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An Effective Classification Method for Hyperspectral
Image With Very High Resolution Based on

Encoder–Decoder Architecture
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Abstract—Hyperspectral images with very high resolution
(VHR-HSI) have become considerably valuable due to their abun-
dant spectral and spatial details. Classification of hyperspectral
images (HSIs) is a basic and important procedure for diverse
applications. However, low interclass spectral variability and high
intraclass spectral variability in VHR-HSI, shadows, pedestrians,
and low signal-to-noise ratio increase the fuzziness of different
categories. To address the known challenges of VHR-HSI classifica-
tion, an effective classification method based on encoder–decoder
architecture is proposed. The proposed algorithm is an object-level
contextual convolution neural network based on an improved resid-
ual network backbone with 3-D convolution, which fully considers
the spatial–spectral and contextual features of HSIs. Two different
spatial resolution aerial HSIs are used as experimental data. The
results show that the overall accuracy of the proposed method is
improved by 7.42% and 18.82%, respectively, compared to the
pixelwise convolution neural network and DeepLabv3 algorithm,
which is extraordinarily suitable for HSI classification with very
high spatial resolution.

Index Terms—Encoder–decoder, hyperspectral image (HSI)
with high spatial resolution, image classification, 3-D convolution
residual network.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) consist of abundant
spectral information covering the visible, near-infrared,

and shortwave infrared bands and detailed ground spatial in-
formation. With the increasing demand for spatial resolution
and the continuous innovation of unmanned aerial vehicle and
airborne remote sensing technology, hyperspectral images with
very high resolution (VHR-HSI) became considerably valuable
due to their abundant spectral and spatial details, and are widely
used in geological surveys [1], urban planning and management
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[2], crop growth monitoring [3], object detection [4], and envi-
ronment monitoring [5], [6].

Classification of hyperspectral images is the basic procedure
for these applications. At present, hyperspectral classification
methods are mainly divided into two categories. One is based on
spectral information, while the other is based on spectral–spatial
information jointly. Traditional machine learning classification
algorithms for hyperspectral images, such as k-nearest neigh-
bor [7], spectral angle mapping [8], and multinomial logistic
regression [9] are basically the former one. In order to improve
classification performance, later researches used support vector
machine [10], principal component analysis (PCA) [11], and
independent component analysis [12] to decrease the redundant
informative features. However, these methods do not fully con-
sider spatial information, resulting in unsatisfactory classifica-
tion accuracy. Subsequently, some spatial–spectral joint classifi-
cation algorithms have emerged, such as morphological profiles
[13], Markov random fields [14], [15], loop belief propagation
[16], and sparse representation [17]. These methods promote the
accuracy of classification to a certain extent, but establishing
complex function expressions by above methods is extremely
difficult due to the limitation of their structures. Besides, the
poor generalization ability is another problem that makes the
shallow machine learning methods unsuitable for VHR-HSI
classification. Recently, deep learning has achieved remarkable
success in image classification [18], [19], object detection [20],
and other computer vision [21]. Some excellent classification
algorithms have been developed for HSI data. Chen Y [22] took
the lead in using stacked autoencoder for HSI classification.
Subsequently, segmented stacked autoencoder [23], [24] and
sparse autoencoder [25] were proposed to reduce complexity
and improve efficacy. Deep belief network model is another
typical deep learning network architecture similar to SAE, and it
uses a multiple stacked restricted boltzmann machine to extract
hierarchical features of HSI data [26]. The similarity between
the two deep learning networks of SAE and DBN is that only 1-D
vector data can be input, and the spatial features are flattened into
a vector without considering the spatial adjacent relationship,
which limits the classification performance. Meanwhile, the
full connection between different layers adopted in SAE and
DBN requires training a large number of weight parameters,
leading to a huge calculation cost. The convolutional neural
network (CNN) proposed by Krizhevsky [27] became the most
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widely used in HSI classification. Different from the above two
networks, the CNN-based model can read 2-D or even 3-D
HSI data directly. In addition, weight sharing strategy is used
in CNN networks, greatly reducing the number of parameters
and the cost of computation. CNN-based models are devel-
oped into a variety of network forms for HSI classification
based on spectral–spatial features. Li et al. [28] developed a
pixel-pair method to expand the number of training samples
for the CNN classifier, and determined the final classification
result by a voting strategy. Zhang et al. [29] exploited diverse
region-based inputs to learn contextual interactional features on
the basis of the pixel-pair CNN method. Zhang et al. [30] used
a dual-channel CNN including a 1-D CNN channel to extract
hierarchical spectral features and a 2-D CNN channel to extract
the hierarchical space-related features for HSI classification.
PCA and 2-D CNN are often combined to accomplish HSI
classification, because PCA can effectively alleviate disastrous
dimensions and maintain effective spatial characteristics [11],
[31]. To reduce the complexity of the network and learn discrimi-
native and abundant spectral–spatial features, 3-D convolutional
layers are adopted to extract 3-D cubes image features directly
from raw HSIs [32], [33]. Subsequently, different variants of 3-D
CNN are generated by adding attention mechanism module [34],
using a multiscale dense connection [35], [36], and integrating
multiple networks [37] to optimize the classification results of
traditional CNN.

