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Leveraging Airborne LiDAR Data and Gradient
Boosting for Mapping the Density of Different

Sized Trees
Yuri Shendryk , Member, IEEE, and Emma Gorrod

Abstract—Information on the distribution of trees with different
diameters at breast height (DBH) is needed to inform management
programs aimed at achieving conservation objectives in high stem
density forest stands. This article explored the feasibility of map-
ping the density of trees with different DBHs using airborne LiDAR
data. Experiments were conducted in the largest river red gum
forest in the world, located in the southeast of Australia. Field
measured data on trees with different DBHs were used for the
supervised learning of airborne LiDAR scans with a pulse density
of 5.92 pulses/m2. Specifically, the hyperparameters of gradient
boosting and random forest regressors were tuned to produce a
viable solution for mapping the density of different sized trees at
the plot level. Our results indicate that the total tree density (DBH>
0 cm; height > 1.37 m) can be mapped using airborne LiDAR data
with the coefficient of determination R2 of up to 0.67, with gradient
boosting outperforming random forest. However, the accuracy of
mapping the density of saplings (DBH ≤ 10 cm), small trees (10 cm
< DBH ≤ 50 cm), and large trees (DBH > 50 cm) differed with
R2 of 0.65, 0.60, and 0.42, respectively. These results show that the
airborne LiDAR data can provide a viable solution for mapping the
density of small trees (DBH ≤ 50 cm) over large areas and has the
potential for mapping the density of large trees (DBH > 50 cm).

Index Terms—Density, diameter at breast height (DBH), forest,
gradient boosting, light detection and ranging (LiDAR), machine
learning, random forest.

I. INTRODUCTION

FOREST thickening caused by land management, altered
disturbance regimes, and climatic factors is increasingly

common globally [1]. In the largest river red gum forest in
the world, Barmah–Millewa Forest (BMF) in Australia, stands
dominated by the high densities of slender stems with few
large trees have become widespread [2]–[5]. After gazettal as
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a national park in 2010, multiple management programs were
introduced to improve the health of the BMF, such as environ-
mental flows in river systems [6] and an ecological thinning
trial [3]. To inform management programs that aim to achieve
conservation objectives, a spatial representation of the density
of different sized trees overtime is required for BMF. In this
respect, the remote sensing technology may provide essential
dynamic information on a scale that field-based studies cannot
match.

Specifically, airborne light detection and ranging (LiDAR)
technology is able to provide vegetation measurements that
are highly related to forest attributes (e.g., stem volume, tree
density, and above-ground biomass [7]–[10]) at the plot level.
Furthermore, recent advances in the LiDAR technology and al-
gorithm development have enabled the estimation of the above-
mentioned forest attributes at the individual tree level [11]–[13].
Individual tree detection and segmentation methods generally
require LiDAR data with high pulse density (>10 pulses/m2).
Hence, one of the limitations of the previous plot-level stud-
ies utilizing LiDAR data with a relatively low pulse density
(<10 pulses/m2) was that they did not directly estimate tree
diameters at breast height (DBH) [10], [14], [15]. However, the
information on the distribution of trees with different DBHs is
necessary to assess forest stand properties and estimate growth
and future forest prescriptions [16]. Multiple studies achieved
high accuracies (the coefficient of determination R2 of up to
0.86) when predicting the total density or density of large trees in
coniferous forests [17], [19]. Relatively low accuracies (R2 of up
to 0.43) were reported when predicting the total tree densities in
tropical and eucalypt forests, while no study has investigated the
prediction of the density of different sized trees using airborne
LiDAR data at the plot level without relying on individual tree
detection. Therefore, the aim of this study was to evaluate the
ability of airborne LiDAR scans with a pulse density of 5.92
pulses/m2 to upscale detailed field measurements of different
sized (in terms of DBH) trees in the BMF at the plot level. The
specific objectives were as follows.

1) Explore the feasibility of airborne LiDAR for mapping the
density of trees with different DBHs.

2) Determine the accuracy with which different tree size
classes can be mapped from the air.

