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Sparse and Low-Rank Constrained Tensor
Factorization for Hyperspectral Image Unmixing
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Abstract—Third-order tensors have been widely used in hyper-
spectral remote sensing because of their ability to maintain the 3-D
structure of hyperspectral images. In recent years, hyperspectral
unmixing algorithms based on tensor factorization have emerged,
but these decomposition processes may be inconsistent with phys-
ical mechanism of unmixing. To solve this problem, this article
proposes a sparse and low-rank constrained tensor factorization
unmixing algorithm based on a matrix-vector nonnegative tensor
factorization (MV-NTF) framework. Considering the fact that each
component tensor obtained by the image decomposition contains
only one endmember and the corresponding abundance matrix has
sparse property, a sparse constraint is imposed to ensure the accu-
racy of abundance maps. Since abundance maps also have low-rank
attribute, in order to avoid the strict low-rank constraint in the
original MV-NTF framework, a low-rank tensor regularization is
introduced to flexibly express the low-rank characteristics of the
abundance tensors, making the resulting abundance maps more
in line with the actual scene. Then, the optimization problem is
solved by using the alternating direction method of multipliers.
In experiments, simulated datasets are adopted to demonstrate the
effectiveness of the sparse and low-rank constraints of the proposed
algorithm, and real datasets from different sensors and different
scenarios are used to verify its applicability.

Index Terms—Hyperspectral remote sensing, low-rank, sparse,
tensor factorization, unmixing.

I. INTRODUCTION

HYPERSPECTRAL remote sensing technology can effec-
tively distinguish objects that cannot be detected in the

traditional multispectral remote sensing technology, making the
application of remote sensing technology more refined [1]. A hy-
perspectral sensor can not only use the imager for ground imag-
ing, but also obtain rich spectral information [2]–[4]. However,
due to the limitation of spatial resolution and the homogeneous
mixture of distinct materials, pixels in hyperspectral images are
often mixed. In order to enhance the accuracy of application,
hyperspectral unmixing is widely used. The common unmixing
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algorithms mainly include endmembers extraction, and then
abundance estimation. The performance of endmember extrac-
tion greatly affects the accuracy of abundance extraction. For this
problem, unsupervised methods of obtaining both endmembers
and abundance matrices have become the focus of research.
In recent years, many related algorithms have been developed
[5]–[9].

One of the most popular algorithms is sparse unmixing by
variable splitting and augmented Lagrangian (SUnSAL) in [10],
which can estimate abundances without extracting endmembers.
The core idea of SUnSAL is to find a few pure spectral vectors
that can characterize the image from a prior spectral library as
endmembers, and use these endmembers to find the correspond-
ing abundance matrix. In general, the number of endmembers in
a spectral library is significantly large, so the abundance matrix
has a sparse feature. Based on this method, spatial and spectral
information are applied to improve the accuracy of unmixing,
SUnSAL-TV considers the spatial neighborhood information
and introduces a TV term with SUnSAL [11], [12], which
improves the accuracy of hyperspectral unmixing, but lacks
effective constraints on abundance coefficients. CLSUnSAL
uses a global regularization term, but it does not consider the
influence to the row sparseness, due to difference of ground ob-
jects in each pixel [13]. Cluster-CLSUnSAL takes into account
the differences in endmembers, but it is too time-consuming
[14]. These sparse unmixing algorithms improve the accuracy of
unmixing to a certain extent [15]. Alternating direction method
of multipliers (ADMMs) for sparse and low-rank unmixing
ADSpLRU impose low-rank and sparse constraints on the abun-
dances [16]. However, due to the variability of real scenes, there
are differences between the endmembers of an existing spectral
library and real scenes, which makes it difficult to accurately
describe hyperspectral data and restricts the effectiveness of
sparse unmixing algorithms in practical applications.

Another common algorithm is nonnegative matrix factor-
ization (NMF) for unmixing [17]. The matrix decomposition
method can obtain an endmember matrix and the corresponding
abundance matrix simultaneously, in order to meet the physi-
cal meaning of unmixing, abundance values are nonnegative,
and this decomposition with the nonnegative constraint can
be achieved by the NMF. The objective function of the NMF
method is nonconvex, and the constrained regular terms can
more effectively reduce the solution space and avoid local opti-
mal solutions [18], [19]. According to row sparseness in abun-
dance matrix, the l1-norm constraint is used to reinforce sparsity.
In addition, since the same endmember is only distributed in
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individual pixels, its abundances show row and column sparsity,
and imposing l2-norm constraint to the abundance matrix can
reinforce the sparsity property [20]–[25]. On the other hand, con-
sidering local spatial information, neighborhood regions have
similar features and edge areas have different features, distance
can be used to measure the relationship between abundances.
[26]. Based on this idea, the graph theory is embedded in the
NMF model to maintain the local geometric structure, so that
high similarity pixels are combined together to improve the
performance of unmixing [27]. The graph-based model can only
simply express the relationship between two pixels, whereas
the hypergraph-based model can represent the higher order
relationship between multiple pixels, and the hypergraph model
can more accurately express the relationship between spatial
and spectral similarity [28]. It can be seen from the preceding
NMF-based unmixing algorithms that the prior information
used spectral and spatial constraints can improve the unmixing
accuracy. However, how to effectively establish the spectral–
spatial joint relationship and express data structural information
comprehensively and accurately is still a challenging problem.