However, these methods are still dominant in the process-
ing of HSI with low and medium spatial resolution. With the
continuous improvement of HSI spatial resolution, the noise of
classification results gets increasingly serious, and classification
performance becomes increasingly unsatisfactory. The reason
for these consequences is that in a centimeter-level resolution
image, the feature unit of remote sensing objects is composed
of several neighboring pixels that may have different spectral
attributes, and the spatial details of VHR-HSI are consider-
ably complex and changeable. For example, the building in
orthophoto VHR-HSI may consist of roll tiles, chimney, glasses,
and other built components with different spectral properties.
The classification should extract the building as a single category
rather than the components of the building such as roll tiles,
chimney, and glasses. By contrast, low interclass spectral vari-
ability and high intraclass spectral variability introduce difficul-
ties in discriminating different classes. In general, the traditional
CNN classification algorithm based on pixelwise method does
not seem to be effective in terms of VHR-HSI, and the classifi-
cation results usually show serious noise and blurring. Semantic
segmentation is a powerful image segmentation method based
on the CNN model. These algorithms can combine context infor-
mation based on learning target features at different scales and
levels via end-to-end training. Such an algorithm can effectively
reduce or even eliminate noise and provide new possibilities for
VHR-HSI image segmentation. At present, many excellent se-
mantic segmentation algorithms have been successfully applied
in ordinary natural digital photos [38]–[42] and remote sensing
images [43]–[45]. On this basis, researches use the combination
of geographic object-based image analysis [46] or super-pixel

[47] with a semantic segmentation algorithm and achieve good
classification results for very high-resolution remote sensing
images. These algorithms aimed at the classification of ordinary
natural digital photos and very high-resolution remote sensing
images, but no attempt has been made to the processing of
hyperspectral remote sensing images, not to mention VHR-HSI.

In this article, to alleviate the serious salt-and-pepper noise of
the final results when classifying VHR-HSI, we design an effec-
tive classification network to fully capture the spatial–spectral
and contextual features of VHR-HSI. Our main contributions
are listed as follows:

1) The 3-D-ResNet is constructed by incorporating 3-D con-
volution and residual network.

2) 3-D-ResNet encoder–decoder architecture for VHR-HSI
classification is proposed by end-to-end training, which
is different from pixel-level feature learning of traditional
CNN.

3) Atrous spatial pyramid pooling (ASPP) is integrated into
the architecture to extract contextual features at multiple
scales.

4) The proposed architecture has excellent performance in
the classification result of hyperspectral images with very
high spatial resolution, and is suitable for this kind of data.

The remainder of this article is organized as follows. In
Section II, we describe the proposed classification method for
VHR-HSI in detail. In Section III, we present experimental
results and discussion. Section IV concludes the study.

