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Study of Spatial-Spectral Feature Extraction
Frameworks With 3-D Convolutional Neural Network
for Robust Hyperspectral Imagery Classification

Bishwas Praveen

Abstract—Advances in hyperspectral remote sensing have insti-
gated multitude of applications for better understanding of our
planet through remote data acquisition and observation of nat-
ural phenomena such as weather monitoring and prediction to
include tornado, wild fires, global warming, etc. For this, data
analysis methods that exploit the rich spectral and spatial infor-
mation in hyperspectral data are often employed to gain insights
about the natural phenomenon. This work presents a new deep
learning based hyperspectral data analysis framework, which ef-
ficiently utilizes both spatial and spectral information present in
the data to achieve superior classification performance. Gabor
filtering is used for spatial feature extraction in conjunction with
sparse random projections for spectral feature extraction and
dimensionality reduction. Finally, supervised classification using
a 3-D convolutional neural network was employed to perform a
volumetric hyperspectral data analysis. Experimental results re-
veal that the proposed spatial-spectral hyperspectral data analysis
frameworks outperform the conventional 2-D convolution neural
network-based spectral-spatial feature extraction techniques.

Index Terms—3-D convolutional neural network (3-D CNN),
deep learning, dimensionality reduction (DR), feature extraction,
Gabor filtering, Gaussian filtering, hyperspectral classification,
principal component analysis (PCA), sparse random projection
(RP), support vector machine (SVM).

1. INTRODUCTION

ECHNOLOGICAL advancements in the hyperspectral re-

mote sensing domain in conjunction with the ease at which
data is acquired utilizing various platforms such as drones
have motivated the inception of various hyperspectral remote
sensing applications in the area of earth monitoring and obser-
vation such as land cover classification for agriculture [1], city
planning [2], airborne surveillance [3], weather monitoring [4],
climate change observations [5], etc. With the advancements in
hyperspectral sensors technology pacing ahead in the direction
of light-weight and portable sensors with significant increase
in their spectral, spatial, and temporal resolutions capabilities,
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there is a crucial necessity for smart Big Data Analysis tech-
niques that can stay abreast of sensor technology advance-
ments. In order for these limited hardware platform-centered
applications to deliver performance-oriented results, there is a
crucial necessity for more efficient methods of data analysis
for feature/information extraction, detection, and classification
methods for hyperspectral remote sensing applications.
Although there are numerous innovative hyperspectral data
analysis techniques that have been developed over the last
decade, most conventional hyperspectral data analysis ap-
proaches make an implicit assumption for availability of the
necessary hardware to meet the Big Data processing demands.
As a result, the novelty and motivation of our proposed hy-
perspectral data analysis techniques are to address the need
for novel efficient data analysis methods for feature extraction
and classification and detection in hyperspectral remote sensing
applications. As the nonlinearity, volume, and dimensionality
of hyperspectral remote sensing data that needs to be processed
increase, it highlights the quandary of Big Data caveats that need
to be addressed, such as increased need of computational re-
sources, limited number of training samples, high data-learning
overhead, and curse of dimensionality [7]. As a solution, dimen-
sionality reduction (DR) has emerged as an essential prerequisite
data science technique because of its abilities to circumvent the
curse of dimensionality issue, provide reduction in redundancy
of information, computation time and memory requirements.
Conventional frameworks that use high-dimensional data
such as hyperspectral imagery acquire data in its full dimen-
sionality using some form of remote signal-acquisition platform
(e.g., a satellite, drone, etc.). Consequently, it is always benefi-
cial if such nonlinear/high-dimensional data can be reduced to
lower dimensions in order to dramatically reduce the hardware
requirements and computational time of the classification sys-
tem [9]. Some of such DR techniques proposed in literature are
principal component analysis (PCA), which is an unsupervised
learning technique that transforms correlated data variables into
linearly uncorrelated parameters called principal components
(PCs; eigenvectors) that are mathematically abstracted [10].
Linear discriminant analysis is a technique in which the data is
projected in directions that maximize the between-class scatter
and minimize the within-class scatter for discrimination between
various classes in the data [11]. Local fisher discriminant analy-
sisis a localized variant of fisher discriminant analysis that takes
the local structure of the data into account so that multimodality
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in data can be embedded appropriately [12]. Alternatively, sparse
random projections (RPs) have been extensively used in recent
years as a DR technique due to its demonstrated computational
efficacy and ability to yield a data-independent representation
and preserve essential information present in the hyperspectral
data [13], [14]. Hence, this work utilizes sparse RPs as not only
an effective but also light-weight DR component for the purpose
of spectral feature extraction.

Various spatial filtering techniques have also been employed
for spatial feature extraction in hyperspectral data analysis appli-
cations to include Gaussian filtering [16], sparse filtering [17],
local binary patterns [15], etc., that can capture local neigh-
borhood information and hence aid in better classification of
hyperspectral data. Gabor filtering is used for the purpose of
spatial feature extraction for the proposed framework in this
journal. A Gabor filter can effectively extract the local image
“textures” or “edges” present in the image, which is achieved
through convolution of the input hyperspectral image with a
Gabor filter bank. The intuition behind Gabor filtering from
the hyperspectral remote sensing aspect is that elements/pixels
belonging to the same class tend to have uniform frequency
components, whereas high frequency components are exhibited
by the border pixels or at transitions between multiple classes
or groups of elements [20]. As different Gabor filters construct
features along various modes of scale and orientation, a unique
frequency response is captured that corresponds to the local
orientation of edges in the image [18], [19]. In fact, Yosinski et al.
[39] have shown that deep neural networks trained on images
tend to learn first layer features resembling Gabor filters. This
further corroborates our intuition of using Gabor filters to extract
important spatial information even before the network is trained
with our proposed 3-D convolutional neural network (CNN)
architecture. This combination creates a balanced system that
gives better training performance with respect to computation
time, compared to the stand-alone CNN architecture. Thus, the
proposed deep learning based spatial-spectral frameworks aim
to preserve spatial dependencies between neighboring pixels
via Gabor-based spatial feature extraction along all the spectral
bands of hyperspectral data in conjunction with sparse RPs
for effective spectral feature extraction and DR paradigm for
hyperspectral remote sensing applications.