Under the matrix decomposition framework, spectral and spa-
tial structures are realized through the corresponding constraints,
but the complete hyperspectral image structure cannot be trans-
ferred. In order to overcome the limitations of NMF and con-
strained NMF, matrix factorization is extended to tensor factor-
ization. Compared with matrix-based hyperspectral unmixing,
tensor factorization is a more natural and structured model. The
third-order tensor data structure preserves spatial information
without distortion, and is more suitable for hyperspectral data.
Zhang et al. first introduced nonnegative tensor factorization into
the spectral unmixing problem to reduce a hyperspectral image
into three factor matrices [29] and the Khatri–Rao product is
used to approximate the original tensor image. This approach
preserves nonnegativity characteristic of the abundances. How-
ever, this method requires prior information on the tensor rank,
and it is a nondeterministic polynomial problem. Since then,
there have been fewer research works on hyperspectral unmixing
algorithms based on tensor factorization. In recent years, some
tensor-based unmixing algorithms have appeared. Veganzones
et al. represent big data hyperspectral time series or multiangle
acquisition as tensors, a nonnegative CP decomposition algo-
rithm based on compression is proposed to effectively perform
hyperspectral unmixing [30], but the hyperspectral image is still
represented by matrix. Tucker decomposition decomposes the
tensor into the product of the core tensor and the matrices in
each mode since decomposed matrices do not conform to the
physical mechanism of unmixing [31]. By combining block term
decomposition (BTD), these problems are effectively overcome,
and a matrix-vector nonnegative tensor factorization (MV-NTF)
unmixing model is established. MV-NTF algorithm decomposes
a hyperspectral image into several component tensors, each of
which is the outer product of matrix and vector, representing
endmember and abundance [32], respectively. Based on this
model, Xiong et al. introduced the idea of super pixel into
MV-NTF, where both global and local information were taken
into consideration, avoiding noise interference [33]. Another
limitation of the MV-NTF is the lack of constraints that ensure

endmembers and abundances are correctly factorized in their re-
spective tensors. Thus, Feng and Wang imposed three constraints
on the impervious surface extraction [34]. In summary, there is a
certain difference between the process of tensor decomposition
and the unmixing process. How to use tensor decomposition to
decompose the hyperspectral images and make it conform the
physical mechanism of mixed pixels is still an existing problem.

To sum up, sparse unmixing can directly estimate abundances
without extracting an endmember matrix, and actual scene
features are affected by the environment, which makes true
endmembers and those in the spectral library different, thereby
affecting unmixing accuracy. NMF unmixing can decompose an
image data matrix into endmember and abundance matrices, but
spectral and spatial constraints need to be added to compensate
for the loss of structural information. Tensor decomposition
methods can be used for unmixing without losing the 3-D
structure of a hyperspectral image, but the results of some
decomposition methods may not have physical significance.
Therefore, in the case of maintaining image structure, how to use
spatial–spectral characteristics to effectively obtain endmem-
bers and fractional abundances is the focus of this study.

In this article, a sparse and low-rank tensor constrained
factorization (SPLRTF) method for hyperspectral unmixing is
proposed. Under the framework of MV-NTF unmixing model,
considering that each pixel has only a few types of endmembers
and inherent data structural information, the proposed method
will focus on imposing low-rank and sparse constraints in the es-
timation process in order to obtain accurate endmember spectra
and fractional abundance results.

Compared with other related algorithms, such as ADMM
for sparse and low-rank unmixing algorithm (ADSpLRU), AD-
SpLRU algorithm sets a sliding window, there are few end-
members in the window, the abundance matrix can be sparsely
represented. Due to similarity of endmembers in the window, the
abundance matrix also has the characteristics of low rank. In this
article, two constraints are imposed in the tensor decomposition
process, each component tensor decomposed has only one type
of endmember, and its corresponding abundance has only a few
nonzero values, which is sparse. The endmember only exists in
some pixels of the image and also has the characteristics of low
rank. The two algorithms have different understandings of sparse
and low rank. The contributions of this article are summarized
as follows.

1) Regularization for sparsity is incorporated into the MV-
NTF framework during the abundance estimation process,
making the obtained abundance closer to the true one.
This takes advantage of abundance sparsity. Different
from ADSpLRU algorithm, this algorithm considering
that endmembers in the component tensors obtained by
decomposition only account for a small part of all the
endmembers, so the abundance is sparse. The results show
that this constraint effectively improves the accuracy of
hyperspectral unmixing.

2) A low-rank abundance tensor regularization term is intro-
duced in the MV-NTF model, which can be capable of
representing the inherent structure of spectra. It is demon-
strated from simulated experiments that the imposition
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of low-rank constraint on the estimation process helps to
improve the unmixing results.

The rest of this article is organized as follows. Notations and
preliminaries are briefly introduced in Section II, and Section III
introduces the proposed algorithm and optimization method in
detail. Section IV uses constructed simulation datasets and three
real scene hyperspectral images to illustrate the performance of
the proposed algorithm by comparison with commonly used
algorithms. Section V discusses the merits of our algorithm.
Finally, Section VI concludes this article.

II. NOTATIONS AND PRELIMINARIES

In this article, scalars are denoted by nonbold italic letters, i.e.,
x, vectors are denoted by lower case letters, i.e., x, matrices are
written in bold capitals letters, i.e., X, and tensors are denoted
by calligraphic upper case letters, i.e., X .

A tensor of order N, which corresponds to an N-dimensional
data array, is denoted as X ∈ RI1×···×In×···×IN . The elements
in an nth order tensor are identified by an n-tuple of subscripts,
i.e., xi1,i2,...in . A scalar is a tensor of order zero, a vector is a
first-order tensor, and a matrix is a second-order tensor. Besides,
some necessary notations and preliminaries about tensors are
introduced as follows.

Definition 1 (Fiber): Fibers are operations that extract vectors
from tensors. If one of the dimensions is fixed in a matrix, rows
or columns are generated. Similar to matrix operation, the fiber
is obtained by fixing other dimensions and retaining only on
dimension.