II. METHODS

Inspired by the effective performance of semantic segmenta-
tion algorithm in high spatial resolution, we first use the design
of semantic segmentation to deal with the classification of VHR-
HSI. Different from the traditional pixelwise CNN classification,
the proposed algorithm is a contextual guided object-based CNN
that uses the end-to-end training. Encoder–decoder structure and
3-D residual blocks are the core of the proposed algorithm. In
this section, we give a detailed analysis of 3-D-ResNet and the
overall architecture of encoder–decoder.

A. 3-D-ResNet

A skip connection is used in residual block to alleviate the
phenomenon of gradient vanishing caused by increasing the
depth in neural network. Residual network is a network model
composed of a series of residual blocks [48], [52], [53]. The
residual network can effectively alleviate the vanishing gradients
problem caused by increasing the number of network layers
in CNN, which has a wide range of applications in different
network structure skeletons. In this article, the 3-D convolution
is embedded into residual network for learning abundant spatial
structure and spectral information.

The batch normalization (BN) can effectively alleviate the
phenomenon of slow convergence or gradient explosion in
the training process. Following by previous study [33], we
employ this method to normalize the feature cubes after 3-D
convolutional layers. If the kth 3-D convolutional layer has
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Fig. 1. Structure of the residual block used in this article.

m input feature cubes of size wk × wk × dk, the ith output
of (k+1)th 3-D convolutional layer with BN can be formu-
lated as
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where Hk+1
i and bk+1

i are the parameters and bias of the ith
convolutional filter feature in the (k+1)th layer, ∗ is a 3-D convo-
lutional operation. Xk

j ∈ Rω×ω×d is the jth input feature tensor
of the (k+1)th layer. F(·) is the rectified linear unit activation
function. X̂k is the normalization result of batch feature cubes
Xk in the kth layer. E(·) and Var(·) represent the expectation and
variance function of the input data, respectively.

The residual blocks in this article are composed of three 3-D
convolution layers with different kernels and one shortcut. The
structure of the residual block is as follows in Fig. 1. Successive
3-D convolutions with different scale convolutional kernels are
used to extract features from VHR-HSI and the successive
convolution kernels can be represented byHq ,Hq+1, andHq+2,
respectively, as shown in Fig. 1. The residual architecture for
input 3-D feature cubes Xq with the size of w × w × d can be
formulated as follows:

Xq+3 = Xq + F (Xq; ε) (3)

F (Xq; ε) = k
(
X̂q+2

)
∗Hq+3 + bq+3 (4)

Xq+2 = k
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)
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)
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)
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where ε = {Hq+1, Hq+2, Hq+3; bq+1, bq+2, bq+3} ,Hq+1,
and bq+1 represent the n 3-D convolutional kernels in the
(q+1)th layer, respectively. Through the shortcut and successive
convolution, the output feature Xq+3 contains hierarchical 3-D
feature cubes, including the low-level input feature Xq and a
high-level 3-D convolution feature.

B. 3-D-ResNet Encoder–Decoder Architecture

3-D-ResNet encoder–decoder architecture is an end-to-end
training structure for extracting context information of feature
maps. The encoder can capture the spatial dimension of the
feature maps by using continuous convolution and the longer
range feature is more easily captured in the deeper encoder

Fig. 2. ASPP exploits multiscale features by using multiple parallel filters
with different rates. Effective field-of-views are shown in different colors.

output. The decoder is based on different strategies, such as
using deconvolution upsampling, reusing the pooling indices,
and adding skip connections from encoder features to recover
image details and spatial dimensions.

The 3-D-ResNet is composed of several consecutive residual
blocks in series. A 3-D convolution with a kernel size of 1 ×
1 × m is used after each residual block to alleviate the spectral
dimension disaster of VHR-HSI. After the 3-D residual network
operation, the spectral axis of the input 3-D feature cubes is
compressed to 1, while the spatial scale remains the same as
the input feature. At the same time, the label data is consistent
with the scale of the output features, which can also be used for
end-to-end training.