To date, the most common methods for predicting tree density
at the plot level using airborne LiDAR scans were regression
analyses [17]–[19], while machine learning approaches were
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Fig. 1. Study area. (A) Location of the BMF. (B) Distribution of field sites
and LiDAR footprints across BMF. (C) Example of two sites containing 20 field
plots (20 × 50 m).

less commonly used [10], [16]. Therefore, in this study we
evaluated two popular decision tree-based machine learning
algorithms, gradient boosting [20] and random forest [21],
which require minimum data preprocessing and are able to take
advantage of the data dimensionality. The decision tree-based
machine learning algorithms have shown good potential in mul-
tiple classification benchmarks [22], [23] and, while being more
interpretable, consistently outperform neural network models on
tabular-style datasets, where features are individually meaning-
ful [24].

II. METHODOLOGY

A. Study Area

The BMF [see Fig. 1(A)] occupies 737 km2 and is the largest
contiguous area of Eucalyptus camaldulensis, commonly known
as river red gums, in the world. The BMF is a floodplain forest
that spreads along the Murray river, with Millewa forest on the
northern side of the Murray river in the state of New South Wales,
and Barmah forest on the southern side of the river in the state
of Victoria [25]. This forest complex consists of river red gum
forest (71%), river red gum woodland (23%), and mixed box
eucalypt woodland (6%) [26]. The BMF is structurally complex
with highly variable age and health conditions as well as tree
densities ranging from more than 4000 trees/ha in forests to less
than 50 trees/ha in open woodlands [27], [28].

B. LiDAR Data

Airborne LiDAR scans covering the whole extent of the BMF
were downloaded from the Geoscience Australia elevation infor-
mation system (ELVIS) [29]. The LiDAR scans were acquired
between 10 September and 7 November 2015 using Trimble
AX60 system in a full-waveform mode with parameters speci-
fied in Table I. Ground control was also collected between 25
September and 6 October 2015 and used to verify the accuracy of
LiDAR scans. Comparing LiDAR scans with the ground control
points resulted in a calculated accuracy of 0.166 m at two sigmas

TABLE I
AIRBORNE LIDAR ACQUISITION PARAMETERS

1Pulse is the laser signal sent out from the LiDAR system toward the ground.
2Point is the signal or multiple signals reflected from target(s) back toward the LiDAR
system.

(i.e., two standard deviations). The inertial measurement unit
(IMU) (Trimble AP50 GNSS/IMU) and postprocessed airborne
GPS logs were used to generate the LiDAR point cloud from the
waveform instrument data [29].

The LiDAR data used in this study were originally acquired
to provide a detailed terrain surface for modeling the flows and
volumes of water within the floodplains and channels of the
Edward–Wakool region [30]. An automatic classification algo-
rithm applied in TerraScan software to produce a classification
of LiDAR scans by the vendor for Vaze et al. [30] study was
deemed inappropriate for this study due to excessive occurrence
of unclassified low (below ground surface) and high (above veg-
etation) noise points. LiDAR scans were composed of multiple
flight lines that had a nominal swath overlap of 30%. However,
there were also areas that were surveyed twice (potentially due
to scanning gaps) leading to the swath overlaps of 100% in some
areas. Major issues in overlapping areas of LiDAR swaths were
noted in [30] (e.g., the elevation differences of over ±30 cm)
and were also confirmed in this study, suggesting that flight lines
were not properly aligned by the vendor. The misalignment of
swaths could lead to inaccurate point classification as well as
“stripping” issues when calculating the forest density metrics in
areas of swaths overlap. Therefore, in this study, LiDAR scans
were reprocessed and reclassified using LASTools software [31].

First, LASTools software was used to recover the original
123 flight lines and to minimize swath overlaps by preserving
the points within 0.3 m spacing with the lowest absolute scan
angle. This led to an average point density decrease from 9.95
to 7.23 points/m2, and pulse density decrease from 5.92 to 4.45
pulses/m2. This also led to an average point spacing increase
from 0.32 to 0.37 m, and pulse spacing increase from 0.41 to
0.47 m. Reprocessed flight lines were then merged and split
into 2 × 2 km tiles with a 50 m buffer to speed up further
processing and avoid classification artifacts on the edges of each
tile. Duplicate, low, and high noise points were automatically
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Fig. 2. Distribution of tree density with different DBHs (i.e., response vari-
ables). (A) “all trees” (DBH> 0 cm). (B) “saplings” (DBH≤ 10 cm). (C) “small
trees” (10 cm < DBH ≤ 50 cm). (D) “large trees” (DBH > 50 cm).

classified and removed from further processing. An automatic
classification algorithm [31] was further applied to produce
a classification of ground points, which were used to height
normalize the remaining unclassified points. No position and
orientation files were available for LiDAR data in the ELVIS
portal [29], which prevented the performance of LiDAR swaths
alignment. Similarly, no range information was available in
LiDAR data preventing the correction of intensity values.

