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Combining Multiple Classifiers for Domain
Adaptation of Remote Sensing Image Classification
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Abstract—This article investigates the effectiveness of multi-
classifier fusion technique on domain adaptation for remote sens-
ing image classification. Since it is impossible to find a domain
adaptation method that is optimal for different datasets, and it is
also difficult to select the best base classifier for domain-invariant
features, multiple domain adaptation fusion (MDAF) method and
the multiple base classifier fusion (MBCF) method are proposed
to achieve a more stable and superior classification performance.
The most crucial step of the weighted fusion approach is to assign
weights for classifiers. It is known that different classifiers have
varied performances on different subsets of data, and therefore
a samplewise adaptive weight is more desirable than a fixed one.
For each sample, a desired weight should be able to characterize
the reliability of a classifier, so that the advantages of different
classifiers can be exploited. We propose a neighborhood consis-
tency based adaptive weighting method, which assigns a large
weight to a classifier on a sample if the prediction of the sample
is consistent to the predictions of its local neighbors. Experiments
with three remote sensing images demonstrate the efficiency of the
proposed weighting strategy in the proposed MDAF and MBCF
methods.

Index Terms—Classification, domain adaptation, multiclassifier
fusion, neighborhood consistency, remote sensing.

I. INTRODUCTION

R EMOTE sensing images are important and increasingly
available for earth observation [1]. However, classifica-

tion of remote sensing images faces the problem of limited
labeled data. Semisupervised learning [2] and dimensionality
reduction [3], [4] are popular methods to decrease the label-
ing cost. Alternatively, “borrowing” labeled information from
some temporally or spatially separate image is an attractive
strategy for classifying image with few labels or even with-
out labels. However, directly reusing the labeled data may
not perform well on the target image due to the spectral drift
between the two images [5], [6]. Domain adaptation has great
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potential to address this problem since it attempts to classify
the target image by transferring knowledge from the source
image.

Domain adaptation algorithms are often categorized as classi-
fier based methods and feature-based methods. Classifier based
approaches aim to learn an adaptive classifier for target data
by using knowledge from the source data [7]–[9]. Generally,
support vector machine (SVM) or extreme learning machine
(ELM) classifier can be utilized. An adaptive SVM or ELM
classifier can be learned by combining the source and target
labeled data or introducing a feature alignment constraint to
the objective function. Feature-based approaches aim to learn a
common feature space where data distributions become similar
between the source and target domains. In the common feature
space, the classifier trained by the source labeled data can per-
form well on the target data. The domain invariant features can
be learned by minimizing the distribution differences between
domains, where the data distributions are often described by the
sample means [10]–[13], sample covariance matrix [14], [15],
subspace eigenvectors [16], [17], or data manifold [18]–[21].
Lately, deep learning methods have been successfully applied for
domain adaptation. The maximum mean discrepancy (MMD)
and correlation alignment (CORAL) strategies can be introduced
into the deep network to generate both invariant and discriminate
features [22], [23]. Adversarial learning is also effective for
domain adaptation by using discriminators to match different
domains. Ganin et al. proposed a domain adversarial neural
network for feature alignment [24]. Pei et al. utilized multi-
ple domain discriminators to achieve a conditional distribution
adaptation [25].

In this article, we focus on the unsupervised domain adap-
tation scenario, where the source images are assumed to have
abundant labeled information while the target image does not
have any labeled samples. Unsupervised domain adaptation
methods have been successfully applied to remote sensing field.
Matasci et al. employed MMD strategy in transfer component
analysis method to learn a shared feature space [10]. Yang et
al. utilized manifold alignment methods for image classifica-
tion, where the two feature spaces are aligned by minimizing
the distances between the corresponding data pairs [18]. Sun
et al. applied subspace alignment for scene classification of
remote sensing data [26]. In our previous work, we achieved
unsupervised domain adaptation by aligning the class centroids
and class covariance matrix [15]. We also employed ELM and
deep learning-based domain adaptation approaches for remote
sensing image classification [27]–[29].
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Although domain adaptation has achieved great success in
classification of remote sensing images, there still exist some
problems. One problem is that it is difficult to find a domain
adaptation method that is optimal for different datasets. Dif-
ferent approaches may perform variedly on different images.
Another problem is about the feature-based domain adaptation
methods, which focus on the strategy to obtain domain invariant
features. After obtaining a common feature space, SVM or k
nearest neighbors (kNN) classifier is often used for classifica-
tion. Although the selection of base classifier does not affect
the comparison of different feature alignment strategies, it has
influence on the classification accuracy. Therefore, how to select
an optimal base classifier is a problem. For these two problems,
we propose a multiclassifier fusion method, which combines the
classification results of different domain adaptation approaches
or different base classifiers, rather than selecting the optimal
one which may not exist. Combining the classification results
of multiple classifiers may exploit the advantages of different
methods, and obtain a more stable and superior classification
performance than any single classifier.

Many studies have indicated that the fusion of multiple clas-
sifiers can improve the classification accuracy than a single
classifier. For multiple classification results, the popular fusion
rules contain maximum rule, minimum rule, summation rule,
production rule, median rule, weighted fusion rule, and so on
[30]–[33]. Among these fusion strategies, the weighted method
is the most effective. It aims to assign weights for each classifier,
and the final classification result equals the weighted summation
of the results from multiple classifiers. Zhao et al. assigned
the classifier weight to be the classification accuracy on the
validation data [34], [35]. Huang et al. proposed a P-fusion
method that calculates the classifier weight as the difference in
the probabilistic prediction results [32]. Gao et al. exploited the
similarity between classification results and clustering structure
to obtain the weight of a classifier [33].