In the encoder structure, as shown in Fig. 3, first, the designed
network uses 7 × 7 × 13-D convolution and 2 × 2 × 13-D
max pooling to extract and compress the features of VHR-HSI.
This is to consider that too high spatial resolution (e.g., <5
cm) may negatively impact the classification accuracy for land
cover mapping. In fact this operation is to carry out feature
extraction and down sampling on spatial scale to alleviate the
damage. Subsequently, the four consecutive combinations of
residual blocks and 3-D convolutions of spectral axis are used to
compress the 3-D features into 2-D spatial features with small
scale. Each residual block contains multiple units composed of
three layers of 3-D convolution. From Block1 to Block4, there
are 3, 4, 6, and 4 units, respectively. And each unit contains
three 3-D convolution layers of 1 × 1 × 2, 3 × 3 × 1, and
1 × 1 × 2. In the process, the residual block can reduce the
image to half of the original in spatial scale, but does not change
the number of features on the spectral axis. This is to capture
features in a larger spatial scale and semantic features. And these
blocks are followed by 1 × 1 × n 3-D spectral convolutions
to extract and abstract spectral details. Subsequently, an ASPP
including 3 × 3 atrous convolutions with rate = 2, 3, 4 and 1
× 1 conventional convolution is used in this encoder structure
to handle multiscale semantic information. The ASPP structure
as shown in Fig. 2 has an excellent classification effect on
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Fig. 3. 3-D-ResNet encoder–decoder architecture.

high spatial resolution remote sensing images [45], [51], [52]
by using a convolutional feature layer with filters at multiple
sampling rates to capture context information. In addition, the
image pooling feature in ASPP is the mean value of the output
of the previous layer. After concatenation, another 512 channels
with 1 × 1 conventional convolution are used to reduce the
number of channels and enhance the trainability of the network.

The encoder output feature contains rich semantic infor-
mation. In the decoder procedure, the input features are first
bilinearly upsampled by quadruple and then concatenated with
the corresponding low-level features from the encoder structure
with the same spatial resolution. After concatenation, 3 × 3
convolutions and another iteration of bilinear upsampling by
quadruple are used to refine the features and amplify spatial scale
to the same size as the input image. In other words, the size of
the output image is the same as that of the label data, which can
participate in end-to-end training. Then, the classification results
are calculated by softmax function. After the architecture of deep
learning models is built and the hyperparameters for training
are configured, the models are trained by the training dataset
of VHR-HSI and their corresponding ground-truth label vector
set. In this process, the model parameters are updated according
to the gradient of the cross-entropy objective function through
backward propagation algorithm. During the training stage, the
validation dataset is used for monitoring the training process
by measuring the classification performance of interim models
to select the optimal parameter model of the network with the
highest classification accuracy. Finally, the testing dataset of
VHR-HSI is used for assessing the generalizability and stabil-
ity of the trained proposed model by calculating classification
metrics and visualizing thematic maps. However, to avoid the
overflow of computing memory caused by high-dimensional
data, the original VHR-HSI is cut into the appropriate size for
processing.

III. RESULT AND DISCUSSION

A. Dataset Description and Experimental Setup

Two different spatial resolutions of VHR-HSI are used in this
article. The first data (we named it HySpex data) was obtained
by the HySpex Mjolnir V-1240 hyperspectral imaging system
developed by NEO in Norway. The system provides a unique
combination of small form factor and low mass, which is highly
suited for a wide range of unmanned aerial vehicle platforms for
data imaging. This VHR-HSI used in this article was acquired by
flight on October 26, 2016, in Huailai County, Hebei Province,
China, with 0.04 m spatial resolution. Background targets such
as pedestrians, cars, and shadows can be seen clearly in such
centimeter spatial resolution HSI, which is a serious interference
factor for hyperspectral image classification. The HySpex data
has 200 bands covering the visible and near-infrared spectral
range, from 400 to 1000 nm. The experimental image and corre-
sponding ground truth are shown as Fig. 4(a) and (b). According
to the on-the-spot investigation, we divided the ground objects
into nine, namely, fallen withered grass, standing withered grass,
impervious surface, trees, buildings, nudation, cars, flowers in
clusters, and clutter/background.