With the emergence of deep learning, hyperspectral remote
sensing applications have widely started to incorporate deep
learning models for the purpose of classification, object recog-
nition, etc., and have produced exceptional results compared
to state-of-the-art techniques [21], [22]. Deep learning models
include supervised classification techniques such as CNNs and
recurrent neural networks which progressively learn data pat-
terns and construct features based on the information presented
in the data. Of late, the CNNs have gained a huge popularity
because of their drastic performance gain over the hand-designed
features. 2-D CNNs make use of 2-D convolutional kernels to
construct feature maps for a single slice/spectral band at once
separately which means that 2-D convolutional kernels are un-
able to leverage context between spectral kernels and hence only
take spatial context into consideration. In contrast, 3-D CNNs
address this issue by using 3-D convolutional kernels to make
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segmentation predictions for a volumetric patch of a scan. The
ability to leverage interslice/interspectral bands context can lead
to improved performance in terms of classification accuracy for
a reasonable tradeoff with computation time [27]. Thus, in this
work, various 3-D CNN-based spatial-spectral feature extraction
and supervised classification frameworks are introduced which
deliver enhanced volumetric hyperspectral data-learning. This
work aims to study the effects of volumetric hyperspectral data-
learning that are underscored by the incorporation of different
information modes (spatial and spectral) on the performance of
automated hyperspectral data analysis.

Therefore, the novel contributions of the proposed work are
summarized as follows.

* A new mode of localized spatial feature extraction using
Gabor filters in conjunction with efficient spectral features
extraction using sparse RPs is proposed for a framework
for hyperspectral data analysis. Gabor filtering offers an
effective means to capture physical traits present in hyper-
spectral images, such as specific orientation and textural
information. Gabor wavelets are utilized to construct Gabor
filters that are designed to accommodate a variety of image
transformations in the form of rotations and dilations, thus
aiding in restoring and enhancing the spatial relationship
between data points in HSI data.

® The new Gabor-based spatial and sparse RP-based spectral
feature extraction model offers a new reduced dimensional
data representation which preserves both spatial-spectral
information in lower dimensional subspace and also pro-
vides substantial reduction in computational time.

e The extracted spatial-spectral features are windowed to
preserve the local neighborhood information which is fol-
lowed by supervised classification using 3-D CNN. Here,
the proposed 3-D CNN based spatial-spectral feature ex-
traction framework is driven toward improved automated
hyperspectral data analysis.

e This work introduces various novel 3-D CNN based
spatial-spectral feature extraction frameworks and con-
ducts a comprehensive study on the effects of incorporation
of various spatial-spectral feature extraction techniques on
volumetric hyperspectral data analysis.

The remainder of this article is outlined as follows. Section II
presents the theoretical description of the individual components
in the proposed architecture. This is followed by discussion of
the proposed architecture in Section III along with the gener-
alized framework of other models that are used as a basis of
comparison, which are then validated under the experimental
results in Section IV. Finally, the efficacy of this work is
summarized in Section V.

II. APPROACH OVERVIEW
A. Gabor Filtering

Gabor filtering has shown irrefutable prospects for hyper-
spectral data analysis due to its ability to capture important
physical or spatial information present in hyperspectral images
such as specific orientation and textural information [28]. Gabor
wavelets are utilized to construct Gabor filters that are designed
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to accommodate a variety of image transformations in the form
of rotations and dilations. A particular advantage of Gabor filters
is their degree of invariance to scaling, rotation, and translation,
while preserving the spatial relationship between neighboring
pixels in the hyperspectral data. Hence, spatial features extracted
from Gabor filtering have been especially effective in many
image processing applications [28]. A Gabor filter-based spatial
feature extraction can be achieved through a 2-D Gabor filter
function which is given by
R (1)
™n
where p’ = pcosf + qsinf and ' = —psinf + qcosf. In
spatial domain [as described in (1)], the Gabor filter represents a
complex plane wave which is multiplied by a Gaussian function
centered at origin. f is the filter’s central frequency, 6 is the angle
of rotation, + is the sharpness along the Gaussian major axis, and
7 is the sharpness along the minor axis. The aspect ratio of the
Gaussian function is given by Z. Therefore, the corresponding
frequency domain representation of Gabor filter is given by

7\'2 !/ '
‘II(U,V) _ efffz("/Q(u —f)2+n>v'?) (2)

where u' = ucosf + vsinf and v = —usin + vcosf. In
frequency domain [as described in (2)], the Gabor filter denotes a
single valued Gaussian distribution centered at f. Hence, the spa-
tial (or time) and frequency domain Gabor filter representations,
as described in (1) and (2), respectively, provide a streamlined
rendition of the general 2-D structure devised by Daugman from
the Gabor’s original 1-D elementary function [19]. This implied
function enforces a set of self-similar filters, i.e., scaled and
rotated variants of one another (Gabor wavelets), regardless of
the orientation ¢ and frequency f, that are capable of capturing
the distinct orientation changes and textural information present
in the hyperspectral image.