In this article, we investigate multiclassifier fusion method
for the domain adaptation problem. Aiming to solve the two
aforementioned problems, we propose two multiclassifier fu-
sion based algorithms for domain adaptation: one focuses on
multiple domain adaptation fusion (MDAF), and the other aims
to multiple base classifier fusion (MBCF) on domain invariant
features. MDAF is a domain adaptation method that combines
predictions from multiple domain adaptation classifiers, while
MBCF is a fused base classifier that applied to the domain
invariant features obtained by a feature-based domain adaptation
method. In the experiments, we mainly considered four domain
adaptation classifiers in this article, including joint distribu-
tion adaptation (JDA), CORAL, subspace alignment (SA), and
manifold alignment (MA). In MBCF, three base classifiers are
considered, i.e., SVM, kNN, and linear discriminant analysis
(LDA). By combining multiple classifiers, it is expected that
more useful knowledge can be transferred and a superior clas-
sification performance can be achieved.

The most crucial issue of the weighted fusion method is to
assign weight for each classifier in an unsupervised manner.
Since different classifiers have different properties and do-
main adaptation ability, they may perform variedly on different

subsets of a target image. One classifier may be effective on
one class, but another classifier may perform superior on a
different one. Therefore, a fixed weight of a classifier is not
suitable and a sample-wise adaptive weight is more desirable.
For each target sample, we first search its K nearest neighbors,
and then employ the neighborhood consistency criterion on their
prediction results to determine the weight of each classifier.
Since nearest neighbors have similar spectral properties and
tend to be from the same class, the prediction result of a target
sample is regarded to be reliable if its pseudolabel is consistent
to the pseudolabels of its neighbors. Therefore, the classifier
weight on a sample is proportional to the consistency degree in
its neighborhood.

The proposed multiclassifier fusion approach offers the fol-
lowing properties.

1) The neighborhood consistency criterion is able to de-
termine the effectiveness of a classifier on each specific
sample. Using the sample-wise adaptive weights, the ad-
vantages of different classifiers can be explored.

2) Based on the multiclassifier fusion strategy, MDAF and
MBCF algorithms are proposed to obtain a more stable
and superior classification performance. Moreover, there
is no strict limitation for selecting the specific classifiers.

3) To the best of our knowledge, this is the first attempt to
introduce the multiple classifier fusion strategy to domain
adaptation for remote sensing image classification.

The rest of this article is organized as follows. Section II
introduces the domain adaptation problem. Section III presents
the multiclassifier fusion approach for domain adaptation. Sev-
eral related multiclassifier fusion methods are described and
compared in Section IV. Experimental results are discussed in
Section V and the conclusion is drawn in Section VI.

II. DOMAIN ADAPTATION FOR REMOTE SENSING IMAGES

Traditional classifier requires that the training data and testing
data should have the same data distribution. For classification
of remote sensing images, this requirement may not be sat-
isfied, since spectra may vary significantly between domains.
We utilize two multitemporal hyperspectral images, which were
captured by EO-1 Hyperion sensor in May and June 2001 in
Botswana to show the spectral drift. Fig. 1 plots the mean spectral
signatures of two classes in the two images, where spectral
properties of the same class have obvious differences between
domains.

Domain adaptation aims to reduce the domain shift and make
use of the prior knowledge of the source domain to learn a
classifier for the target domain. In this article, we investigate
unsupervised domain adaptation approach, where the labeled
information in target domain is not available. Let Xs� RD×Ns and
Xt�RD×Nt denote source and target data, respectively, where D
is the spectral dimensionality, Ns denotes the number of labeled
data in source domain, and Nt means the number of unlabeled
data in target domain. Source data are with class labels Ys�
R1×Ns while no labeled information is available for target data.
Both source and target domains contain the same C classes.
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Fig. 1. Spectral signatures of the same class in different images. (a) Class 4 (Firescar) in May image and June image. (b) Class 7 (Savanna) in May image and
July image.

Fig. 2. Flowchart of the multiple domain adaptation fusion (MDAF) method.

We briefly describe the idea of four popular domain adaptation
methods.

1) JDA approach aims to jointly adapt the marginal distri-
bution and class-conditional distribution, which applied
MMD strategy to achieve the adaptation purpose.

2) CORAL achieves domain adaptation by aligning the co-
variance matrix of source and target domains, which ex-
plores the second-order statistics to obtain the marginal
distribution adaptation.

3) SA represents the source and target domains as subspaces
spanned by eigenvectors, which aligns the source subspace
eigenvectors with the target ones.

4) MA uses the corresponding data pairs as bridges to match
manifolds of source and target domains, which not only
aligns the two manifolds but also preserves the local
geometry of each manifold.

III. PROPOSED MULTICLASSIFIER FUSION APPROACH FOR

DOMAIN ADAPTATION

In this section, we first describe the two multiclassifier fusion
based methods for domain adaptation. One combines multiple

domain adaptation classifiers, and the other combines multiple
base classifiers on domain invariant features. Then, we provide
the weighted fusion rule, where the final fused result is defined
as the summation of the weighted probabilistic predictions of the
classifiers. Finally, the neighborhood consistency based adaptive
weighting method is presented.

A. Application of Multiclassifier Fusion to Domain Adaptation

MDAF and MBCF are two examples of using multiclassifier
fusion for domain adaptation. The flowcharts of the proposed
MDAF and MBCF approaches are illustrated in Figs. 2 and 3,
respectively.