The second dataset is grss_dfc_2018, which was collected by
the National Center for Airborne Laser Mapping at the Univer-
sity of Houston on February 16, 2017, covering the University of
Houston campus and its surrounding areas [53]. The hyperspec-
tral data grss_dfc_2018 covers a 380–1050 nm spectral range
with 48 bands at a 1-m ground sampling distance (GSD), as
shown in Fig. 5(a). The sponsor provided the corresponding
VHR RGB imagery at a 5-cm GSD, as shown in Fig. 5(b).
Moreover, they also provide a ground truth map at 0.5-m GSD
corresponding to 20 urban land use and land cover classes. We
fuse the low spatial resolution hyperspectral (hyperLR) image
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Fig. 4. HySpex data. (a) True composite image (R: 641 nm, G: 548 nm, B:
460 nm), the red rectangle is the data for testing, the rest is for training. (b)
Ground truth map.

Fig. 5. grss_dfc_2018 data. (a) True composite image of HSI (R: 632 nm, G:
531 nm, B: 460 nm). (b) True composite image of VHR image, the red rectangle
is the data for testing, the rest is for training. (c) Ground truth map.

and the high spatial resolution multispectral (mutilHR) image
using Gram–Schmidt algorithm to obtain the VHR-HSI at 5-cm
GSD. Meanwhile, we remake the labels according to the VHR
RGB imagery, and merge some categories as shown in Fig. 5(c).

Owing to GPU memory limitations, the proposed algorithm
cannot easily process large-scale VHR-HSI images directly.
Therefore, the large-scale spatial image is sliced into multiple
224 × 224 patchwise images for processing.

The algorithm is based on Tensorflow framework and runs
on CentOS 7.4 system with a Xeon Gold 5118 CPU @ 2.30
GHz and a Tesla P100 GPU with 16 GB graphics memory. The
number of training iterations is 50 000, batch size is 2, and
learning rate is 0.0001. The accuracy performance is evaluated

with overall accuracy (OA), average accuracy (AA), and kappa
coefficient (k).

B. Classification Results of HySpex data

We compare the proposed method with the pixelwise deep
learning models, such as 2-D CNN, 3-D CNN, PCA combined
with 2-D CNN (PCA-CNN), and 3-D-ResNet. Compared with
the proposed method, the 3-D-ResNet still adopts pixelwise
training instead of end-to-end training, and this network has no
ASPP structure. Moreover, the semantic segmentation algorithm
DeepLabv3 is also used for comparative analysis to demonstrate
the effectiveness of the proposed framework. We construct three
layers of convolution, three layers of pooling, and two layers
of full connection for all these CNN algorithms. The Adam
optimization method and cross-entropy loss function are used
in these networks. The number of training is 50 000, the number
of batch training is 20, the number of samples is 200, and the
learning rate is 0.001. The number of training iterations of the
DeepLabv3 algorithm is 50 000; batch size is 4; atrous rate r =
6, 12, 18; and learning rate is 0.0001.

The image with 0.04 m spatial resolution has many artifi-
cial objects showing complex spectral variances. Shadows and
pedestrians wearing different colors will also increase the com-
plexity in the spectrum, which is one of the major interference
factors for the classification results. Figs. 6 and 7 present the
classification results of different methods for visual interpreta-
tion. The traditional CNN networks, including 2-D CNN, 3-D
CNN, PCA-CNN, and 3D-ResNet, have a good effect on spectral
feature extraction, which is mainly reflected in the boundary of
regular objects. However, the VHR-HSI with strong granular
pixels and poor signal-to-noise ratio constrains the efficiency
and effectiveness of classification. This is mainly manifested
in the areas such as pedestrian, shadow, and ground object
composed of different spectral characteristics. Pixelwise CNN
classification methods show more serious salt-and-pepper noise
in classification results, making them unsuitable for the classi-
fication of VHR-HSI data. However, they are also outstanding
in some details. For example, in the red ellipse of Fig. 6(d),
the boundary contour lines of standing withered grass using
pixelwise CNN methods are extraordinarily clear and accurate.
Fig. 6(e) is the classification result of 3-D-ResNet method with-
out encoder–decoder architecture and ASPP. The results show
that the method is slightly better than 2-D CNN, but worse than
3-D CNN and PCA-CNN. The anti-interference performance of
this method for shadow and pedestrian is not satisfactory. The
200 bands of VHR-HSI are directly input into the DeepLabv3
algorithm, showing poor classification performance. As shown
in Fig. 6(f), although the salt-and-pepper noise phenomenon in
the classification results is effectively alleviated, the boundary
of some ground targets is coarse and even some objects on
the ground such as buildings, cannot be distinguished at all. A
possible reason for this result is that the DeepLabv3 algorithm
performs a convolution operation for each band of VHR-HSI
separately, and it lacks the feature learning of pixel on spectral
profile. By contrast, the proposed method can compromise be-
tween these two contradictions, which can effectively eliminate
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Fig. 6. Subarea1 classification results with different neural network algo-
rithms. (a) Ground truth map. (b) 2-D CNN. (c) 3-D CNN. (d) PCA-CNN.
(e) 3D-ResNet. (f) DeepLabv3. (g) Proposed method.