B. Principal Component Analysis

PCA is an unsupervised learning technique that uses an
orthogonal transformation to convert a set of observations of
possibly correlated variables into a set of linearly uncorrelated
variables called PCs. Hence, PCA transformation is defined
such that the first PC has the largest possible variance and each
successive component has the next highest variance, where all
the PCs (new basis vectors) are mutually orthogonal and uncor-
related. PCA achieves DR by projecting a high-dimensional data
to its lower dimensions such that all the essential and cardinal
information in data is preserved by means of rotation of an
existing axis to a new location in space as defined by the new
PC-basis vectors. PCA chooses a direction of projection such
that the mean squared error between the original data and the
transformed or projected data is minimized while the variance
of the projected data is maximized [29], [30].

Consider a data, P € R™*? whose columnwise empirical
mean is 0, where n rows represent the number of data vec-
tors and d rows give the features or dimensions of the data.
Mathematically, the PCA transformation is defined by the linear
combination of a set of d-dimensional basis vectors u,) =
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(u1,...,uq) ) that map each row vector p(;) of P to a new
vector of PC scores t(;) = (t1,...,1)(;) computed as
tr) = P(i)-Uk) (3)

where i = {1,...,n}, k={1,...,1}, and | < d. In order to
maximize variance, the first weight vector u(y) which corre-
sponds to the first PC thus has to satisfy

u() = arg maxHuH:l{E(tl)%i)}

) “)
= arg maxHuH:l{Z(p(i).u) }
Equivalently, (4) can be expressed in matrix form as
u(;) = arg max |y {|| Pu ||}
(%)

= arg max y|—; {u’ P"Pu}.

Since u(y) has been defined to be a unit vector, it equivalently
also satisfies (6) as given below

ulC,,u

—F } (6)

11(1) = arg max { aTu

where C,,, = PTP represents the covariance matrix of the
data and it gives the largest Eigenvalues (in descending order)
corresponding to the largest Eigenvectors u of the data. For DR
purposes, only the first d,. PCs of the computed d are retained,
where d, < d.

C. Sparse Random Projection

Although PCA is one of the most widely used DR techniques,
during PCA transformation, data must be centered first and pro-
cessed beforehand for the new data projection to be calculated.
This process turns out to be computationally very expensive
mainly in scenarios where the size of data being processed is
extremely large which is the case with hyperspectral data. This
also makes PCA impossible to use if the goal is to compute
projections for a stream of data points in real time, which is
pertinent to the “velocity” attribute of remote sensing Big Data
acquired by drones or satellites. In such scenarios, we need more
efficient and portable DR techniques such as sparse RPs which
are computationally fast and highly efficient basis functions
since it uses a randomly distributed generic function to project
a high-dimensional data onto a random lower dimensional sub-
space, while ensuring that all the vital details in the data are
preserved with high probability. The generic nature of sparse RP
basis facilitates better portability and computational efficiency
since there is no data-learning involved as in traditional DR
techniques like PCA. Moreover, sparse RPs are an excellent
alternative to conventional Gaussian RPs, where the former
guarantees similar embedding quality while being substantially
more memory efficient than the dense Gaussian projections [29].
If a is defined as denlsity and density gives the ratio of nonzero
components in the RP matrix, the elements of the sparse RP
matrix R are drawn as described in the following equation:

—/ 2 with probability -
R,;=<X0 with probability 1 — 1 @)
+,/4- with probability =
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where d, is the size of the lower dimensional subspace and
density is set to % and R; ; is an orthogonal sparse RP matrix
which satisfies the property of spherical symmetry, normality,
and orthogonality.

D. Support Vector Machines

Support vector machines (SVMs) are intrinsically binary
classifiers. However, in practical image classification tasks, it
often needs the simultaneous discrimination of several differ-
ent classes. Generally, the multiclass extension of SVM clas-
sifiers can be done by combining several binary classifiers,
among which are two classical strategies one-against-all and
one-against-one [31].

The main goal of SVM is to maximize the margin between
the two classes and to minimize the risk of generalization
errors. Given a set of IV training examples with input vectors
{pr € R"}Y_, and corresponding labels {g, € {—1,1}}_,,
SVM classification algorithm [32] builds a linear classifier in
the feature space given by the following equation:

q(p) = sign(q” ¢(p) + b) (8)

where the feature map o (p) maps the input data into a feature
space. According to Mercer’s theorem [33], any positive-definite
kernel function can be expressed as K (p,7) = ¢(p)T (7). Due
to the kernel trick, it is made possible to implicitly work in
huge dimensional feature spaces without having to incur the
associated computational costs of higher dimensional analysis.
Few popular nonlinear kernel functions used with SVM are ra-
dial basis function (RBF) kernel defined as K (p, p,) = exp(— ||
p — pi [[?)/* and polynomial kernel K (p, pi.) = (p” pi. + )
with 7 > 0. The predicted label of a new data vector can be
described by the following equation as

N

(p) =sign [ > qraK(p.pr) +b | . )
k,l=1

There exists another family of kernels for SVM in which two
or more kernels are combined together as a weighted sum and
are called composite kernels. Let the spatial feature vector of
hyperspectral pixel vector Y; be denoted as Y7 and its spectral
feature vector as Y;°. Then the weighted-summation composite
kernel can be defined as shown in the following equation by

K(Yi»Yj) = aKs(YfaY_]s) + (1 - a)Kw(Y;ustd) (10)

where K(-,-) represents spatial kernel, K,(-,) stands for
spectral kernel, and 0 < o < 1. The proposed 3-D CNN based
spatial-spectral supervised classification architectures in this
work are compared against a composite kernel SVM for hy-
perspectral classification.