In Fig. 2, multiple domain adaptation classifiers are denoted as
DA1, DA2, …, DAM, where M is the number of classifiers. Each
domain adaptation classifier produces probabilistic prediction
results of target data. Based on the neighborhood consistency
weighting method, we obtain M weights. After obtaining the
multiple prediction results and their associated weights, the final
classification result can be achieved through the weighted fusion
rule. It is worth noting that the output of each DAm is the
classification results, so the feature-based domain adaptation
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Fig. 3. Flowchart of the multiple base classifier fusion (MBCF) method.

method should be followed by a classifier like SVM to produce
the classification results.

In Fig. 3, MBCF combines multiple base classifiers denoted
as BC1, BC2, …, BCM. The base classifier is conducted on
the domain invariant features obtained by a feature-based do-
main adaptation method. Similarly, the base classifiers yield
probabilistic prediction results of target data, and the neighbor-
hood consistency based adaptive weighting method is utilized
to obtain the weights. It is noteworthy that invariant feature can
be extracted by any feature-based domain adaptation method.

Both MDAF and MBCF utilize the multiclassifier fusion
strategies, but they are applied to different scenarios. MDAF
is a domain adaptation method that combines prediction results
from multiple domain adaptation classifiers. On the contrary,
MBCF itself is not a domain adaptation method, but is applied to
classify the aligned features obtained by a feature-based domain
adaptation method. In MDAF and MBCF, although there is no
limitation to select the multiple domain adaptation classifiers or
base classifiers, it is preferred to select classifiers with diversity,
since they have different properties and can provide different
and complementary knowledge.

B. Multiclassifier Fusion Rule

Multiclassifier fusion aims to combine multiple prediction
results from different classifiers by assigning weight for each
classifier. The final fusion result is a weighted sum of prediction
results. The prediction result of a data sample can be a hard label
or a soft label. The soft probabilistic prediction results contain
more information than the hard label and are often used in the
fusion methods.

The most crucial step is to design adaptive sample-wise
weight. For a data point x, the probabilistic prediction result
from the mth classifier is denoted as pm(x) � RC×1, and the
weight of the mth classifier on this data point is denoted as wm(x).
Then, the fused classification result pf(x) � RC×1 is represented
as

pf (x) =

M∑
m=1

ŵm(x)× pm(x) (1)

where the normalized weight is calculated by

ŵm(x) =
wm(x)∑M

m=1 wm(x)
. (2)

Fig. 4 illustrates the necessity of using sample-wise adaptive
weights rather than fixed ones. Taking the Hyperion BOT June-
May data as an example, where June image and May image are
source domain and target domain, respectively, we employed
JDA and MA domain adaptation methods to classify the target
data. Fig. 4(a) and (b) shows the classification results of JDA
and MA domain adaptation algorithms, respectively. By plotting
target data from class 3 with circles and class 5 with triangles,
and by coloring the correct predictions or false predictions with
green or red, the classification performance can be visualized.
Although JDA has a much higher overall accuracy than MA
on this data, JDA does not perform well on all the classes and
MA has its advantage on some classes. From the results, JDA
performs well on class 5 but yields more false predictions than
MA on class 3, while MA obtains satisfactory classification
on class 3 but misclassified a lot of samples in class 5. The
results suggest that using fixed weight is inappropriate and a
sample-wise adaptive weight can take full advantage of different
classifiers.

C. Neighborhood Consistency-Based Weighting Method

We make use of target data to evaluate the domain adaptation
performance. It is known that nearest neighbors have similar
spectral properties and tend to be from the same class, and thus
a “good” classifier should predict them as the same category.
Therefore, the prediction results of target data can be utilized
to evaluate the classifier. For each target data sample, if its
predicted label of a classifier is consistent to the predicted labels
of its nearest neighbors, the prediction result on this sample is
regarded to be reliable and a large weight is assigned to the
classifier. On the contrary, if most of the nearest neighbors
have different pseudolabels, the prediction on this sample is
considered unreliable and a small weight is set to the classifier.

For a target data point x, its K nearest neighbors are tested.
Predicted by the mth classifier, the pseudolabel of x is denoted
as ym, and the pseudolabels of its K nearest neighbors are y1m,



1836 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 4. Different classifiers perform differently on different classes. (a) Prediction results of JDA for class 3 and class 5 of BOT June-May data. (b) Prediction
results of MA for class 3 and class 5 of BOT June-May data.

Fig. 5. Neighborhood consistency-based weighting for multiple domain adaptation classifiers on a target sample from class 3. (a) Real labels of this neighborhood.
(b) JDA misclassified the point as class 6 and its weight is 1/7. (c) CORAL yields false pseudolabel as class 6 and its weight is 2/7. (d) SA misclassified the point
as class 6 and its weight is 1/7. (e) MA achieves correct prediction and its weight is 1.

y2m, …, yKm. The neighborhood consistency based weight for
the mth classifier is calculated as

wm(x) =

∑K
k=1 δ(y

m
k = ym)

K
(3)

where δ is the Kronecker delta. Two methods are used to select
neighbors, one is based on the spectral similarity measured by
Euclidean distance, and the other is based on the spatial distance.
In this article, the spatial neighbors of a data point x are defined
as pixels within an x-centered squared spatial window. It is worth
mentioning that a small window is preferred, since a large spatial
window may include neighbors that are from different classes
and cannot satisfy the neighborhood consistency constraint.