the classification noise obtained by the pixelwise method and
maintain fine boundary features. The proposed method achieves
a predominant result with high internal compactness and fine
boundary delineation. In particular, it outperforms the other three
benchmark methods when classifying those same land cover
classes with different spectra, such as buildings.

Fig. 7 shows the classification results with different neural
network algorithms in the second subarea. Pixelwise CNN can
extract the edge information that is located in the interior of
the homogeneous objects and the boundary of a heterogeneous
region, such as the building with complex texture information.
Actually, the boundary between categories is needed to extract
in classification applications rather than the edge information

Fig. 7. Subarea2 classification results with different neural network algo-
rithms. (a) Ground truth map. (b) 2-D CNN. (c) 3-D CNN. (d) PCA-CNN.
(e) 3-D-ResNet. (f) DeepLabv3. (g) Proposed method.

within homogeneous objects. The proposed algorithm can effec-
tively eliminate the edge feature information of homogeneous
objects in the classification and greatly improve the classification
effect.

Table I shows the quantitative assessment of the classification
performance. The proposed method achieves the highest OA
88.90% with k 0.861, compared with 2-D CNN (OA 63.17%
and k 0.538), 3-D CNN (OA 79.50% and k 0.734), PCA-CNN
(OA 81.48% and k 0.756), and 3-D-ResNet (OA 72.07% and k
0.640). The advantages of our algorithm can be observed obvi-
ously among conventional pixelwise classification methods. The
classification accuracy of the DeepLabv3 algorithm is highly
unsatisfactory under the condition of small samples, such as
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TABLE I
CLASSIFICATION PERFORMANCE COMPARISON OF HYSPEX DATA

Fig. 8. Fusion result by Gram–Schmidt algorithm. (a) MutilHR image. (b)
HyperLR image (R: 760 nm, G: 632 nm, B: 531 nm). (b) VHR-HSI (R: 760 nm,
G: 632 nm, B: 531 nm).

flowers in clusters and clutter/background. Their classification
accuracies are less than 0.1 because the classification perfor-
mance of the DeepLabv3 needs to depend on a large number of
training samples for support. The proposed method gains an OA
improvement of 7.42% and a kappa coefficient improvement of
0.105. It has good performance in the classification results of
each ground object, even under the condition of a small number
of training samples.

C. Classification Results of grss_dfc_2018 Data

The VHR-HSI obtained by the fusion of hyperLR and mu-
tilHR images is shown in Fig. 8(c). The spatial resolution has
been effectively improved, and the texture details have been
ameliorated and abundant, which is helpful to the image inter-
pretation of urban land use and land cover.

In addition, we compare the spectral changes of several typical
features before and after fusion. The spectral changes of several
ground features before and after fusion are compared as shown
in Fig. 9.

For those land cover classes with fixed spectral characteristics,
such as healthy grass, evergreen trees, and deciduous trees, their
spectrum of VHR-HSI after fusion has high fidelity compared
with hyperLR image. But for those land cover classes with vari-
able spectra, such as roads, cars, and buildings, their spectrum
may be changed to a great extent before and after spectral fusion.