Definition 2 (Slice): Slice is the operation of extracting a
matrix from a tensor. If two dimensions are retained in the tensor,
the other dimensions are given a matrix, which is a slice of the
tensor.

Definition 3 (Mode-n Unfolding): Different from the matrix
composed of rows and columns, the N-order tensor has N modes.
Correspondingly, unfolding the tensor in each mode yields a
matrix. For example, a third-order tensor Y ∈ RI×J×K can be
unfolded in three ways, three matrices are defined by(

Y(1)

)
(j−1)K+k,i

= yijk(
Y(2)

)
(k−1)I+i,j

= yijk(
Y(3)

)
(i−1)J+j,k

= yijk. (1)

Definition 4 (Inner Product): Given two tensors X ,Y ∈
RI1×I2×···×IN , their inner product is the sum of the elements
of the corresponding elements, i.e.,

〈X ,Y〉 =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

xi1i2...iN
yi1i2...iN . (2)

Definition 5 (Outer Product): Given two tensors X ∈
RI1×I2×···×IN ,Y ∈ RJ1×J2×···×JM , their outer product is a
higher order tensor X ◦ Y ∈ RI1×I2×···×IN×J1×J2×···×JM , and
its elements are given by

(X ◦ Y)i1i2...iN j1j2...jM
= xi1i2...iN yj1j2...jM . (3)

Definition 6 (Kronecker Product): Kronecker product defines
the operation on two matrices A ∈ RI×J and B ∈ RM×N

A⊗B =

⎡
⎢⎢⎢⎣
a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

⎤
⎥⎥⎥⎦ ∈ RIM×JN . (4)

Definition 7 (Khatri–Rao Product): Khatri–Rao product de-
fines the operation on two matrices with the same number of
columns A ∈ RI×K and B ∈ RJ×K

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

] ∈ RIJ×K . (5)

Let A = [A1 . . .AN ] and B = [B1 . . .BN ]be two block
matrices with N submatrices, and the partitionwise Khatri–Rao
product be defined as

A�B =
[
A1 ⊗B1 A2 ⊗B2 · · · AN ⊗BN

]
. (6)

III. PROPOSED METHOD

A. Problem Formulation

Let Y ∈ RL×Mdenote an L-spectral bands hyperspectral im-
age with M pixels, and N endmembers. A matrix-based unmixing
algorithm is to directly decompose an original image matrix into
endmember and abundance matrices. The unmixing process can
be expressed as

Y = AX+E (7)

where A ∈ RL×N stands for the endmember matrix, X ∈
RN×M denotes the fractional abundance, and E ∈ RL×M rep-
resents the measurement errors. The linear mixing model is
commonly used to solve (7). Qian et al. proposed an MV-NTF
model that combines BTD and Tucker decomposition [32], and
it has been proved to be effective in hyperspectral unmixing. This
approach decomposes the 3-D hyperspectral image into the sum
of N component tensors, each component is the outer product
of a matrix and vector, representing abundance and endmember,
respectively. It can be formulated as

X =

N∑
n=1

Xn + E =

N∑
n=1

En ◦Cn + E =

N∑
n=1

AnB
T
n ◦Cn + E

(8)
where X ∈ RI×J×K denotes the 3-D hyperspectral image with
I × J pixels and K bands, and Xn is the nth component tensor.
En ∈ RI×J represents the abundance map of the nth endmember
made up of two matrices An ∈ RI×NL and Bn ∈ RJ×NL, L is
the rank of abundance maps, Cn is the nth endmember, and E
denotes the error item.

Unmixing with the MV-NTF model is to decompose a 3-D
hyperspectral image into the sum of several component tensors,
and each component tensor is the outer product of abundance
and endmember matrices. For each component tensor, it contains
only one endmember. When it is decomposed into the outer
product of two matrices, each abundance matrix contains only
a small number of nonzero values, which is characterized by
sparseness. This sparsity can be used to achieve better results, so
the sparsity constraint is imposed in the decomposition process.



ZHENG et al.: SPARSE AND LOW-RANK CONSTRAINED TENSOR FACTORIZATION FOR HYPERSPECTRAL IMAGE UNMIXING 1757

The rank of the matrix or the tensor can represent the inherent
spectral characteristics. Thus, low-rank representation uses rank
as sparse measure. For each component tensor, there is only
one endmember. Most of the pixels in this tensor are similar.
The component tensor contains less information and its rank
is low. According to this spatial feature information, using a
kernel norm to perform low-rank constraints can obtain more
effective unmixing accuracy. Each component tensor is the outer
product of an endmember and its abundance, so the abundance
correlation and spectral correlation are high. Each abundance
tensor is constrained by low rank, which can better represent
the characteristics of each corresponding endmember. The reg-
ularization parameter is used to flexibly change the low-rank
constraint on estimated abundance, which can fully express the
fine structure and details beyond the low-rank structure [35].

Combining the aforementioned two characteristics, a new
tensor decomposition unmixing algorithm is proposed.