Fig. 5 illustrates the neighborhood consistency based
weighting method. The four domain adaptation methods include
JDA, CORAL, SA, and MA. For a target sample from class 3,
its seven nearest neighbors are selected. Fig. 5(a) shows the real
labels of this neighborhood, where all the neighbors belong to
class 3 and are denoted as green nodes. Fig. 5(b) shows the
prediction results of JDA on this neighborhood, where the green
neighbors denote correct predictions as class 3 and red neighbor
represents false prediction to another class. JDA misclassified
this sample as class 6. Since most neighbors have different
predictions and only one neighbor has the same prediction,
according to formula (3), the weight for JDA is 1/7. Fig. 5(c)
and (d) illustrates the classification results of CORAL and SA,
respectively. Both CORAL and SA yield false pseudolabel for

this point, and the weights are 2/7 and 1/7 for them, respectively.
Fig. 5(e) shows the results of MA, which achieves correct pre-
dictions for this point and all its neighbors. Therefore, the weight
for MA is 1. From the results, it can be observed that based on
the neighborhood consistency criterion, the classifier with false
prediction on a sample has a small weight and the classifier
with correct prediction is assigned with a large weight. The
weighting method is able to effectively evaluate the performance
of different classifiers.

The proposed multiclassifier fusion algorithm is described
in the following. When the classifiers are domain adaptation
approaches, the algorithm is called as MDAF, and when the
classifiers are base classifiers for classifying domain-invariant
features, it is referred to as MBCF.

IV. RELATED WORKS AND DISCUSSION

The following discussions describe some related multiclassi-
fier fusion strategies.

A. Traditional Fusion Operations on the Probabilistic
Prediction Results

The traditional multiclassifier fusion strategies [30], [31] gen-
erally conduct some operations on the probabilistic prediction
results of multiple classifiers, including maximum rule, mini-
mum rule, sum rule, product rule, and median rule. For a data
point x, let pm,c(x) characterize the probability of x belonging
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Algorithm: Multiclassifier Fusion Approach.
Input: 1) Labeled source data { Xs, Ys} and unlabeled

target data Xt.
2) M classifiers (DA1, DA2, …, DAM in MDAF or
BC1, BC2, …, BCM in MBCF).

Procedure:
1. Obtain the pseudo-labels and probabilistic predictions

of target data by each classifier.
2. Calculate the weight wm(x) on each target data x � Xt

for the m-th classifier, m = 1, …, M, according to (3).
Normalize the classifier weight by (2).

3. Combine the multiple classifiers and obtain the final
probabilistic prediction of each target data by using (1).

Output: The predicted labels of target data.

to the cth class predicted by the mth classifier. The probabilistic
prediction matrix P(x) of all the classifiers on x is denoted as

P(x) =

⎡
⎢⎣

p1,1(x) · · · p1,C(x)
... pm,c(x)

...
pM,1(x) · · · pM,C(x)

⎤
⎥⎦ (4)

where each row denotes the probabilistic prediction vector of
one classifier on sample x, and each column represents the
probabilities of x belonging to the cth class predicted by all
the classifiers.

Suppose the final fused prediction result on sample x is
denoted as pf (x) = [p1f (x), p2f (x), …, pCf (x)], where pcf (x)
represents the fused probability of x belonging to the cth class.

The maximum (Max) rule defines pcf (x) as

pfc (x) = max
m=1,2,...,M

pm,c(x) c = 1, 2, . . . , C. (5)

The minimum (Min) rule is defined as

pfc (x) = min
m=1,2,...,M

pm,c(x) c = 1, 2, . . . , C. (6)

The sum rule (Sum) summarizes the probabilities in each
column and is given as

pfc (x) =
M∑

m=1

pm,c(x) c = 1, 2, . . . , C. (7)

The product rule (Product) regards the multiplication of the
probabilities in each column as the fused probability of x be-
longing to each class

pfc (x) =

M∏
m=1

pm,c(x) c = 1, 2, . . . , C. (8)

The median rule (Median) selects the median value in each
column and is defined as

pfc (x) = median
m=1,2,...,M

pm,c(x) c = 1, 2, . . . , C. (9)

These fusion rules conduct different operations on the prob-
abilistic results. Differently, we aim to fuse the classifiers by
assigning weights to them.

B. Global Weight for Each Classifier

Many studies [34], [35] calculate global weights for classi-
fiers. They generally divide the labeled data into training data
and validation data. Training data are used to train a classifier and
validation data are used to calculate the classification accuracy.
The weight for the classifier is directly proportional to the
overall accuracy on the validation data. For unsupervised domain
adaptation, target domain does not include labeled samples.
If we obtain the validation data from labeled source data, the
classification accuracy on validation data cannot represent the
performance on target data since they have different data distri-
butions. Therefore, the accuracy based global weight cannot be
applied to domain adaptation problem.

C. Locally Weighted Ensemble (LWE) Approach

LWE [33] is a weighted fusion method, which calculates the
weight of a classifier via constructing two graphs GM and GT

on the test samples. GM is constructed on the prediction results
of the classifier, where the samples are connected if they are
classified into the same class. GT is constructed on the clustering
results obtained by k-means method, where the samples in the
same cluster are connected. The classifier weight on a sample x
is proportional to the similarity of its local graph between GM

and GT

wm(x) =

∑
v1∈VM

∑
v2∈VT

1(v1 = v2)

|VM |+ |VT | (10)

where VM and VT are the sets of connected neighbors of x in
GM and GT. The more common neighbors exist in the two local
neighborhood, the higher weight we set to the classifier.