C. Field Data and Response Variables

The field measurements of the density of different sized trees
were collected in June and July 2016 before a major flooding
event and were completed in February 2017 once flood waters
had subsided. Field data were collected at 66 sites [see Fig. 1(B)],
each site consisting of ten 20× 50 m plots [Fig. 1(C)] delineated
using the standard GPS unit with the positional accuracy of
approx. 5 m. The data for each plot consisted of the number
of trees (> 1.37 m in height) in 10 cm DBH size classes. For
the purpose of this study, the numbers of trees were binned into
four tree densities with different DBH classes: “all trees” (DBH
> 0 cm); “saplings” (DBH < 10 cm); “small trees” (10 cm <
DBH < 50 cm); “large trees” (DBH > 50 cm), which are further
referred to as response variables. While all of the 660 plots were
within the LiDAR footprint [see Fig. 1(B)], only 528 plots had
information on “all trees” and “saplings” classes, as in some
plots, the information on the number of trees with DBH < 10
cm was not recorded. It is also important to note that 100 out
of 660 plots were surveyed for stand structure after they were
thinned in 2017. The tree density estimates for these 100 plots
were based on stump counts and a tapering equation to allocate
each tree to an appropriate size class.

The distributions of all response variables were right skewed
(see Fig. 2), which posed a class imbalance problem for machine
learning regressors. Therefore, prior to the machine learning

TABLE II
TOTAL OF 78 PREDICTOR VARIABLES EXTRACTED FROM THE LiDAR SCANS

1Average square height is an arithmetic mean of squared height. It is a measure of
central tendency, and in forestry research, it is considered to be more appropriate
than the arithmetic mean height [33].

2Height of median energy [7] was calculated by ordering all points above 0.5 m by
their elevation. Then, the height was computed at which the sum of intensities of
points below and the sum of intensities of points above was identical.

3Fraction of return points between the nth (i.e., 5th–95th) percentile height and the
maximum height (%).

4Tallest tree within 20 × 50 m plots was 44.8 m.
5Vertical complexity index provides information about the vertical distribution of
the points [32].

analysis, all response variables were log transformed to the
normal distribution.

D. Predictor Variables

LAStools software was further used to generate 78 forestry
metrics (i.e., predictor variables) within 20 × 50 m plots from
height-normalized LiDAR scans (see Table II), some of which
were previously shown to be integral for predicting tree biomass,
diameter, and basal area at the plot level [7], [16], [18], [32].

Only 6 out of 78 predictors (i.e., hom, int_max, int_avg,
int_std, int_ske, and int_kur) were calculated using the LiDAR
intensity information, as there was pronounced “stripping” noise
in intensity data in the overlapping areas of LiDAR swaths.

To investigate the effect of the positional accuracy of de-
lineated plots on the prediction of tree densities, each 20 ×
50 m plot was shifted in four cardinal directions (i.e., north,
west, east, and south) (see Fig. 3) from its center by 5 m (i.e.,
approx. accuracy of a GPS receiver used for delineating plots).
Each resulting plot area was used to compute 78 predictor
variables (see Table II) from height-normalized LiDAR point
clouds. Finally, the average of each predictor variable across
five plot areas (i.e., center, north, west, east, and south) was
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Fig. 3. Examples of LiDAR scans extracted within 20 × 50 plots. (A) Plot
containing 112 trees with DBH > 10 cm. (B) Plot containing nine trees with
DBH > 10 cm. The central plot is highlighted in yellow, while the plot shifts of
5 m in four cardinal directions are highlighted in red.

TABLE III
HYPERPARAMETER RANGES USED FOR OPTIMIZING GRADIENT BOOSTING AND

RANDOM FOREST REGRESSORS (SEE SCIKIT-LEARN LIBRARY

DOCUMENTATION [34] FOR HYPERPARAMETER DESCRIPTION)

also calculated to investigate whether the averaging of predictor
variables could lead to improved prediction accuracy.