B. Proposed Model

For each hyperspectral image χ , MV-NTF model can be used
to decompose it into the sum of several tensor components, the
process can be expressed by the following formula:

min
χ

∥∥∥∥∥χ−
N∑

n=1

χn

∥∥∥∥∥
2

F

(9)

whereχ ∈ RI×J×Kdenotes the hyperspectral image and N is the
number of tensor components, which is equal to the number of
endmembers. According to the decomposition principle of the
MV-NTF model, each tensor component can be decomposed
into the outer product of two matrices, three-mode unfolding of
the hyperspectral image is used for matrix representation

XIJ×K = [(A1 �B1) 1L1 · · · (AN �BN ) 1LN ] ·CT (10)

XJK×I = (B�C) ·AT (11)

XKI×J = (C�A) ·BT . (12)

The . operator requires that the matrix involved in the opera-
tion must be of the same dimension. The operation rule of the .
operator is to multiply each corresponding element one by one.
The objective function (9) becomes

min
A,B,C

∥∥∥∥∥χ−
N∑

n=1

AnBn
T ◦ cn

∥∥∥∥∥
2

F

(13)

where cn is the nth endmember vector and AnBn
T is the

corresponding abundance matrix. As previously stated, using
the intrinsic structural characteristics is helpful to improve the
unmixing accuracy. Based on the discussion in Section III-A,
by imposing the low-rankness and sparsity property on the
abundance map, the sparse and low-rank tensor decomposition
(SPLRTF) model is introduced as

min
A,B,C

∥∥∥∥∥χ−
N∑

n=1

AnBn
T ◦ cn

∥∥∥∥∥
2

F

+ λ

N∑
n=1

∥∥AnBn
T
∥∥
0
+ τ

N∑
n=1

rank(AnBn
T ) (14)

where λ, τ ≥ 0 are parameters that control the tradeoff between
the sparsity and rank regularization terms. The first term makes
the obtained endmembers and abundance matrices as close to the
original image as possible. The l0−norm is an NP-hard problem,
which is difficult to solve, and estimating the rank of matrix is
also an unsolved problem. In order to solve formula (14), the
formula is rewritten as

min
A,B,C

∥∥∥∥∥χ−
N∑

n=1

AnBn
T ◦ cn

∥∥∥∥∥
2

F

+ λ

N∑
n=1

∥∥AnBn
T
∥∥
1
+ τ

N∑
n=1

∥∥AnBn
T
∥∥
∗. (15)

Using convex relaxation methods, the sparsity and low-
rankness constraint terms are replaced with l1−norm and nuclear
norm, respectively. Being parameterized, (15) becomes flexible
enough to impose either one of the two constraints on abundance.
For example, by setting λ = 0, the low-rank constraint is only
imposed to the abundance map, which is named LRTF algorithm,
whereas setting τ = 0 is tantamount to impose the sparsity
property, and reduced to SPTF algorithm.

The proposed model provides an advantage over either low-
rank or sparse estimation methods, which will be demonstrated
in Section IV.

C. Optimization Procedure

We use one of the common convex optimization tools to
solve this function, which is an ADMM-based technique. The
optimization problem can be divided into several subproblems,
each of which is solved by a different method during iteration.
In the iterative process, when solving one of the variables, other
variables need to be fixed.

By introducing some auxiliary variables for A and B, the
original problem is reformulated into its ADMM form

min
U1,V1,U2,V2

∥∥∥∥∥χ−
N∑

n=1

AnBn
T ◦ cn

∥∥∥∥∥
2

F

+ λ
∥∥U1V1

T
∥∥
1
+ τ

∥∥U2V2
T
∥∥
∗

s.t U1 −A = 0,V1 −B = 0,U2 −A = 0,V2 −B = 0.
(16)

Introducing auxiliary variablesU1,V2,U1, and V2, the aug-
mented Lagrangian form of formula (16) is

L = min
An,Bn,Cn,U1,V1,U2,V2

1

2

∥∥∥∥∥χ−
N∑

n=1

AnBn
T ◦ cn

∥∥∥∥∥
2

F

+ λ
∥∥U1V1

T
∥∥
1

+ τ
∥∥U2V2

T
∥∥
∗ + tr

[
DT

1 (U1 −A)
]
+ tr

[
DT

2 (U2 −A)
]

+ tr
[
DT

3 (V1 −B)
]
+ tr

[
DT

4 (V2 −B)
]

+
μ

2

(
‖A−U1‖2F + ‖B−V1‖2F

+ ‖A−U2‖2F + ‖B−V2‖2F
)

(17)
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where D1,D2,D3, and D4are the Lagrange multipliers, and
μ>0 is a positive penalty parameter and its controls the balance
between the original and auxiliary variables.

Let U = [U1 U2 ]
T and V = [V1 V2 ]

T , then (17) can be
written in an equivalent form as

L = min
An,Bn,Cn,U1,V1,U2,V2

1

2

∥∥∥∥∥χ−
N∑

n=1

AnBn
T ◦ cn

∥∥∥∥∥
2

F

+ λ
∥∥U1V1

T
∥∥
1

+ τ
∥∥U2V2

T
∥∥
∗ +

μ

2

(
‖A−U−Λ‖2F + ‖B−V −Λ‖2F

)
(18)

where Λ = [ΛT
1 ΛT

2 ΛT
3 ΛT

4 ]T ,Λi = (1/μ)Di, i = 1, . . . , 4,
contains the scaled Lagrange multipliers.

Fix other variables, solve the Lagrangian function for only
one of them, and update the variables separately in the same
way.

Update A: In the iterative process of solving A, a Mode-I
unfolding of the hyperspectral image tensor is used for calcula-
tion. Removing the unrelated items of A, the subproblem for A
becomes

f (A) = min
A

1

2

∥∥XJK×I − (B�C) ·AT
∥∥2
F

+
μ

2

(
‖A−U−Λ‖2F

)
. (19)

Taking the partial derivative with respect to A, the update rule
for A is obtained

A← A. ∗ (χTS+ μ(U1 +Λ1 +U2 +Λ2))./A(STS+ 2μI)
(20)

S = B ◦C. (21)

Update B: Unfolding the image tensor into matrix of Mode-II,
the subproblem of optimization for B is similar to A

f (B) = min
B

1

2

∥∥XKI×J − (C�A) ·BT
∥∥2
F

+
μ

2

(
‖B−V −Λ‖2F

)
. (22)

Taking the partial derivative with respect to B, the update rule
for B is obtained

B← B. ∗ (χTS+ μ(V1 +Λ3 +V2 +Λ4))./B(STS+ 2μI)
(23)