Note that our weighting strategy is similar to the LWE ap-
proach, since both of them utilize the prediction results in a
local neighborhood. However, there are two differences. One is
that LWE utilizes k-means method to obtain the local clusters
while we employ K spectral neighbors or spatial neighbors from
a spatial square window to construct the local neighborhood.
The other difference is that the LWE is for text classification,
spam filtering, and intrusion detection, while our approach is for
remote sensing image classification. Moreover, we have demon-
strated the efficiency of the neighborhood consistency constraint
in some previous works [12], [36]. One utilizes this constraint
for obtaining a superior translating vector to move the target
samples to the source domain [12]. One exploits this constraint
to select more reliable pseudolabels to construct the relationship
matrix between two domains in manifold alignment framework
[36]. We further explore the application of the constraint to
multiclassifier fusion approach in this article.

D. P-Fusion Approach

Reference [32] proposed an SVM ensemble approach for
combining spectral, structure, and semantic features of remote
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Fig. 6. BOT data in May, June, and July. (a) BOT image in May. (b) Ground truth of image in May. (c) BOT image in June. (d) Ground truth of image in June.
(e) BOT image in July. (f) Ground truth of image in July. (g) Class legend.

sensing data. A P-fusion approach is utilized to combine mul-
tiple SVM classifiers, where the weight is calculated by the
SVM-based posterior probability. For the mth SVM classifier, its
probabilistic prediction results p̂m,1(x), p̂m,2(x), . . . , p̂m,C(x)
on a testing sample x are arranged in a descending order. Then,
the weight of this classifier is defined as

wm(x) =

C−1∑
c=1

[p̂m,c(x)− p̂m,c+1(x)] · 1
c
. (11)

Both the P-fusion approach and our proposed fusion approach
calculate weights for classifiers, but the strategies to obtain the
weights are different. Moreover, the P-fusion approach was not
applied to domain adaptation problem in [32].

V. EXPERIMENT RESULTS AND ANALYSIS

A. Data Description

Hyperspectral images from three sensors were exploited
for experiments. One was obtained by Hyperion instrument
of NASA EO-1 satellite, one by the NASA Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) instrument, and
the third by the Digital Globe Worldview-2 satellite. Source
and target data were chosen from different temporal images or
spatially separate images.

The NASA EO-1 satellite collected 242-band data at a 30-m
spatial resolution over a 7.7-km strip covering 357–2576-nm
portion of the spectrum in 10-nm spectral resolution. Uncal-
ibrated and noisy bands that cover water absorption features
were removed, and the remaining 145 bands were used for the
analysis. The experimental data with 1476 × 256 pixels were
acquired over the Okavango Delta, Botswana (BOT) in May,
June, and July 2001. All of them contain nine common classes.
Source and target images can be obtained by choosing any two
of the three images, and then we can get six data pairs for
experiments. Three pseudocolor images and label information
are shown in Fig. 6.

The NASA AVIRIS instrument acquired 224-band data at an
18-m spatial resolution from an altitude of approximately 20 km,
which covers 400–2500-nm portion of the spectrum in 10-nm
spectral resolution. After removing water absorption and low
SNR bands, the remaining 176 bands were used for experiments.
The experimental data with 512 × 614 were collected over the
Kennedy Space Center (KSC), Florida, on March 23, 1996. The
spatially separated images are denoted as KSC1 and KSC2. Both
of them contain ten identified classes. Two pseudocolor images
and label information are shown in Fig. 7.

The Digital Globe Worldview-2 satellite collected 8-band data
including red, green, blue, near-infrared 1, coastal, yellow, red
edge and near-infrared 2 at a 1.8-m spatial resolution, which
covers 400–1040-nm portion of the spectrum. Two images ac-
quired in July 2011 and July 2012 over the same area in Wuhan,
China, were used for the domain adaptation. The images with
ground reference are displayed in Fig. 8. The class names and
the number of samples in each class of these images are listed
in Table I.

We chose ten data pairs for experiments. For BOT data,
six data pairs are denoted as May-June, June-May, May-July,
July-May, June-July, and July-June. For KSC data, two data
pairs were used and named as KSC1-KSC2 and KSC2-KSC1.
For Worldview-2 data, two data pairs (2011-2012 and 2012-
2011) were used for evaluating domain adaptation methods. We
randomly chose 400 samples per class from each Worldview-2
image as source and target data. Twenty replications of the exper-
iments were conducted, and the mean accuracy was calculated
for evaluation. In each data pair, the first and the second datasets
are denoted as source and target domain, respectively.

B. Compared Multiclassifier Fusion Strategies

The proposed neighborhood consistency weighting based
fusion methods were compared with seven multiclassifier fusion
strategies, including Max, Min, Sum, Product, Median [30],
[31], LWE [33], and P-fusion method [32]. For our neighbor
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Fig. 7. KSC data. (a) KSC1. (b) Ground truth of KSC1. (c) KSC2. (d) Ground truth of KSC2. (e) Class legend.

Fig. 8. Worldview-2 data in 2011 and 2012. (a) Worldview-2 image in 2011. (b) Ground truth of image in 2011. (c) Worldview-2 image in 2012. (d) Ground
truth of image in 2012. (e) Class legend.

TABLE I
CLASS NAMES AND THE NUMBER OF SAMPLES OF BOT, KSC, AND WORLDVIEW-2 IMAGES

consistency based weighting method, there are two ways to
select neighbors, and thus both spectral and spatial neighbors are
utilized in the experiments. The MDAF with the two neighbor
selection methods are denoted as MDAF_Spe and MDAF_Spa,
respectively. The MBCF with the two neighbor selection meth-
ods are denoted as MBCF_Spe and MBCF_Spa, respectively.