E. Machine Learning

In this study, both gradient boosting [20] and random forest
[21] regressors were used to estimate the density of different
sized trees. Gradient boosting is an ensemble learning method
that combines the predictive power of multiple decision trees
using a boosting algorithm. In boosting, the decision tree that
improves the model most is added to an ensemble at each
iteration until the set number of estimators (i.e., n_estimators)
has been achieved. In contrast to bagging techniques, such as
random forest, in which the trees are grown to their maximum
extent, boosting makes use of shallow trees with fewer splits and
relies on multiple hyperparameters (see Table III) to control the
learning process.

To train gradient boosting and random forest regressors with
the highest predictive accuracy of tree densities with different
DBHs, a Scikit-learn library was used. Scikit-learn is a free
software machine learning library for the Python programming
language featuring various classification, regression, and clus-
tering algorithms [34]. For each response variable, the data
were split into training (80%) and test (20%) sets. Using the
training dataset for each response variable, the best value of each
hyperparameter (see Table III) was determined using 10 000

iterations of randomly generated gradient boosting and random
forest pipelines. Each iteration used fivefold cross-validation
stratified according to the values of a response variable. At
each fold of the cross-validation procedure, 80% of the training
dataset was used to train the model and 20% to validate it. The
best model according to the highest average cross-validation
score was further evaluated using the test dataset, while the final
machine learning models for inference were trained on all data.

The accuracy of gradient boosting and random forest models
for predicting response variables was assessed using the coeffi-
cient of determination R2 at both training and test stages, while
the root-mean-square error (RMSE) was additionally calculated
to evaluate final models on the test data. RMSE shows how
much predictions deviate from the actual values in the dataset
on average and was calculated as:

RMSE =

√
1/N

∑N

i=1
(x̂i − xi)

2

where xi is the measured value, x̂i is the predicted value, and
N is the number of measurements.

Through a randomized search on hyperparameters, a total of
48 final machine learning models were selected for different
sized tree density prediction [i.e., two machine learning algo-
rithms × four response variables × six plot areas (i.e., center,
north, west, east, south, and average) used for predictor variable
extraction].

While the training and optimization of machine learning
models were based on predictor variables that were calculated
within 20 × 50 m (1000 m2) plots, the inference was based on
predictor variables calculated within 32 × 32 m grid cells (1024
m2) across the entire BMF extent to approximate the size of field
plots.

F. Predictor Importance

Decision tree-based machine learning models have been ex-
tensively used in remote sensing to make predictions based on
the sets of input predictors. For these applications, models often
must be both accurate and interpretable, where interpretability
means that we can understand how the model uses input pre-
dictors to make predictions. However, widely used explanation
methods for decision tree-based models are inconsistent. For
example, commonly used information gain [35] is biased as it,
first, averages the contribution of predictors across all instances
they appear in the trees. This dilutes the calculated importance
of some predictors, which are used as a splitter many times,
although not always improving the model by a large amount each
time it is used, and second, alters the impact of predictors based
on their tree depth (i.e., the information gain method is biased
to attribute more importance to lower splits) [36]. Therefore, in
this study, a recently introduced SHapley Additive exPlanations
(SHAP) [36] method to explain the output of the machine
learning models was used. SHAP is a game-theoretic approach
to explain the output of any machine learning model using
Shapley values [37]. The Shapley value is the average marginal
contribution of a predictor across all possible coalitions, which
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Fig. 4. Results of predicting the density of different sized trees using gradient
boosting. The variations in terms of (A) R2 and (B) RMSE depending on six plot
areas (i.e., average, center, east, north, south, and west) used for the predictor
variables extraction.

indicates the magnitude of the predictor variable’s contribution
to a response variable.

III. RESULTS

Overall, gradient boosting outperformed random forest in pre-
dicting the densities of different sized trees when using predictor
variables averaged across five plot areas (i.e., center, north, west,
east, and south). Random forest was able to predict the densities
of “saplings,” “small trees,” “large trees,” and “all trees” with
R2 (RMSE) of 0.65 (29.45), 0.58 (11.63), 0.39 (2.07), and 0.65
(28.37), respectively. In contrast, gradient boosting predicted
the densities of “saplings,” “small trees,” “large trees,” and “all
trees” with R2 (RMSE) of 0.65 (27.00), 0.60 (11.52), 0.42 (2.06),
and 0.67 (26.43), respectively. Given a slight superiority of the
latter method, the rest of this section will be presented with the
results from the gradient boosting analysis.