S = A ◦C. (24)

Update C: Unfolding the image tensor into matrix of
Mode-III, and extracting all the items related to C, the subprob-
lem of optimization for C is written as

f (C) = min
C
‖XIJ×K − [(A1 �B1) 1L1

· · · (AN �BN ) 1LN ] · CT
∥∥2
F
. (25)

Taking the partial derivative of C, the update rule for C is

C← C. ∗ χTS./(CSTS) (26)

S = [(A1 �B1) 1L · · · (AR �BR) 1L] . (27)

Algorithm 1: The Proposed SPLRTF Algorithm.
Inputs: A hyperspectral imageχ Select parameters λ, τ
Initialize A, B, C, U, V
Repeat
A←
A. ∗ (χTS+ μ(U1 +Λ1 +U2 +Λ2))./A(STS+ 2μI)
B←
B. ∗ (χTS+ μ(V1 +Λ1 +V2 +Λ2))./B(STS+ 2μI)
C← C. ∗ χTS./(CSTS)
U1 = SHR(λ‖U1V1

T ‖1 + μ
2 ‖A−U1 −Λ1‖2F )

V1 = SHR(λ‖U1V1
T ‖1 + μ

2 ‖B−V1 −Λ1‖2F )
U2 = SV T (τ‖U2V2

T ‖∗ + μ
2 ‖A−U2 −Λ2‖2F )

V2= SVT(τ‖U2V2
T ‖∗ + μ

2 ‖B−V2 −Λ2‖2F )
Λ1 = Λ1 −A+U1

Λ2 = Λ1 −A+U2

Λ3 = Λ3 −B+V1

Λ4 = Λ3 −B+V2

Until convergence
Output: Abundance tensor ABT and endmember matrix C

Update U1 and V1 : The subproblems of U1 and V1 are
similar. The subproblems of U1 and V1 are

f (U1) = argmin λ
∥∥U1V1

T
∥∥
1
+

μ

2
‖A−U1 −Λ1‖2F

(28)

f (V1) = argmin λ
∥∥U1V1

T
∥∥
1
+

μ

2
‖B−V1 −Λ1‖2F .

(29)

The iterative shrinkage thresholding algorithm can be used to
solve these subproblems.

Update U2 and V2 The subproblems of U2 : and V2 are also
similar. The subproblems of U2 and V2 are

f (U2) = argmin τ
∥∥U2V2

T
∥∥
∗ +

μ

2
‖A−U2 −Λ2‖2F

(30)

f (V2) = argmin τ
∥∥U2V2

T
∥∥
∗ +

μ

2
‖B−V2 −Λ2‖2F .

(31)

The singular value thresholding method can be used to solve
these subproblems.

UpdateΛ: The scaled Lagrange multipliers update rules are

Λ1 = Λ1 −A+U1 (32)

Λ2 = Λ1 −A+U2 (33)

Λ3 = Λ3 −B+V1 (34)

Λ4 = Λ3 −B+V2. (35)

The iteration stop criterion setting is similar to MV-NTF.
There are two stopping criteria for optimization in our algo-
rithms. When the number of iterations is greater than 3000,
or the change of the objective function is less than 1e-4, the
optimization process will stop. In the simulation data experi-
ment, the initial endmember matrix C and abundance matrix
ABT are known. For real data, the initial endmember matrix C
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and abundance matrix ABT are obtained by VCA [36] or FCLS
[37] algorithms, and A and B are obtained by the NMF-based
decomposition of abundance matrix ABT .

The proposed algorithm, referred to as the SPLRTF unmixing
algorithm, is summarized in Algorithm 1.

IV. EXPERIMENTS

Both simulated and real image data experiments were con-
ducted to validate the performance of the proposed SPLRTF.

We implemented seven related hyperspectral unmixing meth-
ods for comparison, i.e., the popular sparse unmixing algorithm
SUnSAL, simultaneously sparse and low-rank unmixing method
ADSpLRU, MV-NTF algorithm, subspace structure regularized
NMF algorithm (in experiments, this algorithm is abbreviated
as Zhou’s method)[38], kurtosis-based smooth NMF algorithm
KbSNMF[39], and also compare it with only sparse or low-rank
constraint algorithms SPTF and LRTF to prove the ability of
these two constraints in tensors.

Spectral angle distance (SAD) is used to evaluate the dis-
similarity of nth real endmember signature cn and its estimated
signature ĉn, which is defined as

SADn = arccos

(
cTn ĉn

‖cn‖ ‖ĉn‖
)
. (36)

The root-mean-square error (RMSE) measures the error be-
tween nth abundance map En and nth estimated abundanceÊn

[40], which is defined as

RMSEn =

√
1

M

∥∥∥En−Ên

∥∥∥2
2

(37)

where M is the total pixel number of the image, En denotes nth
ground truth abundance, and Ên is the nth estimated abundance.

Signal-to-reconstruction error (SRE) is used to evaluate the
unmixing accuracy between original image X and mixed image
X̂ , which is defined as

SRE =10log10

E
[
‖X‖22

]
E

[∥∥∥X− X̂
∥∥∥2
2

] . (38)

A. Simulated Data Experiments

Nine pure signatures are selected from the USGS library
to generate endmembers, which contain 224 bands, covering
wavelengths ranging from 0.38 to 2.5 μm. The abundance ma-
trix is generated according to actual needs, satisfying the sum
to one and nonnegative constraints. The abundance maps are
constructed using the method in [41]. The LMM model can be
used to obtain 3-D simulated hyperspectral images. To simulate
different types of hyperspectral image data, three different cases
are constructed to test the performance of proposed method. The
details are listed as follows.