There is no free parameter in Max rule, Min rule, Sum rule,
Product rule, Median rule, or the P-fusion rule. LWE contains
one parameter, which denotes the number of clusters. The value
of c′ was tested from 2 to 10 as recommended by the reference
[33]. The proposed fusion approach contains one parameter,
which is the number of neighbors in the neighborhood con-
sistency weighting method. When the spectral neighbors were

used, different values of K were tested, which are from 5 to 49
with a step of 2. When the spatial neighbors are utilized, three
different sizes of spatial windows were tested, including 3 × 3,
5 × 5, and 7 × 7.

C. Results of MDAF Approach

In MDAF, we mainly considered four popular feature-based
domain adaptation methods, which are JDA [37], CORAL [14],
SA [26], and MA [38]. We also tested the efficiency of MDAF
on three deep adaptation networks, including deep adaptation
network (DAN) [22], multiple adversarial domain adaptation
network (MADA) [25], and correlation alignment for deep
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TABLE II
OA (%) OF MDAF AND THE COMPARED FUSION STRATEGIES

domain adaptation (D_CORAL) [23]. It should be noted that
the four feature-based methods aim to achieve domain invariant
features. After obtaining the common features, SVM is applied
for classification purpose, although other classifiers can also be
utilized. The selected base classifier will not affect the fusion of
different domain adaptation methods, since it is the diversity of
multiple domain invariant features that results in the effective-
ness of the fusion.

Five experiments were conducted. First, MDAF was em-
ployed on four feature-based domain adaptation methods. Sec-
ond, three of the four feature-based methods were selected to
further illustrate the fusion performance. Third, the classification
accuracy on each class was illustrated to observe how the MDAF
algorithm integrates the advantages of different domain adapta-
tion classifiers. Fourth, the classification maps of Worldview-2
image were presented. Fifth, MDAF was applied to fuse the
results of three deep adaptation networks.

1. MDAF on Four Feature-Based Domain Adaptation Meth-
ods: JDA has two parameters: λ is the regularization parame-
ter and p is the dimensionality of the common feature space.
CORAL is parameter-free. SA has one parameter p, which
denotes the dimensionality of the common feature space. MA
has two parameter: σ is the heat kernel parameter and p is the
dimensionality of the common feature space. The two parame-
ters of JDA were fixed to λ = 0.001 and p = 50. The parameter
of SA was fixed to p = 10. The two parameters of MA were
fixed to σ = 0.01 and p = 50. For Worldview-2 multispectral
images, the dimensionality is fixed to be 8 for all the four
methods. Note that optimal parameters are not selected for
these methods, since the purpose here is to evaluate the fusion
performance. The fusion can be demonstrated to be effective if
the fused accuracy is higher than the accuracy of each individual
classifier.

The overall accuracy (OA) of the four domain adaptation
algorithms and the multiclassifier fusion results with nine fusion

strategies on the ten datasets are listed in Table II. Several
observations can be drawn from comparing these methods.

1) Among the four domain adaptation methods, we can-
not find an optimal one for all the datasets. Different
approaches performance varied on different images. In
general, JDA has the best performance while MA yields
the lowest accuracies on most of the data pairs.

2) Most of the fusion methods outperform the single domain
adaptation classifier, indicating that fusing multiple results
can obtain a more stable and superior performance.

3) Compared with the other fusion methods, MDAF_Spe
and MDAF_Spa yield superior performances on most of
the datasets. It indicates that the proposed fusion strategy
that utilizes the neighborhood consistency based weights
can better evaluate the classifier performance and provide
more effective weights.

4) For KSC data, the proposed MDAF_Spe and MDAF_Spa
achieve the highest average overall accuracies. P-fusion
method obtains the highest accuracy on KSC1-KSC2 data
pairs but its accuracy on KSC2-KSC1 is low. MA do-
main adaptation method achieves the best performance
on KSC2-KSC1.

5) MDAF_Spa obtains higher accuracies than MDAF_Spe
on most of the datasets. The reason may be that spatial
neighbors are more likely from the same class and false
neighbors with similar spectra can be avoided.

2. MDAF on Three Feature-Based Domain Adaptation Meth-
ods: To further evaluate the performance of MDAF method, we
conducted MDAF on three domain adaptation classifiers. Six
BOT data pairs were utilized for illustration. Fig. 9 shows the
results of the selected domain adaptation methods and the fused
results of MDAF, where (a) shows the fused results of CORAL,
SA, MA, (b) illustrates the fused results of JDA, SA, and MA,
(c) shows the performance of fusing JDA, CORAL, and MA,
and (d) plots the fused results of JDA, CORAL, and SA. The
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Fig. 9. MDAF on three feature-based domain adaptation methods and comparison with fusing four methods using BOT images. (a) MDAF on CORAL, SA, and
MA. (b) MDAF on JDA, SA, and MA. (c) MDAF on JDA, CORAL, and MA. (d) MDAF on JDA, CORAL, and SA. (e) Comparison of MDAF on three or four
feature-based domain adaptation methods.

effectiveness of MDAF can be demonstrated no matter what the
three classifiers are. MDAF achieves higher accuracies than any
single classifier on most of the datasets. Moreover, MDAF_Spa
outperforms MDAF_Spe on all the datasets. We can also observe
that for some datasets like June-May and July-May, the accura-
cies of MA are quite low (71.46% and 66.84%). However, the
low accuracies of MA do not affect the performance of fusion.
MDAF_Spa obtained 13%–17% improvements with respect to
MA.