E. Gaussian Filtering

Generally, data acquisition of any kind often introduces some
process noise artifacts. As such, hyperspectral remote sensing
is not impervious to various types of process noises that are
introduced during the data acquisition process such as atmo-
spheric noise, turbulence, cloud cover, etc. Hence, denoising
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is another core motivation for pursuing DR techniques as a
prerequisite to hyperspectral data analysis. Other filtering-based
denoising techniques used include Gaussian filtering [16], sparse
filtering [17], and median filtering, and other kinds of filters
are applied to the data as a preprocessing step to minimize the
effects on noise on the data. Therefore, Gaussian filtering is
adopted as another spatial feature extraction technique that is
used in conjunction with a CNN-based framework to minimize
the effects of noise on data analysis and evaluate the robustness
of the model in the presence of inherent noise.

The idea behind Gaussian filtering is to use a 2-D point-spread
distribution function and convolve it with the input hyperspectral
band. Since input data is a collection of pixels with discrete
values, a discrete approximation to the Gaussian function needs
to be generated before convolving it with the input set of pixels.
Theoretically, the Gaussian distribution is nonzero throughout,
which brings the necessity of an infinitely large convolution
kernel, but in real-world scenarios, it is chosen to be zero for
values more than approximately 2-3 standard deviations from
the mean. This makes it possible for the kernel to be truncated
at a distance of three standard deviations from the mean. Thus,
a 2-D circularly symmetric Gaussian kernel can be formulated
as

]. ,p2+q2
G(p.q) = P 202

where o is the standard deviation and represents the spread of
the kernel. The kernel should normally be selected large enough
so that the kernel coefficients of the border rows and columns
contribute very little to the sum of coefficients. By selecting a
kernel size parameter six times the standard deviation, the border
parameters will be 1% or lower than the center parameter which
is ideal for our application.

(1)

F. 3-D Convolutional Neural Network

Similar to traditional deep learning architectures, CNN mod-
els are hierarchical architectures where several convolutional
layers are stacked on top of each other. Traditional CNNs
have 2-D convolutional kernels for applications on 2-D im-
ages. However, convolutions in a 2-D CNN can only capture
two-dimensional spatial information and neglect the information
along the third dimension. To address this concern, Ji et al. [35]
extended the idea of 2-D CNN used for 2-D images to a 3-D
convolution in both space (2-D) and time for video classification.
Similarly, low level features for high-dimensional hyperspectral
data can be extracted using 3-D convolutions as hyperspectral
data is generally generated as a three-dimensional data cube.
Therefore, in this work, 3-D CNN is considered to perform
3-D convolutions in order to learn and capture the 3-D local
patterns and preserve the spatial-spectral neighboring pixel
dependencies across the whole hyperspectral data cube for a
volumetric data analysis which in turn aids in better classification
performance. 2-D CNNs are applied on 2-D features maps to
extract the spatial features, whereas 3-D kernels are convolved
over 3-D feature cubes to detect and preserve the 3-D local
patterns in the hyperspectral data cube. More specifically, for
the case of 3-D CNN, the value at position (p, g, ) on the jth
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feature map in the ith layer is obtained as shown in the following
equation:
hisd

e = F(Wig x Vi) pqr + biyj)
where W; ; and b; ; are the weights and the bias for jth feature
map, respectively, V=1 denotes the sets of input feature maps
from the (i — 1)*" layer connected to the current layer, f is
the nonlinear function, and * is the convolution operation. The
complexity of learned local patterns is closely related to the
numbers of 3-D convolutional kernels in the network. With
more kernels, the network can learn deeper and more powerful
features, but, on the other hand, it will be more susceptible to
overfitting. A general principle is that a network should have
sufficient convolutional layers to learn deeper features and fewer
numbers of feature maps in each layer to reduce the overall
computation complexity.

(12)

III. CLASSIFICATION METHODOLOGIES
A. Proposed Architecture (GAB-RP-S-3DCNN)

In our proposed model, Gabor filtering is first utilized for
spatial feature extraction directly on the input hyperspectral
data cube. Gabor filters are convolved with individual bands of
hyperspectral cube separately and features are constructed based
on the orientation and frequency responses from the individual
Gabor filters. These responses widely vary with changes in
values of frequency f and orientation #, and it is, hence, crucial to
select the parameters that give the best outcome when introduced
in the framework of the proposed model. Therefore, a value of
f = 0.8 and 6 = 0 was chosen empirically as they produced the
optimum results in this work.

Training CNNs requires that every last one of the network’s
2-D inputs be convolved with all trainable filters. But hundreds
of bands along the spectral dimensions of a hyperspectral image
increase the computational cost of training and prediction pro-
cess. Consequently, sparse RPs are employed with the end goal
of computationally efficient DR and spectral feature extraction
in order to condense the size of the original high-dimensional
hyperspectral data. Additionally, a fascinating view of kernel
functions can be provided by the use of sparse RPs. Furthermore,
they are also capable of providing a fast basis technique that
can map a kernel function into an explicit feature space. In
this work, sparse RPs were used to reduce the original data
dimensions to d,, = 30 for all the datasets that were used to
validate the effectiveness of the proposed hyperspectral data
analysis methodologies.