Case 1: In order to test the robustness of the proposed algo-
rithm, different degrees of Gaussian noise are added
to the clean image cube. For simplicity, considering
SNR levels of 20, 25, 30, 35, 40, 45, 50 dB, the
simulated image data have different noise levels.

Fig. 1. Performance of SPLRTF when λ and τ take values from 0.001 to 1.
(a) RMSE. (b) SRE.

Case 2: Different images have different number of spectral
signatures in the real scenes. In order to verify the
applicability of the proposed algorithm to different
scenes effectively, hyperspectral images are gener-
ated by selecting 3, 6, or 9 endmembers from the
USGS library.

Case 3: Different pixel numbers of images show different
spectral, spatial, and spectral–spatial structure, so
five kinds of pixel number cubes are constructed to
evaluate the unmixing algorithm performance.

Parameter Setting: In the proposed SPLRTF algorithm, two
constraints were imposed on the abundance map, and there are
two regularization parameters and one Lagrange parameter. The
purpose of this analysis is to find a better parameter range for the
convenience of subsequent simulation data experiments. After
obtaining the initialization data, using the case of SNR = 25 dB,
first fix one of the parameters μ = 0.1, both regularization
parameters were changed from 0, 1e-3, 1e-2, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9 to 1. The influence of different SNR of
the proposed algorithm will be discussed in Section IV. The
proposed SPLRTF algorithm was tested using different values
of λ and τ . Fig. 1(a) shows the RMSE results of algorithm when
the regularization parameters change, and Fig. 1(b) shows the
SRE results. The smaller the RMSE, the larger the SRE, the
better the effect of the unmixing.

The parameter λ shows the sparse constraint on unmixing
performance, and τ shows the low-rank constraint on unmixing
performance. From the figures, SRE results as a whole show a
decreasing trend with the increase of λ and the decrease of τ ,
and when τ equals 0.01 and λ equals 0.9, the SRE is the largest.
It can be discovered that RMSE results are the smallest when λ

is in the range of 0.4 to 0.7 and τ is in the range of 0.4 to 0.6.
When λ is 0, which is equivalent to removing the sparse term,
the proposed algorithm becomes SPTF; when τ equals 0, it is
equivalent to removing the low-rank term, and the algorithm
becomes LRTF. In subsequent experiments, we will also add
these two algorithms to the comparative experiments. When
λ = 0 and τ = 0, the proposed SPLRTF method is simplified
into MV-NTF model, and the RMSE and SAD change trends
show that these two constraints have significant effects. In order
to get better results, we set λ to 0.4 and τ to 0.7 in the following
simulated data experiments.
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Fig. 2. Performance of SPLRTF obtained by different values of μ. (a) RMSE. (b) SAD. (c) SRE.

TABLE I
RMSE, SAD, AND SRE RESULTS OF COMPARISON ALGORITHMS ON SIMULATED DATA

According to the aforementioned experiments, using the case
of SNR = 25 dB, fixing λ = 0.7 and τ = 0.4, and μ being
changed from 0, 1e-3, 1e-2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9 to 1, Fig. 2(a) illustrates the RMSE result changes, Fig. 2(b)
shows the SAD changes, and Fig. 2(c) shows the change trend
of SRE results. When μ is 0.9, both RMSE and SAD reach the
minimum value, and SRE is the maximum. Therefore, we set μ
to 0.9 in the following simulation experiments.

Experiment with the parameters set above compares the pro-
posed algorithm with other seven algorithms. Since SUnSAL
and ADSpLRU algorithms can obtain abundance matrices with-
out endmember matrices, only the SRE and RMSE results are
compared. It can be seen from Table I that the RMSE value of
the SPLRTF algorithm is much lower than other comparison
algorithms, that is, the estimated abundance maps obtained by
unmixing are closest to the real data and the SRE result is larger
than the others, which means the proposed algorithm has the
best accuracy. The SAD result of SPLRTF algorithm is the low-
est among comparison algorithms, indicating that the obtained
endmembers are the most similar to the real endmembers.

After comparing these seven algorithms with the proposed
algorithm in this article using simulated hyperspectral data, it
can be found that the unmixing performance of the SPLRTF
algorithm is better than MV-NTF, SUnSAL, ADSpLRU, Kb-
SNMF, Zhou’s method, SPTF, and LRTF algorithms.

B. Real-Data Experiments

Jasper, Samson, and Chang’E-3 VNIS datasets were used for
real-data experiments. These real scene datasets were collected
by different sensors, with different endmembers and different
sizes, which can verify the applicability of the proposed algo-
rithm. The parameter settings of the comparison experiments
refer to the original article. The parameters of SPLRTF algorithm
use grid search method to select the best parameters. Three
indicators are used to evaluate the performance. ADSpLRU and

Fig. 3. (I-a) 58th band image of Jasper data. (II-a) Four ground truth end-
members of Jasper data. (b) Abundance map and endmember spectral of road.
(c) Abundance map and endmember spectral of water. (d) Abundance map and
endmember spectral of tree. (e) Abundance map and endmember spectral of soil.

SUnSAL algorithms can obtain the abundance matrices directly
from the spectral library without calculating the endmember
matrices, therefore, only RMSE results can be calculated for
these two algorithms.

1) Jasper Ridge Data: Jasper Ridge data have been widely
used in performance testing of hyperspectral image unmixing.
Jasper hyperspectral image data were collected on Jasper Ridge
Natural Reserve in California, USA. Jasper Ridge contains
512 × 614 pixels, 224 bands ranging from 380 to 2500 nm
recorded, and the spectral resolution is 9.46 nm. After removing
1–3, 108–112, 154–166, and 220–224 bands, there are 188
bands. The 58th band image of the subimage of Jasper Ridge
data is shown in Fig. 3(I-a), which is composed of 100 × 100
pixels. There are four endmembers in this subimage: tree, soil,
water, and road, the ground truth endmembers and abundance
maps are shown in Fig. 3(b)–(e) [42].