To observe the influence of the selected domain adaptation
methods in MDAF, we picked the results of MDAF_Spa from
Table II and Fig. 9(a)–(d), and plotted them in the same figure in
Fig. 9(e). The fusion results on three classifiers or four classifiers
are similar on most of the datasets. In addition, the MDAF on
four classifiers obtains a slightly superior performance compared
to the results of MDAF on three classifiers. They indicate that
the number of domain adaptation methods do not significantly
affect the fusion performances.

3. Classification Accuracy on Each Class: To better under-
stand how the MDAF algorithm integrates the advantages of
different domain adaptation algorithms, Table III shows the
per-class classification accuracies using BOT June-May data
pair. MDAF_Spa(3) denotes the MDAF_Spa on three feature-
based domain adaptation algorithms (JDA, CORAL, and SA),
while MDAF_Spa(4) denotes MDAF_Spa that fuses all the four
feature-based methods. It can be observed that MA algorithm
obtains the lowest OA. However, MA does not influence the

fusion performance but provides positive effect. By fusing MA
with the other three classifier, MDAF_Spa(4) obtains a further
improvement compared to MDAF_Spa(3). From observing the
accuracies of each class, although the OA of MA is the lowest,
MA obtains much higher accuracies on class 3 and class 7 than
the other three domain adaptation methods. It achieves 15%–
23% improvements on class 3 and 24%–47% improvements
on class 7 with respect to JDA, CORAL, and SA. The good
performance of MA on the two classes provides a positive effect
to the fusion. We can also see that the accuracy of MA on
class 5 is quite low (24.04%), but MDAF is not affected by this
low accuracy and can still obtain 90.16% result on this class.
This is because the other three classifiers obtain satisfactory
classification on class 5, and our fusion method can well evaluate
the effectiveness of these classifiers.

4. Classification Results of the Whole Image by the MDAF
Approach: We chose the Worldview-2 “2011-2012” data pair to
illustrate the classification performance on the whole images. It
is worth noting that the BOT and KSC images were obtained
from upland and wetland areas, which are not easy to visualize
the differences in the whole classification maps. Thus, we only
provided the classification maps of Worldview-2 images. The
classification maps are shown in Fig. 10, where (a)–(d) denote
the results of SVM classification on features generated by JDA,
CORAL, SA, and MA, respectively, and (e) shows the result
of the proposed MDAF_Spa method. Since there is no ground
truth for the whole image, the reference image was obtained by
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TABLE III
PER-CLASS CLASSIFICATION ACCURACY OF BOT JUNE-MAY DATA PAIR WITH THE MDAF ALGORITHM

Fig. 10. Classification results of Worldview-2 “2011–2012” data pair. (a) JDA result. (b) CORAL result. (c) SA result. (d) MA result. (e) MDAF result. (f)
Reference obtained by SVM using target labeled data as training data. (g) Class legend.

the SVM classifier trained on the target labeled data, as shown
in Fig. 10(f). For a better comparison, we selected two local
regions, which are denoted with black and red windows. From
comparing the black windows in Fig. 10(a)–(d), JDA and MA
misclassified many pixels of white roof (yellow) as gray roof
(blue), while CORAL and SA obtained correct classification.
The fused result of MDAF in Fig. 10(e) is correct, indicating
its effective evaluations of the four classifiers. From observing
the red windows, CORAL misclassified many pixels of gray
roof (blue) as red roof (red), and some pixels of forest (green)
were also misclassified as white roof (yellow). MDAF was
not influenced by the errors of CORAL and obtained correct
classification.

5. MDAF on Three Deep Domain Adaptation Networks:
MDAF can be utilized to combine multiple domain adaptation
methods, including both feature-based methods and classifier-
based methods. We employed MDAF to fuse three deep learn-
ing based domain adaptation methods using BOT data in this
experiments. Deep learning-based domain adaptation methods
are most popular nowadays and can simultaneously obtain
aligned features and adaptive classifier. They can be regarded as
classifier-based methods. We selected three deep learning-based
domain adaptation methods, including DAN that utilized MMD
domain adaptation strategy, MADA that employed multiple
domain discriminator to obtain class-wise feature alignment,
and D_CORAL that introduced correlation alignment strategy
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TABLE IV
OA (%) OF DIFFERENT FUSION METHODS ON THREE DEEP ADAPTATION NETWORKS

TABLE V
OA (%) OF MBCF AND COMPARED FUSION STRATEGIES ON THE JDA PRODUCED FEATURES

in a neural network. For the parameters, DAN has a parame-
ter representing the weight of the multiple-kernel MMD loss,
MADA contains a weight of the domain classification loss, and
the D_CORAL includes a weight of the CORAL loss. These
parameters were chosen as the recommended values in [22],
[25], and [23], respectively. The classification results of the
three algorithms and the nine fusion strategies on BOT datasets
are listed in Table IV. Similar observations can also be drawn
as the fusion of feature-based methods. Both MDAF_Spe and
MDAF_Spa outperformed the three adaptation networks, and
obtained superior performance to other fusion methods.

D. Result of MBCF Approach

In MBCF, three base classifiers are utilized, which are LDA
[39], kNN, and SVM. LDA and kNN were implemented by using
the built-in functions of MATLAB. The number of the neighbors
in kNN is fixed to 7 in all the experiments, and it can also be set to
other values which will not influence the MBCF performance.
The SVM classifier was realized by the libsvm toolbox, and
fivefold cross validation is used to obtain the optimal parameters.