The accuracy (R2) of “saplings,” “small trees,” “large trees,”
and “all trees” predictions using gradient boosting and consid-
ering the positional shifts of the plots in four cardinal directions
ranged between 0.53 and 0.65, 0.52 and 0.60, 0.35 and 0.42, and
0.57 and 0.67, respectively (see Fig. 4).

The positional shifts of the plots in four cardinal directions
generally resulted in R2 decrease of up to 0.12 (e.g., “saplings”).
However, the most accurate models were built when using pre-
dictor variables averaged across five plot areas (i.e., center, north,
west, east, and south). Fig. 5 shows the predictive performance of
final gradient boosting models on a test set (i.e., hold-out sample
of 20%) trained using the predictor variables averaged across
five plot areas. The gradient boosting models overpredicted the
large values and underpredicted the low values of tree densities
(see Fig. 5).

The most important predictors of each response variable (as
determined by SHAP values) commonly included forest density
metrics (e.g., cov and dns) (see Fig. 6). Moreover, d01, d05, and
d11 predictors were one of the most important in predicting
the densities of “saplings,” “small trees,” and “large trees,”
respectively. The high values of cov predictor tended to predict
high tree densities for every response variable, while high p05
values increased the chance of predicting the low densities of
“all trees” and “saplings” [as indicated by dot color in Fig. 6(A)
and (B)]. Interestingly, high int_avg values increased the chance
of predicting the low densities of “small trees” [see Fig. 6(C)],

Fig. 5. Accuracy (R2) of the predicted tree density of: (A) “all trees” (DBH
> 0 cm), (B) “saplings” (DBH < 10 cm), (C) “small trees” (10 cm < DBH
< 50 cm), and (D) “large trees” (DBH > 50 cm) on a test set (i.e., hold-out
sample of 20%) using the final gradient boosting models optimized through
hyperparameter tuning.

Fig. 6. Predictor importance for the predicted tree densities of (A) “all trees”
(DBH > 0 cm), (B) “saplings” (DBH < 10 cm), (C) “small trees” (10 cm <
DBH < 50 cm), and (D) “large trees” (DBH > 50 cm). Every field plot has one
dot on each row. The x-axis position of the dot is the impact of that predictor
on the model’s prediction for the plot, and the color of the dot represents the
value of that predictor for the plot. The dots that do not fit on the row pile
up to show density. All SHAP values have the same unit, i.e., the unit of the
prediction space, and the sum of SHAP values yields the difference of actual
and average prediction. The 10 (out of 78) most important predictors for each
response variable are shown.
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while it had the opposite effect on the predictions of the tree
densities of “large trees” [see Fig. 6(D)].

The prediction maps of the density of different sized trees at
32 × 32 m resolution for BMF areas with trees higher than 2 m
(i.e., max > 2 m) and relatively low vegetation density under 2
m (i.e., d00 < 0.2) (712 km2, which is 97% of the total BMF
area) are presented in Fig. 7. The areas (i.e., 32 × 32 m plots)
within BMF with max < 2 m and d00 > 0.2 were masked out
to exclude swampy areas with very tall phragmites and juncus.
Generally, high tree densities were concentrated along the water
bodies in the BMF.

IV. DISCUSSION

The results of this study indicate that LiDAR-derived predic-
tors were able to estimate the density of trees with DBH > 0 cm
at the plot level with R2 of up to 0.67. This is a substantial im-
provement in comparison with the previous research, suggesting
that the tree density (DBH ≥ 10 cm) in BMF could be predicted
through the random forest regressor with R2 of 0.48–0.52 when
using the airborne low pulse density (approx. 0.5 pulses/m2)
LiDAR data and R2 of 0.61 when using satellite multispectral
and synthetic-aperture radar (SAR) imagery in combination with
the airborne low pulse density LiDAR data [38]. However, the
improvement in R2 in this study was likely attributed to the
increase in the pulse density (from 0.5 to 5.92 pulses/m2) rather
than the use of gradient boosting over the random forest. It was
found that gradient boosting consistently outperformed random
forest (R2 increase of up to 0.03) in predicting tree densities
across a range of DBHs. Previously, it was also reported that
the accuracy of tree density prediction using LiDAR data was
highly dependent on the changes in the pulse density up to 2
pulses/m2 and not the choice of a machine learning algorithm
[10].