Fig. 9. Spectral changes of different urban land use and land cover classes
before and after fusion.

We also compare the proposed method with 2-D CNN, 3-D
CNN, PCA-CNN, 3-D-ResNet, and DeepLabv3 algorithm. The
setting of training parameters is the same as that of HySpex data.
Fig. 10 shows the classification results with different methods.

The traditional pixelwise CNN networks, including 2-D CNN,
3-D CNN, PCA-CNN, and 3-D-ResNet, still have unsatisfactory
classification results, showing a serious salt-and-pepper noise.
Especially for the man-made objects with different spectra but
the same urban land use and land cover feature class, such as
cars and buildings, the performance of classification is more
serious. The classification results of DeepLabv3 algorithm can
better resist these noises. However, the stability of this model is
not outstanding, and the training time is about two times more
than that of the proposed method. When classifying the images,
we can see that there are obvious stitching lines, which is caused
by the instability of the model, as shown in Fig. 11(f). The pro-
posed method is a context guided network, which can consider
spectral, spatial, and contextual features. Fig. 11(g) shows the
classification result of the proposed method, which can eliminate
salt-and-pepper noise and stitching lines in VHR-HSI.

Table II shows the quantitative assessment of the classifi-
cation performance. The proposed method achieves the high-
est OA 85.63% with k 0.830, compared with 2-D CNN (OA
45.52% and k 0.361), 3-D CNN (OA 60.82% and k 0.547),
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Fig. 10. Classification results of grss_dfc_2018 data with different neural network algorithms. (a) Ground truth map. (b) 2-D CNN. (c) 3-D CNN. (d) PCA-CNN.
(e) 3-D-ResNet. (f) DeepLabv3. (g) Proposed method.

Fig. 11. Classification results of subarea with different neural network algorithms. (a) Ground truth map. (b) 2-D CNN. (c) 3-D CNN. (d) PCA-CNN.
(e) 3-D-ResNet. (f) DeepLabv3. (g) Proposed method.

PCA-CNN (OA 59.45% and k 0.532), 3-D-ResNet (OA 58.13%
and k 0.505), and DeepLabv3 (OA 66.81% and k 0.605).
The classification result of this dataset using DeepLabv3 al-
gorithm is better than that of HySpex data, this because the
training sample number of grss_dfc_2018 data is much more
sufficient. The proposed method gains an OA improvement of

18.82% and a kappa coefficient improvement of 0.225. Pix-
elwise CNN has poor classification performance in the man-
made objects with great differences of spectrum, such as cars.
On the contrary, the proposed method has excellent classi-
fication performance for both man-made and natural feature
classes.
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TABLE II
CLASSIFICATION PERFORMANCE COMPARISON OF GRSS_DFC_2018 DATA

IV. CONCLUSION

To address the known challenges of VHR-HSI classification,
an effective end-to-end encoder–decoder architecture is pro-
posed. The proposed architecture is an object-level contextual
guided CNN based on an improved residual network backbone
with 3-D convolution, which completes classification effectively
by fusing spectral, spatial, and contextual information. Com-
pared with four pixelwise CNN methods and DeepLabv3, it
is proved that the proposed method has a remarkable perfor-
mance of suppressing salt-and-pepper noise in VHR-HSI clas-
sification. The proposed algorithm has the following attractive
properties:

1) 3-D-ResNet encoder–decoder architecture is constructed
for hyperspectral image classification by end-to-end
training.

2) With multiscale contextual information used for classifica-
tion, the method shows excellent superiority in withstand-
ing predominant noise, especially in areas with shadows,
pedestrians, and man-made features.

3) Compared with conventional pixel-wise classification
methods and DeepLabv3 algorithm, the proposed method
achieves high classification accuracy which is more suit-
able for centimeter level spatial resolution HSI.

Though the classification results are satisfactory, further ex-
periments focusing on the boundary of small objects need to be
carried out by the proposed method. In other words, the con-
tradiction between multiscale semantic information and small
object details in classification is still unsolved completely.
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