MBCF is employed to obtain a superior fused base classi-
fier for domain invariant features, which can be obtained by

any feature-based domain adaptation method. We utilized JDA,
CORAL, SA, and MA to generate the domain invariant features,
employed LDA, kNN, and SVM for classification, and applied
MBCF to fuse the three classification results for each domain
invariant features. In MBCF, the parameter λ = 0.1 in JDA and
σ = 0.2 in MA. The dimensionality is fixed to be 50 for BOT
and KSC hyperspectral data and 8 for Worldview-2 multispectral
images.

The results are listed in Tables V, VI, VII, and VIII. Similar
observations can also be drawn as the MDAF approach. The
base classifiers perform variedly on different datasets, and it is
impossible to select one that is optimal to all the data. All the
nine fusion methods are able to obtain superior performances
than a single base classifier on most of the datasets, suggest-
ing the effectiveness of fusion. MBCF_Spe and MBCF_Spa
obtain higher accuracies than the other seven multiclassifier
fusion strategies on most of the datasets, indicating the advan-
tage of the neighborhood consistency based weighting method.
MBCF_Spa outperforms MBCF_Spe, suggesting the advantage
of using spatial neighbors.

From comparing the results of MBCF on different domain
invariant features, it can be observed that the performance of
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TABLE VI
OA (%) OF MBCF AND COMPARED FUSION STRATEGIES ON THE CORAL PRODUCED FEATURES

TABLE VII
OA (%) OF MBCF AND COMPARED FUSION STRATEGIES ON THE SA PRODUCED FEATURES

MBCF depends on the features. For example, JDA obtains
superior feature alignment performance to MA on BOT data, and
thus MBCF in conjunction with JDA obtains higher accuracies
than MBCF on features of MA. It is worth noting that the
purpose of MBCF is to obtain a superior classification accuracy
by fusing multiple base classifiers, rather than improving the
domain invariant features. In addition, MDAF is regarded to be
more stable, since MBCF relies on the feature generator.

E. Sensitivity Analysis of Parameter in the Neighborhood
Consistency Weighting Strategy

The proposed MDAF or MBCF contains one parameter,
which is the number of neighbors in the neighborhood consis-
tency weighting method. We conducted sensitivity analysis of

the number of spectral neighbor (K) and the size of the spatial
neighborhood window, respectively.

For the spectral neighbors, different values of K were tested,
which are from 5 to 49 with a step of 2. The MDAF_Spe
performed on four feature-based domain adaptation methods
and MBCF_Spe on JDA produced features were chosen for
the analysis. The classification results with different neighbors
K on BOT images were shown in Fig. 11(a), (b). The overall
accuracies of MDAF_Spe and MBCF_Spe on all the data pairs
are stable with the changed values of K, which indicated the
proposed method is insensitive to this parameter. However, since
the adaptive weight is sample-wised, the neighborhood consis-
tency criterion may require different number of neighbors for
different samples. If a target sample has overlapping spectra with
another target class, a small neighborhood is desirable to obtain a
homogeneous neighborhood. If a target sample has spectral drift
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TABLE VIII
OA (%) OF MBCF AND COMPARED FUSION STRATEGIES ON THE MA PRODUCED FEATURES

Fig. 11. Sensitivity analysis of the parameters K and window size in the neighborhood consistency weighting approach. (a) MDAF_Spe on BOT data. (b)
MBCF_Spe on BOT data. (c) MDAF_Spa on BOT data. (d) MBCF_Spa on BOT data.

and become spectrally similar to another source class, it may be
misclassified. In this case, a large neighborhood is preferred to
avoid all its neighbors are misclassified. Although the overall
accuracies on all the target samples indicate the insensitive of
the parameter K, an adaptive number of neighbors should be
more suitable to obtain a superior performance.

For the spatial neighbors, three different sizes of spatial
windows were tested, including 3 × 3, 5 × 5, and 7 × 7.
The MDAF_Spa performed on four domain adaptation methods
and MBCF_Spa on JDA produced features were chosen for
the analysis. The classification results with different window
sizes on BOT images were shown in Fig. 11(c), (d). It can
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be observed that the overall accuracies are slightly improved
with the increasing window sizes. Since the target data used
for quantitative evaluation are from the labeled patches in BOT
images, the large window still has a good spatial homogeneity
and contains more neighbors that can be used to evaluate the
classification consistency. For the other data points in target
image, the spatial window with a large size may not be suitable,
since the homogeneity cannot be guaranteed especially for the
pixels in the boundaries of different land cover types. Therefore,
we suggest that a small spatial window such as 3 × 3 and 5 × 5
is used in the spatial neighborhood consistency based weighting
method.

VI. CONCLUSION

We proposed MDAF and MBCF algorithms for multiclassifier
fusion for domain adaptation. An adaptive samplewise weight
is assigned to each classifier on each sample, which can ex-
ploit the advantages of classifiers on a per-sample basis. We
also proposed a neighborhood consistency criterion on each
target sample to calculate the weight of each classifier. In the
experiments with Hyperion, AVIRIS, and Worldview-2 remote
sensing images, the proposed fusion method not only outper-
formed the single classifier, but also offered better performance
than other seven multiclassifier fusion methods. Results also
demonstrated that effective fusion can integrate the advantages
of different classifiers. A classifier with a low overall accuracy
can still provide positive effect on the fusing results, since it may
have outstanding performance on some classes. Moreover, the
proposed method does not limit the selection of fused classifiers,
although the methods that can provide diverse knowledge are
preferred.

This article focuses on single source domain and single target
domain, and the proposed method should also be suitable for
fusing classification results from multiple source domains. In
addition, using adaptive neighbors and combining other weight-
ing strategies can further improve the fusion performance, which
are our future work.
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