The endmembers obtained by SPLRTF are given in Fig. 4,
from which ground truth endmembers and estimated endmem-
bers can be seen intuitively. The SAD results of SPLRTF and
comparison algorithms are shown in Table II , the best results of
each algorithm are bolded. In general, the SAD value of SPLRTF
is the smallest, which means that the endmember accuracy is
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Fig. 4. Four endmembers obtained by SPLRTF on Jasper Data. Solid lines
represent the ground truth endmembers and dotted lines represent estimated
endmembers.

TABLE II
SAD RESULTS OF COMPARISON ALGORITHMS ON JASPER DATA

TABLE III
SRE RESULTS OF COMPARISON ALGORITHMS ON JASPER DATA

the highest. For the endmembers, adding sparse or low-rank
constrains can yield better results than the original MV-NTF
algorithm. As shown in Table III, the SRE is greater than other al-
gorithms, which demonstrates the imposed sparse and low-rank
constraints on the tensor decomposition can improve unmixing
performance. The RMSE results of the proposed method is
smaller than the original tensor decomposition method MV-NTF
and average RMSE of four abundances of the SPLRTF algorithm
is small than other comparison algorithms as shown in Table IV.
The abundance maps are given in Fig. 5.

2) Samson Data: Samson hyperspectral image is obtained
by Florida Environment Research Institute using Samson sensor.
These data contain 156 bands from 401 to 889 nm, and its spec-
tral resolution is 3.13 nm. The original image size is 952× 952
pixels, in order to reduce the experimental time, a subimage
with 100× 100 pixels is used for unmixing. This subimage
contains three types of features: soil, water, and trees. Fig. 6(I-a)
shows a band image of Samson data. Besides, the ground truth

endmembers and the corresponding abundance maps are shown
in Fig. 6(b)–(d) [42].

The differences between endmembers obtained by SPLRTF
and ground truth endmembers are shown in Fig. 7. The SAD
results are given in Table V, from which it can be seen that the
average value obtained by SPLRTF has better results. Table VI
shows that the SPLRTF algorithm has a higher SRE value than
the MV-NTF algorithm, which means that the unmixing result of
SPLRTF algorithm is better. Table VII shows that compared with
SUnSAL, ADSpLRU, MV-NTF, Zhou’s method, and KbSNMF
algorithms, the proposed algorithm still performs the best, and
both SPTF algorithm and LRTF algorithm yield higher accuracy
than the original MV-NTF algorithm, reflecting the sparse and
low-rank constraints play an important role in unmixing. Fig. 8
shows the abundance maps of Samson data obtained by four
algorithms and the results of each algorithm can be seen from
the figures clearly.

3) Chang’E-3 VNIS Data: The hyperspectral scene under
experiment is a portion of the young lava plain of northern
Imbrium by the VNIS sensor over lunar surface. In the real-data
experiments, visible and near-infrared channel with a spectral
range of 450 to 950 nm are used. In this spectral range, the main
minerals of the lunar surface can be effectively identified.

All VNIS hyperspectral images acquired by Chang’E-3 are
marked on Fig. 9 [43], including the images of the four points
CD5, CD6, CD7, and CD8 with the size of 256× 256 and the
band number of 100. The spatial resolution is about 0.5 mm and
the spectral interval is 5 nm. In order to unmix the hyperspectral
images, the level 2B VNIS data in PDS format were first reduced
by bad line, bad points, and flat field corrections, and were
then converted into reflectance values [44]. In the experiments,
without any prior information, HFC was adopted to estimate the
number of endmembers, and VCA was used to initialize data.

The estimated endmembers of four images are shown in
Fig. 10. For Chang’E-3 VNIS datasets, the ground truth end-
members and abundances are unknown, and the SRE results can
only be calculated to compare the unmixing performance of dif-
ferent algorithms on these data. The SRE comparison is shown
in Table VIII, where the SRE results of the SPLRTF method
for different images are the largest. Either the algorithm with
only sparse constraint SPTF or only low-rank constraint LRTF
is larger than the SRE results of MV-NTF, indicating that these
two constraints are effective for hyperspectral unmixing. The
abundance maps obtained by four images are shown in Fig. 11.
The colorbar indicates the proportion of each endmember, and
the abundance of each endmember can be clearly seen.

Using these three hyperspectral images from different sensors
to conduct experiments, it can be seen from the SRE results
and RMSE results that the proposed algorithm performs better
on these three data than other comparison algorithms, which
shows the effectiveness of the proposed algorithm to a certain
extent. The abundance maps obtained by the proposed algorithm
SPLRTF using three hyperspectral images can clearly reflect the
distribution and proportion of each endmember.

V. DISCUSSIONS

The novelty of the proposed algorithm is to apply sparse
and low-rank constraints to the abundance estimation process
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TABLE IV
RMSE RESULTS OF COMPARISON ALGORITHMS ON JASPER RIDGE DATA

Fig. 5. Abundance maps obtained by comparison algorithms on Jasper Ridge data. From left to right, the columns are the abundance maps of ground truth,
SPLRTF, MV-NTF, ADSpLRU, SUnSAL, KbSNMF, and Zhou’s method. (a) Road. (b) Soil. (c) Water. (d) Tree.

Fig. 6. (I-a) 156th band image of Samson data. (II-a) Three ground truth
endmembers of Samson data. (b) Abundance map and endmember spectral of
soil. (c) Abundance map and the endmember spectral of tree. (d) Abundance
map and the endmember spectral of water.

Fig. 7. Three endmembers obtained by SPLRTF on Samson Data. Solid lines
represent the ground truth endmembers and dotted lines represent estimated
endmembers.