After the Gabor filtering-based spatial feature extraction and
DR process for spectral feature extraction is accomplished, the
proposed model extracts spatial patches of pixels to preserve the
local neighborhood information in the input data before being
fed into a CNN. So the input which was earlier in the shape of
(h x w x d,), where h and w are the height and width of the
input data, respectively, and d,. is the new reduced spectral bands
of hyperspectral data, is now changed to (s; x s; x d,.) where
s; is now the size of the input patch that is fed into CNN for
training purposes. In this article, the value of s; is set to 21 (i.e.,
s; x 85 = 21 x 21), which implies that every time a data pixel
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is trained, the information around its 440 neighbors are also
considered. Other values for s; from 9 through 23 were also
experimented, but for larger values of s; such as 23, the number
of neighbors that were accounted for went up drastically which
had an adverse effect on the computational time and deteriorated
the classification performance of CNN. Conversely, when the
size of s; was too small, for instance, s; = 9, not enough neigh-
borhood information was integrated for data analysis. Thus,
the spatial/local neighborhood information was not effectively
exploited and resulted in a lower classification performance than
that of s; = 21.

Finally, the number of layers of 3-D CNN, the dimensions, and
number of trainable filters, dropouts, and fully connected layers
play a crucial role in deciding the number of trainable parameters
for the network which directly impacts the computational time
of the model [36]. In this proposed model and other comparison
models, the first layer of 3-D CNN is a convolutional layer of
size 8 and trainable filters of dimension (3 x 3 x 7) which is
followed by a pooling layer where pool size is specified to be
(2 x 2 x 2). This is followed by two more 3-D convolutions of
sizes 16 and 32 with kernel dimensions (3 x 3 x 5) and (3 x
3 x 3), respectively. This part of the model is trailed by a 2-D
convolution layer of size 64 with kernel dimension (3 x 3). The
final part of the network has three dense layers of sizes 256,
128, and C, respectively, with a dropout of 40%, where C' is
the number of classes or unique elements present in the dataset.
The overall 3-D CNN based spatial-spectral feature extraction
framework GAB-RP-S-3DCNN is illustrated in Fig. 1.

B. RP-S-3DCNN

This approach has no spatial feature extraction component.
The aim here is to explore the performance of using a light-
weight spectral-only based data analysis framework. Hence, this
model directly employs sparse RPs on the input data for spectral
feature extraction and DR purposes. The number of reduced
dimension components d,, = 30 was empirically selected. The
resultant reduced dimensional data is windowed to extract the
spatial patches for CNN-based classification, where the window
size s; = 21 was chosen. The generalized framework for this
3-D CNN based spectral feature extraction model RP-S-3DCNN
is depicted in Fig. 2.

C. PCA-S-3DCNN

As in the case of former RP-S-3DCNN model, no spatial
feature extraction is implemented in this approach. The emphasis
here is to understand the effect of conventional spectral feature
extraction techniques like PCA in conjunction with CNN-based
supervised classification on hyperspectral data analysis. In this
approach, PCA is used as for spectral feature extraction and DR.
The first 30 PCs (d,, = 30) were retained for further process-
ing in all the datasets used for experimentation. The spectral
features extracted using PCA where the data is projected on
to a lower dimensional subspace by rotating existing axis to
a new location in space is defined by the Eigenvectors. These
data points are then windowed into size of s; X s; = 21 x 21
before being input into CNN model for supervised classification.
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Fig. 3.  Generalized spatial feature extraction framework for GAB-S-3DCNN
and GAU-S-3DCNN data analysis models.

The generalized framework of this 3-D CNN based spectral
feature extraction model PCA-S-3DCNN is as shown in Fig. 2.
The numbers of layers and hyperparameters of the 3-D CNN
used for classification in RP-S-3DCNN and PCA-S-3DCNN are
identical to the one used in GAB-RP-S-3DCNN.

D. GAB-S-3DCNN

In this model, we investigate the effects and contributions of
spatial feature extraction alone on hyperspectral data analysis.
In GAB-S-3DCNN, Gabor filters are employed for the purpose
of spatial feature extraction. Here Gabor filters are convolved
with the input hyperspectral bands and features are constructed
based on the responses provided by these Gabor filters set at
a frequency f = 0.8 and orientation § = 0. Once the spatial
features are extracted, the resultant data is windowed (s; X s; =
21 x 21) and given as an input to the supervised CNN classifier.
Thus, the generalized framework for GAB-S-3DCNN model is
as illustrated in Fig. 3.

3D-CNN Network

Proposed 3-D CNN-based spatial-spectral feature extraction system architecture GAB-RP-S-3DCNN.

E. GAU-S-3DCNN

In this exclusive spatial feature extraction model, Gaussian
filtering is utilized for noise reduction purposes. Hyperspectral
data pixels are usually contaminated with inherent noise that
is introduced during the data acquisition process. As a conse-
quence, this intuitive noise reduction model will characterize
the robustness of the proposed model in the presence of noisy
conditions. Hence, in this approach, Gaussian filtering was
implemented on all the hyperspectral bands which reduced the
effect of noise. The resultant denoised data was given as an input
to 3-D CNN for classification. The point spread function was
set to o = 0.4 in this framework. The generalized CNN-based
spatial feature extraction framework for GAU-S-3DCNN model
is shown in Fig. 3. The number of layers and hyperparameters
of the 3-D CNN used for classification in GAB-S-3DCNN and
GAU-S-3DCNN are identical to the one used in GAB-RP-S-
3DCNN.

