tradeoff parameters λ and β in the DM are,
respectively, set to 0.01 and 0.1, and remain unchanged
throughout the experiments. Satisfactory detection results
have been achieved by the proposed DM-BDL under this
setting for all the employed hyperspectral datasets.

IV. CONCLUSION

In this article, we have proposed a hyperspectral target de-
tection algorithm based on the DM-BDL, the idea of which is
built on the separation of background, target, and noise from
the whole scene. In the DM, the relationships of background
pixels and targets of interest, i.e., the spatial homogeneity and the
spatial sparsity, are explicitly imposed in the DM, for achieving
a satisfactory recovery. The detection is directly performed on
the recovered target image. Since the background and noise have
been well separated and removed from the scene, the proposed
detector is effective in detecting the targets with low fractions
and robust to inaccurate prior target information induced by the
spectral variability. Furthermore, the proposed BDL algorithm
based on LLC can learn a complete and compact background
dictionary for better background estimation with a low com-
putational cost. This efficiency increases the practical values
of the proposed method in real scenarios. The a priori target
dictionary is also incorporated into the learning process to miti-
gate the target interference, and a pure background dictionary is,
therefore, learned. The extensive experimental results on both
simulated and real hyperspectral datasets in comparison with
several conventional and state-of-the-art target detection algo-
rithms confirm that the proposed DM-BDL is very promising in
the hyperspectral target detection.

There are two relevant topics deserving further research. First,
the target dictionary is fixed in the proposed DBL method. In
the future work, we will consider to learn an optimal target
dictionary from the observed data in a reasonable manner given
the inaccurate prior target information. The learned target dic-
tionary may be beneficial to the subsequent recovery process.
Second, the adaptive setting for the tradeoff parameters in the
DM remains unsolved. Although the proposed method with a
fixed setting has achieved satisfactory detection results for all
the used hyperspectral datasets, the performance can be further
improved with an optimal setting for each dataset. In future work,
we will attempt to solve this issue with a recently proposed
technique named multiobjective optimization [48].
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