TABLE V
SAD RESULTS OF COMPARISON ALGORITHMS ON SAMSON DATA

TABLE VI
SRE RESULTS OF COMPARISON ALGORITHMS ON SAMSON DATA

in tensor decomposition. These constraints are more in line with
the pixel mixing mechanism, and simulation and real data ex-
periments verify its effectiveness. This section further analyzes
the influence of these improvements on unmixing effect through
further experiments, and verify the stability from the perspective
of different image sizes and noise resistance.
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TABLE VII
RMSE RESULTS OF COMPARISON ALGORITHMS ON SAMSON DATA

Fig. 8. Abundance maps obtained by comparison algorithms on Samson data. From left to right, the columns are the abundance maps of ground truth, SPLRTF,
MV-NTF, ADSpLRU, SUnSAL, KbSNMF, and Zhou’s method. (a) Water. (b) Tree. (c) Soil.

TABLE VIII
SRE RESULTS OF COMPARISON ALGORITHMS ON CHANG’E-3 VNIS DATA

Fig. 9. Map of the path traversed by the Yutu rover and the distribution of
detection points [43].

A. Effectiveness of the Sparse and Low-Rank Constraints

In this article, sparse and low-rank constraints are imposed
on the tensor factorization process for unmixing, and two
parameters are used to control the tradeoff between the sparsity
and rank regularization terms. The SPTF algorithm and LRTF
algorithm have higher accuracy than MV-NTF algorithm in
both simulated and real data experiments, which means that the
imposed constraints can improve the precision of hyperspectral
unmixing. By comparing SPLRTF algorithm with MV-NTF,

Fig. 10. Estimated endmembers of four VNIS images.

SPTF, and LRTF algorithms, it can be seen that SPLRTF
achieves better unmixing performance revealing the effective
role of the two constraints in unmixing.

B. Comparison of Algorithms Under Different Noises

Compared the proposed SPLRTF method with MV-NTF,
SUnSAL, SPTF, LRTF, KbSNMF, and Zhou’s method under
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Fig. 11. Abundance maps of four VNIS images. From top to bottom, the rows are CD5 abundance maps, CD6 abundance maps, CD7 abundance maps, and CD8
abundance maps.

Fig. 12. Performance of SPLRTF obtained by different noise levels. (a) RMSE. (b) SRE.

different noise levels, Fig. 12 shows that as the SNR changes,
the RMSE results and SAD results of MV-NTF, SUnSAL, SPTF,
LRTF, and KbSNMF algorithms are stable and robust. The
proposed SPLRTF method has lower RMSE results and higher
SRE results than other comparison algorithms. At high noise
levels, the RMSE of the SUnSAL method is the smallest and the
SRE is the largest, but it is sensitive to noise and the results are
unstable.

C. Comparison of Algorithms in Different Pixel Numbers

This experiment aims to reveal the structural performance
of the proposed SPLRTF algorithm through simulated data of
different sizes. Small sizes of the simulated cube may have
less information, whereas large images have rich spatial, spec-
tral, and spatial–spectral information. From Fig. 13, it can be
observed that the RMSE results become smaller and the SRE
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Fig. 13. Performance of SPLRTF obtained by different pixel numbers. (a) RMSE. (b) SRE.

Fig. 14. Performance of SPLRTF obtained by different endmember numbers. (a) RMSE. (b) SRE. (c) SAD.

TABLE IX
COMPUTING TIME OF COMPARISON ALGORITHMS (IN SECONDS)

results become larger as the image size increases. The RMSE of
the proposed SPLRTF as a whole is lower than other algorithms
and its SRE is higher than other algorithms. Comparing the
matrix-based methods SUnSAL, ADSpLRU, KbSNMF, and
Zhou’s method with other tensor-based algorithms, it can be
found that the results of the tensor-based algorithms are better
than the matrix-based methods, indicating that loss of spatial
structure degrades the unmixing accuracy.

D. Comparison of Algorithms in Different Endmember
Numbers

In this experiment, unmixing accuracy is evaluated with
respect to endmember number changes. Fig. 14(a) and (b)

present the RMSE and SRE values of the SPLRT method and
seven comparison algorithms, which show that the SPLRTF
algorithms perform well with different endmember numbers.
Fig. 14(c) shows the SAD results of six algorithms, because the
ADSpLRU and SUnSAL algorithms can only obtain abundance
matrices. Fig. 14(c) shows that the algorithms perform better
in the case of more endmembers than in the case of fewer
endmembers, but on the whole, SPLRTF algorithm has a higher
unmixing accuracy than MV-NTF.

E. Computing Time

As shown in Table IX, the proposed method SPLRTF with
the ADMM-based optimization has a faster convergence rate
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than MV-NTF, and SPLRTF algorithm has a shorter running
time than MV-NTF. SPTF method takes less time than LRTF
algorithm because LRTF performs singular value decomposi-
tion, which takes a long time. Comparing the running time of
the matrix-based ADSpLRU with the tensor-based algorithm, it
can be found that their calculation speeds are similar.

VI. CONCLUSION

In this article, a new tensor factorization method SPLRTF
was proposed for hyperspectral unmixing. Based on the original
matrix-vector tensor factorization unmixing method, the pro-
posed algorithm abandons the original low-rank constraint that
specifies the rank of pixels, but chooses a more flexible low-rank
constraint in the abundance estimation process. Considering the
distribution of ground features, sparsity is considered as an in-
herent property of abundances, and the sparse constraint is added
to ensure the accuracy of endmember and abundance maps.
The simulated data and three real scene hyperspectral image
experiments are carried out to validate the proposed SPLRTF.
The accuracy index and the displayed abundance maps show
that the proposed algorithm can offer better unmixing results.
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