F. GAB-RP-S-2DCNN

In this model, Gabor filtering is first utilized for spatial feature
extraction directly on the hyperspectral data cube and features
are constructed based on the orientation and frequency responses
from the individual Gabor filters. A value of f = 0.8and 8 =0
was chosen empirically as they produced the optimum results in
this work. Additionally, sparse RPs are employed with the end
goal of computationally efficient DR and spectral feature extrac-
tion in order to reduce the size of the original high-dimensional
hyperspectral data. In this model, sparse RPs were used to reduce
the original data dimensions to d, = 50 for all the datasets
that were used to validate the effectiveness of the proposed
hyperspectral data analysis methodologies.

For this model, the size of the input window for the 2D-CNN
issetto 5 (i.e., s; X s; = 5 x 5), which implies that every time
a data pixel is trained, the information around its 24 neighbors
are also considered. Finally, the number of layers of CNN, the
dimensions, and number of trainable filters, dropouts, and fully
connected layers play a crucial role in deciding the number of
trainable parameters for the network which directly impacts the
computational time of the model. In this model, the principal
layer of CNN is a convolutional layer of size 150 and trainable
filters of dimension (3 x 3). As opposed to a conventional CNN,
no pooling layer is utilized after the convolution layer in this
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model as the input size is already small and is subsequently
trailed by one more convolutional layer. The size of the first
layer is 450, the size of the second layer is 150 neurons, and
the size of trainable filters is (3 x 3) in both the layers. This is
then forwarded to the two dense convolution layers of size 450
and C, respectively, where C'is the number of classes or unique
elements present in the dataset [38].

G. SVM-CK

In this work, we validate our proposed spatial-spectral fea-
ture extraction-based 3-D CNN model architectures against a
traditional SVM with a composite-kernel SVM for an inclusive
spatial-spectral information extraction with a window-based
spatial mean kernel with a window size of (3x3) coupled with
an RBF spectral kernel [denoted by SVM-CK as in (10)]. For
spectral features, the hyperspectral pixel vectors are directly
used as spectral feature vector and RBF is used as the spectral
kernel which makes SVM-CK incorporate both spatial and
spectral features present in the hyperspectral data to enhance its
classification performance. All the experiments related to SVM
model-based hyperspectral classification were conducted using
LIBSVM on raw hyperspectral data without the use of any DR
techniques.

IV. EXPERIMENTAL RESULTS

In this section, the efficiency of the proposed spatial-spectral
feature extraction model GAB-RP-S-3DCNN is validated and
compared against six other models, namely RP-S-3DCNN,
GAB-S-3DCNN, PCA-S-3DCNN, GAU-S-3DCNN, GAB-RP-
S-2DCNN, and SVM-CK as described in Section III. All exper-
iments were conducted on an Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) dataset—Indian Pines and a Reflec-
tive Optics System Imaging Spectrometer (ROSIS) dataset—
University of Pavia [37]. The Indian Pines dataset was acquired
by an AVIRIS sensor over the Indian Pines test site in North-
Western Indiana. This dataset has a spatial dimension of 145
x 145 and 224 spectral bands (202 after removal of water-
absorption bands) with a spatial resolution of 20 m spanning
16 land-cover classes. University of Pavia dataset was acquired
by ROSIS sensor over an urban area of Pavia in North Italy. The
dataset has 103 spectral bands each having a spatial dimension
of 610x340 with a spatial resolution of 1.3 m spanning nine
classes of land-cover classes. For each dataset, training set
was randomly chosen spanning from 5% through 50%. All
parameters in the proposed approach were empirically chosen
and optimized. To avoid any bias induced by random sampling
of pixels, the classification results are averaged over five trials
and the average accuracies along with execution time of the
models are tabulated. The objective function used for all our
experimentation is categorical cross-entropy with a learning rate
of 0.001 and a decay of 1076, The total number of trainable
parameters turned out to be 313 472 and a batch size of 32
was chosen empirically. Table I gives a detailed information
of the 3-D CNN architecture used for classification in all our
experimentation where n is 16 in the case of Indian Pines dataset
and 9 in the case of Pavia University dataset. The networks were
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TABLE I
3-D CNN ARCHITECTURE OF OUR PROPOSED FRAMEWORKS
Layer (Type) Output Shape # Parameters
conv3d (Conv3D) ( None, 19, 19, 24, 8) 512
max_pooling3d (MaxPooling3D) ( None, 9,9, 12, 8) 0
conv3d (Conv3D) ( None, 7,7, 8, 16 ) 5776
conv3d (Conv3D) ( None, 5, 5,6,32) 13856
reshape (Reshape) ( None, 5, 5, 192) 0
conv2d (Conv2D) ( None, 3, 3, 64) 110656
flatten (Flatten) ( None, 576 ) 0
dense (Dense) ( None, 256 ) 147712
dropout (Dropout) ( None, 256 ) 0
dense (Dense) ( None, 128 ) 32896
dropout (Dropout) ( None, 128 ) 0
dense (Dense) ( None, n ) 2064
TABLE II

TOTAL NUMBER OF CLASS-SPECIFIC TRAINING AND TESTING SAMPLES USED
FOR INDIAN PINES DATASET FOR 10% TRAINING DATA

# Class Name # of Training S # of Testing S
1 Alfalfa 5 41
2 Corn-notill 140 1288
3 Corn-mintill 81 749
4 Corn 24 213
5 Grass-pasture 48 435
6 Grass-trees 72 658
7 Grass-pasture-mowed 3 25
8 Hay-Windrowed 47 431
9 Oats 2 18
10 Soybean-notill 95 877
11 Soybean-mintill 232 2223
12 Soybean-clean 58 535
13 Wheat 21 184
14 Woods 124 1141
15 | Buildings-Grass-Trees-Drives 38 348
16 Stone-Steel-Towers 10 83
Total 1000 9249

TABLE III
TOTAL NUMBER OF CLASS-SPECIFIC TRAINING AND TESTING SAMPLES USED
FOR UNIVERSITY OF PAVIA DATASET FOR 10% TRAINING DATA

# Class Name # of Training Samples | # of Testing Samples
1 Asphalt 663 5968
2 Meadows 1865 16784
3 Gravel 210 1889
4 Trees 306 2758
5 | Painted Metal Sheets 134 1211
6 Bare Soil 503 4526
7 Bitumen 133 1197
8 | Self-Blocking Bricks 368 3314
9 Shadows 95 852
Total 4277 38499

trained for 80 epochs on both the datasets. Also, no GPUs were
made use of to train any of the proposed frameworks in our work.
All experiments were implemented using python on a Intel(R)
Core(TM) 17-7700HQ processor with 16-GB RAM machine.

