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Deep Learning in Forest Structural Parameter
Estimation Using Airborne LiDAR Data

Hao Liu"”, Xin Shen, Lin Cao"”, Ting Yun

Abstract—Accurately estimating and mapping forest structural
parameters are essential for monitoring forest resources and under-
standing ecological processes. The novel deep learning algorithm
has the potential to be a promising approach to improve the esti-
mation accuracy while combining with advanced remote sensing
technology. Airborne light detection and ranging (LiDAR) has the
preferable capability to characterize 3-D canopy structure and
estimate forest structural parameters. In this study, we developed
a deep learning-based algorithm (Deep-RBN) that combined the
fully connected network (FCN) deep learning algorithm with the
optimized radial basis neural network (RBN) algorithm for forest
structural parameter estimation using airborne LiDAR data. The
multiple iterations were used to constantly update the internal
weights to achieve the optimized accuracy of model fitting, and the
optimized RBN algorithm was developed for the limited training
sets. We assessed the efficiency and capability of the Deep-RBN
in the estimation of forest structural parameters in a subtropical
planted forest of southern China, by comparing the traditional
FCN algorithm and multiple linear regression. We found that
Deep-RBN had the strongest capability in estimates of forest struc-
tural parameters (R* = 0.67-0.86, rRMSE = 6.95%-20.34%).
The sensitivity analysis of the key hyperparameters of Deep-RBN
algorithm showed that the learning rate is one of the most important
parameters that influence the performance of predictive models,
and while its value equal is to 0.001, the predictive models had the
highest accuracy (mean DBH: RMSE = 1.01, mean height: RMSE
= 1.45, volume: RMSE = 26.49, stem density: RMSE = 121.06).
With the increase of training samples added in Deep-RBN model,
the predictive models performed better; however, no significant
improvements of accuracy were observed while the number of
training set is larger than 80. This study demonstrates the benefits
of jointly using the Deep-RBN algorithm and airborne LiDAR data
to improve the accuracy of forest structural parameter estimation
and mapping, which provides a promising methodology for sus-
tainable forest resources monitoring.

Index Terms—Deep learning, forest structural parameters,
hyperparameter, LiIDAR, volume distribution.
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1. INTRODUCTION

S THE important component of terrestrial ecosystems,

forest plays a crucial role in global climate change mit-
igation [1], ecological services supplement [2], and biodiversity
protection [3]. In recent years, due to intensive timber harvesting
and silviculture activities, forests changed and updated rapidly
[4], [5], resulting in lots of new challenges for forest sustainable
management and forest inventory. The demands of increased
information are urgent for assessing the composition and struc-
ture of forest biomes [6]. Thus, accurate, effective, and timely
characterization of forest structural parameters is essential for
forest sustainable management [7].

In the past decades, forest resource management benefited
from the increased available remote sensing (RS) data and
enhanced forest inventories [8] that had proven helpful to opti-
mize management planning [9], [10], understand forest carbon
cycling [11], and support forest inventory [12]. Airborne light
detection and ranging (LiDAR) is an active RS technology,
which has the capability to measure 3-D forest canopy structure
[13]-[15] and characterize vertical profiles [16]. In EFI practice,
it has been proved that airborne LiDAR has the advantages of
robustness and portability in estimating forest structural param-
eters with area-based approach (ABA) [17]-[19].

The statistical relationships between airborne LiDAR-derived
point cloud metrics and filed measurements of forest stands were
commonly used for wall-to-wall forest structural parameter pre-
diction or mapping [17]. Usually, the modeling approaches can
be categorized as parametric [20]-[22] and nonparametric [23]—
[25] regression methods. Parametric methods, such as multiple
linear regression (MLR) relied on numerous assumptions (e.g.,
normality, homoscedasticity, and linearity) [26] and had the
issue of multicollinearity [27], [28]. Nevertheless, nonparamet-
ric methods, such as machine learning-based algorithms [e.g.,
random forest (RF), artificial neural networks (ANN)], made
no strict assumptions and generally employed faster, and were
more accurate than parametric methods [29]. They have been
increasingly applied with popularity in the RS community [30],
[31]. In recent years, ANN was designed to simulate the way of
brain neural network processing and memory information [32].
Ozcelik et al. (2013) used back-propagation ANN models and
other regression algorithms to estimate individual-tree height
in Turkey. It was indicated that ANN was a reliable algorithm
that had the best generalization ability [33]. Nunes and Gor-
gens (2016) compared classical machine learning algorithms for
forest structural parameter estimation for complex vegetation
mosaic in Brazil; they found that the ANN performed better
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than RF. They suggested artificial intelligence tools (i.e., neural
networks) be used in forestry applications [34].

Deep learning has become the most popular algorithm of
artificial intelligence [35]-[37]. It conducts complex tasks by
automatically learning representations from raw input data and
across multilayer neural networks that the backpropagation al-
gorithm is applied to automatically optimize internal parameters
[37], [38]. Comparing with traditional machine learning, deep
learning is a completely data-driven algorithm to generate the
best ways for feature extractions [39]. It exclusively learned
complex hierarchical structures from RS dataset [40], rather
than relying on a predesigned, specific algorithm [37]. Besides,
it learned preknowledge from training data that contain noise,
thus, has certain fault tolerance and generalization [41].