The accuracies of predicting tree densities in this study were
difficult to compare with the previous studies relying on airborne
LiDAR data. For example, the plot-level density of trees with
DBH > 100 cm was previously predicted with R2 = 0.79 [17],
while the density of all trees was estimated with R2 = 0.53
[17], R2 = 0.86 [19], and R2 = 0.79 [18]. All above-mentioned
studies [17]–[19] used multiple linear regression analysis for
their predictions; however, they focused on coniferous and
mixed-wood forests and failed to report the pulse density of their
LiDAR data making any comparison to our study inadequate. In
contrast, much lower accuracies were reported when predicting
the plot-level tree density in tropical (R2 = 0.43 [14]) and
eucalypt forests (R2 = 0.41 [15]) using LiDAR data with the
point density of up to 3.5 points/m2.

General overprediction of large values and underprediction
of low values of tree densities (see Fig. 5) are surprising results,
given that the opposite trend is intrinsic to regression tree-based
machine learning models [39]. This could be attributed to the
right-skewed nature of the tree size class data (see Fig. 2).
Postprocessing by adjusting the slope and intercept of the ma-
chine learning model output could be used to reduce this bias
[39]. Alternatively, a different accuracy metric (e.g., RMSE) and
custom loss function that penalizes more heavily overpredictions

Fig. 7. LiDAR-derived distribution of the density of (A) “all trees” (DBH >
0 cm), (B) “saplings” (DBH < 10 cm), (C) “small trees” (10 cm < DBH < 50
cm), and (D) “large trees” (DBH > 50 cm).
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of large values and underprediction of small values could be
employed during the model training.

The accuracy of final models for predicting the density of
“large trees” (i.e., DBH> 50 cm) was lower (R2 < 0.42) than that
of “small trees” (i.e., DBH ≤ 50 cm and R2 < 0.65), suggesting
that the gradient boosting regressor had difficulty teasing out
the “signature” of large trees from a LiDAR-derived point cloud
with the pulse density of 5.92 pulses/m2.

The most important predictors were associated with the forest
density metrics (e.g., dns, cov, and d00–d21), which were most
affected by “stripping” issues in the areas of LiDAR swaths
overlap. Furthermore, according to the importance of predic-
tors associated with forest density (d00–d21), the most critical
regions of the LiDAR point cloud for predicting the density
of “saplings” (DBH ≤ 10 cm), “small trees” (i.e., DBH ≤ 50
cm), and “large trees” (i.e., DBH > 50 cm) were 2–4 m (d01),
10–12 m (d05), and 22–24 m (d11), respectively. Although the
intensity-derived predictors (e.g., int_avg) were uncalibrated in
this study, they showed to be among the most important in
predicting the density of different sized trees.

Overall, the results of this study could be improved after
remeasuring the position of existing 660 field plots using a
differential GPS system with a < 0.1 m positional accuracy, as
the low positional accuracy (∼5 m) of field plots substantially
affected the accuracy of predicted densities of different sized
trees (see Fig. 4). While the positional shifts of the plots in four
cardinal directions generally resulted in R2 decrease of up to
0.12 when predicting tree densities, the highest accuracies were
achieved when using predictor variables averaged across five
plot areas (i.e., center, north, west, east, and south). Furthermore,
the retrieval of orientation and position information associated
with the LiDAR data will allow the alignment of swaths, thus
reducing elevation differences in the areas of LiDAR swaths
overlaps. The availability of orientation and position informa-
tion would also allow the calibration of intensity noise that
primarily appeared in the overlapping LiDAR swaths. Finally,
the introduction of additional predictor variables extracted from,
for example, other readily available remote sensing datasets for
the BMF (e.g., eight-band multispectral WorldView-2 imagery
at 0.5 m spatial resolution and ALOS PALSAR SAR imagery
at 10 m spatial resolution [38]) could improve the accuracy of
results achieved in this study.

V. CONCLUSION

The ability to map the density of different sized trees is
necessary for effective forest management. Our results showed
that LiDAR scans can provide a viable solution for mapping the
density of “saplings” (DBH < 10 cm and R2 < 0.65) and “small
trees” (DBH < 50 cm and R2 < 0.60) over large areas and has
the potential for mapping the density of “large trees” (DBH >
50 cm and R2 < 0.42). Given airborne LiDAR scans with the
pulse densities of up to 10 pulses/m2 are available for most of the
floodplain eucalypt forests in Australia, a national, wall-to-wall
mapping of tree densities could be achieved using the machine
learning models developed in this study.
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