Fig. 4 gives the classification maps for 10% of training data
across all the proposed 3-D CNN based spatial-spectral hy-
perspectral feature extraction and data analysis models for the
Indian Pines dataset along with the models used for comparison.
Fig. 5 describes the classification maps for all methods using
10% of training data for Pavia University dataset. Tables II and
III give the total number of training and testing samples per class
for 10% of training data used in experimentation for Indian Pines
and Pavia University datasets, respectively.
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d

(® (b)

Classification maps of Indian Pines for various proposed 3-D CNN based spatial-spectral feature extraction models using 10% training data. (a) Ground

truth. (b) GAB-RP-S-3DCNN (96.91%). (c) RP-S-3DCNN (94.01%). (d) GAB-S-3DCNN (95.38%). (e) PCA-S-3DCNN (95.32%). (f) GAU-S-3DCNN (94.47%).

(g) GAB-RP-S-2DCNN (91.47%). (h) SVM-CK (90.53%).

TABLE IV
CLASS-SPECIFIC ACCURACIES OF INDIAN PINES DATASET FOR 10% OF TRAINING DATA FOR THE PROPOSED 3-D CNN MODELS USED FOR COMPARISON

# Class Name GAB-RP-S-3DCNN | RP-S-3DCNN | GAB-S-3DCNN | PCA-S-3DCNN | GAU-S-3DCNN | GAB-RP-S-2DCNN | SVM-CK
1 Alfalfa 98.8 86.1 50.9 89.2 91.3 83.8 92.9
2 Corn-notill 93.2 94.2 94.9 93.3 93.6 81.7 92.4
3 Corn-mintill 89.6 83.2 93.0 92.4 97.8 79.3 92.5
4 Corn 91.3 92.1 83.8 97.7 96.9 78.4 91.0
5 Grass-pasture 93.7 94.3 93.5 97.3 96.3 95.8 92.3
6 Grass-trees 97.8 97.8 99.5 99.0 98.4 97.7 83.1
7 Grass-pasture-mowed 95.8 47.8 78.0 95.8 69.2 88.9 95.4
8 Hay-Windrowed 100 99.4 97.3 99.7 97.0 97.5 90.0
9 Oats 72.2 68.3 759 36.4 43.7 53.6 98.1
10 Soybean-notill 92.0 95.6 95.9 95.5 95.1 82.4 92.4
11 Soybean-mintill 94.1 92.1 97.8 96.5 96.3 84.8 98.3
12 Soybean-clean 95.3 95.6 90.8 91.1 96.4 99.7 87.5
13 Wheat 96.1 98.4 99.5 93.2 96.4 97.6 96.0
14 Woods 97.2 97.7 95.7 98.7 95.7 86.1 922
15 | Buildings-Grass-Trees-Drives 98.8 98.4 95.1 95.2 92.0 88.4 97.7
16 Stone-Steel-Towers 88.4 93.6 94.6 87.0 90.8 97.6 93.9
OA (%) 96.91 94.01 95.38 95.32 94.47 91.47 92.97
K (%) 95.06 93.15 94.74 95.02 94.00 90.37 91.83

From Figs. 4 and 5, it can be noted that our proposed
3-D CNN-based spatial-spectral feature data analysis method
GAB-RP-S-3DCNN had more coherent classification regions
and fewer misclassifications when compared to other methods.
Tables IV and V present the class-specific accuracies for the
proposed architecture GAB-RP-S-3DCNN along with all the
other frameworks used for performance comparison for Indian
Pines and Pavia University datasets, respectively. It can be
inferred from Tables IV and V that GAB-RP-S-3DCNN gave
superior classification performance over other frameworks that
are discussed. The effectiveness of our proposed approach GAB-
RP-S-3DCNN can be further affirmed from overall classification
accuracy as depicted in Figs. 6 and 7 for Indian Pines and Pavia
datasets, respectively. From Figs. 6 and 7, it can be noted that

GAB-RP-S-3DCNN outperformed all other methods of com-
parison, especially against the conventional PCA-based spectral
feature extraction model-PCA-S-3DCNN, a 2-D CNN-based
hyperspectral data classification model namely GAB-RP-S-
2DCNN, and a conventionally used SVM-based spatial-spectral
information inclusion model namely SVM-CK. The major rea-
son for the proposed approach GAB-RP-S-3DCNN to produce
better results when compared to GAB-RP-S-2DCNN is that the
3-D CNN based methodology leverages the context that exists
between spectral bands by building filter maps by volumetric
convolutions in contrast to two-dimensional convolutions in
the case of 2DCNN-based classification approach. Our method
GAB-RP-S-3DCNN gave the best classification performance
even when just 10% of training samples were used.
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Fig. 5.
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Classification maps of University of Pavia dataset for various proposed models using 10% training data. (a) Ground truth. (b) GAB-RP-S-3DCNN

(99.26%). (c) RP-S-3DCNN (98.42%). (d) GAB-S-3DCNN (98.64%). (e) PCA-S-3DCNN (98.83%). (f) GAU-S-3DCNN (98.30%). (g) GAB-RP-S-2DCNN

(95.33%). (h) SVM-CK (94.01%).

CLASSWISE ACCURACIES OF UNIVERSITY OF PAVIA DATASET FOR 10% OF TRAINING DATA FOR THE PROPOSED APPROACH ALONG WITH

TABLE V

MODELS USED FOR COMPARISON

# Class Name GAB-RP-S-3DCNN | RP-S-3DCNN | GAB-S-3DCNN | PCA-S-3DCNN | GAU-S-3DCNN | GAB-RP-S-2DCNN | SVM-CK
1 Asphalt 98.9 99.8 98.9 99.0 98.1 94.2 93.7
2 Meadows 100 100 99.9 99.9 99.8 98.1 96.4
3 Gravel 97.9 97.0 95.9 95.8 91.3 81.3 88.9
4 Trees 97.6 98.7 97.8 98.7 97.1 97.7 93.7
5 | Painted Metal Sheets 100 99.8 99.9 100 99.8 99.3 99.4
6 Bare Soil 99.9 99.9 99.9 99.7 99.5 92.9 98.4
7 Bitumen 99.4 99.7 98.4 99.5 98.4 91.5 97.1
8 | Self-Blocking Bricks 98.0 97.7 96.7 96.4 94.4 84.6 92.8
9 Shadows 96.4 97.4 94.3 96.8 96.2 98.9 99.8
OA (%) 99.26 98.42 98.64 98.83 98.30 95.33 94.01
K (%) 99.02 97.93 98.50 98.42 97.75 94.72 93.26

Tables VI and VII tabulate the overall execution time of all
the proposed models for Indian Pines and University of Pavia
datasets, respectively. Figs. 8 and 9 present the effect of varying
window sizes on classification performance of all methods and
substantiates our argument for the choice of window size as
(21 x 21) as a tradeoff between computational efficiency and

desired classification performance. It can further be inferred
from Tables VI and VII that GAB-RP-S-3DCNN indeed pro-
vided superior classification at a reasonable tradeoff between
computational time and classification performance compared to
other 3-D CNN-based spatial- and spectral-only feature extrac-

tion models.
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TABLE VI
OVERALL EXECUTION TIME OF THE PROPOSED MODELS FOR INDIAN
PINES IN MINUTES

% Training GAB-RP- RP-S- GAB-S- | PCA-S- | GAU-S- | GAB-RP- | SVM-
data S-3DCNN | 3DCNN | 3DCNN | 3DCNN | 3DCNN | S-2DCNN CK
5 21.75 22.97 21.55 42.07 16.59 12.11 15.66
10 22.02 32.61 54.36 33.64 38.50 20.95 27.11
20 50.60 61.23 70.82 71.98 62.55 41.65 45.62
30 91.35 102.33 92.05 112.37 93.08 62.39 65.92
40 143.56 126.96 150.92 117.46 125.74 65.56 72.04
50 134.73 137.39 183.11 125.76 132.01 68.22 81.33
TABLE VII

OVERALL EXECUTION TIME OF THE PROPOSED MODELS FOR UNIVERSITY OF
PAVIA DATASET IN MINUTES

% Training GAB-RP- RP-S- GAB-S- | PCA-S- | GAU-S- | GAB-RP- | SVM-
data S-3DCNN | 3DCNN | 3DCNN | 3DCNN | 3DCNN | S-2DCNN CK
5 66.20 59.51 58.26 46.61 46.81 8.06 14.29
10 97.99 85.81 88.18 99.05 58.60 12.76 21.54
20 210.90 145.34 187.18 154.26 87.32 21.98 28.71
30 290.36 190.88 216.33 173.99 129.05 40.05 66.25
40 320.71 215.63 230.12 201.57 191.76 54.65 71.95
50 290.22 247.55 254.78 235.83 258.60 47.90 96.72

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

100
% .
g
g %
o
2 o)
s
E 0 =& 9x9 Window
= =& 11x11 Window
- —&— 13x13 Window
[ =& 15x15 Window
& & | —o— 19x19 Window
—& 21x21 Window
B - ®— 23x23 Window

10 20 £l 40 50
% Training Data

Fig. 8.  Overall performance of GAB-RP-S-3DCNN over a range of window
size in terms of classification accuracy for Indian Pines dataset.
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Fig. 9.  Overall performance of GAB-RP-S-3DCNN over a range of window
size in terms of classification accuracy for University of Pavia dataset.

V. CONCLUSION

In this work, several novel 3-D CNN based spatial-spectral
feature extraction and hyperspectral classification models were
introduced. Compared with the traditional 2DCNN-based mod-
els, 3-D convolution was used to construct features by exploring
both spatial context in neighboring areas and spectral corre-
lation in neighboring bands. Experimental results demonstrate
that the proposed 3-D CNN based spatial-spectral feature ex-
traction methodology GAB-RP-S-3DCNN yields outstanding
classification performance, while being robust under limited
training samples scenarios, when compared to other spatial-
and spectral-only based feature extraction approaches. 3-D
CNN based classification framework further demonstrates the
effectiveness and ability to learn the 3-D patterns in the data
and extract features both along spatial and spectral dimensions
which aids in better classification performance of hyperspectral
data; thereby prompting new exploration avenues for automated
hyperspectral data analysis in remote sensing applications.
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