Deep learning algorithms are taking off in various remote
sensing applications, such as image classification [42], high res-
olution imagery interpretation [43], multimodal data fusion [44],
and target recognition [45]. Different RS data were used in deep
learning studies, such as satellite images [46], hyperspectral
images [47], SAR images [48], and LiDAR [49]. Image-based
deep learning studies focused on extracting spectral and spatial
features of RS images [50]. Convolution neural network (CNN)
framework was one of the most successful deep learning frame-
works for image feature representations by a combination of
convolutional and pooling layers [40], [50]. For instance, previ-
ous studies applied CNNs for hyperspectral image classification,
such as 1D-CNN in spectral domain [51], 2D-CNN in spatial
domain [52], and 3D-CNN in both spectral and spatial domain
[53]. Recurrent neural network (RNN) framework has popularly
applied RS images with sequential data analysis in temporal
domain [47], [50], [54].

Different from image-based studies, point cloud-based deep
learning studies benefited from LiDAR or structure-from-
motion (SFM) techniques that characterized 3-D structure in-
formation of objects [49]. Guan et al. (2015) earlier used mo-
bile LiDAR data to examine deep learning methods for tree
species classification, resulting in improved classification ac-
curacy (overall accuracy: 86.1%). Wang et al. (2019) examined
Faster R-CNN algorithms of deep learning for individual tree
segmentation based on ground-based LiDAR data. They con-
verted point clouds to deep images as input using a voxelization
method for further analysis. Recently, raw point-based algo-
rithms that directly consumed raw point cloud without transfor-
mation were proposed, including PointNet [57] and PointNet++
[58]. They considered the invariance of point cloud arrange-
ment for applications of 3-D object detection, classification,
and segmentation [49]. It has shown a promising prospect in
combination with deep learning algorithms and point clouds.

In enhanced forest inventory studies, LIDAR-derived metrics
are related to vegetation height or density and represented the
vertical distribution of vegetation within the forest canopy [17].
Unlike raw point clouds required by point-based algorithms
(e.g., PointNet, PointNet++), LiDAR metrics characterized
structural features of point clouds, which could be more conve-
niently learned by deep learning algorithms. Then, the statistical
relationships between LiDAR-derived metrics and ground plot
measurements were generated for forest structural parameter
modeling, which was significant in forest resource management.
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However, very few studies focus on deep learning regression
algorithms for predicting forest structural parameters.

In deep learning regression applications, a big challenge is
that limited training samples were presented for remote sens-
ing due to labor-intensive and time-consuming field sampling.
Ercanli [59] predicted tree height-diameter relationships using
deep learning regression models at the individual-tree level. The
deep learning regression algorithm was fully connected network
(FCN) that consisted of one input layer, many hidden layers, and
one output layer. Despite the acceptable modeling accuracies
obtained, the author found that one of the shortcomings of the
study was the limitation of training sample size. Liu et al. [60]
reviewed that the limitation of the future expansion of forest
ecology research was the lack of available and suitable training
samples. There have emerged relevant studies in the image
processing field for small sample issues [61]-[63]. Wang and
Hebert (2016) [64] have committed to solving small sample
learning based on model regression networks. Considering the
realistic need, the motivation in this article is to address the
balance of deep learning regression efficiency and the number
of training samples.

In this article, we developed the deep learning regression
algorithm (called “Deep-RBN”) with limited training samples
to promote accurate forest structural parameter estimations.
The algorithm integrated FCN regression algorithm as a basic
deep regressor framework, with the modified radial basis neu-
ral network (RBN) algorithm as parameter preoptimizer. The
modified RBN algorithm was designed by a multistep training
process to undertake the first approximation procedure, and
autoprecalculate the respective parameters of RBN layer. The
RBN layer was the first hidden layer that consisted of radial
basis function (RBF) neurons. Further approximation procedure
was realized through autoweight optimization of FCN. Finally,
several key forest structural parameters were predicted under
two-stage approximation procedure using airborne LiDAR data
by the Deep-RBN algorithm and assessed with filed data.

The main contributions of this article are as follows.

1) Develop the Deep-RBN deep learning regression algo-

rithm and test the accuracy for limited training samples.
By combining the FCN regressor with RBN parameter
preoptimizer to learn deep features for forest structural
parameter estimation.

2) Assess the efficiency and capability of the Deep-RBN
algorithm in the key forest structural parameter estimation
by combining with the FCN regression algorithm and
classical regression algorithm (MLR).

3) Tune the hyperparameters of Deep-RBN and test its sensi-
tivity under different numbers of training samples, terrain,
and tree species. The optimized hyperparameter setting
and practical training samples number were given for
foresters to support EFIs.

II. MATERIALS AND METHODS
A. Study Area

The study area is situated in Gaofeng Forest, located in
the middle of Nanning city of Guangxi Province in southern
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Fig. 1.
specified colors. (b) Location of Guangxi Province in China.

China (22°49'-23°5' N, 108°7'~108°38' E) and covers approx-
imately 5200 ha [see Fig. 1(a)]. It located in the subtropi-
cal monsoon climatic zone with the annual average tempera-
ture and precipitation of the study area are 21.6°C and 1304
mm, respectively, and an elevation range 80-460 m above sea
level. There is plenty of sunshine and rain with little frost
and snow. The forest soil is mainly red soil, and the average
thickness of the soil layer is above 80 cm. The main tree
species in the area are Eucalypt (Eucalyptus robusta Smith)
and Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.].
Other species include Masson pine (Pinus massoniana Lamb.),
Mlicium verum (Illicium verum Hook.f.), Manglietia glauca
(Manglietia glauca Blume), and acacia crassicarpa (Acacia
crassicarpa Benth.). Within the study area, a core region was
outlined according to historical survey data for further research.
And, different tree species with specified colors were described
in Fig. 1.

B. Forest Inventory Data

Between 16 January and 3 February 2018, a total of 49
square sample plots which are mainly composed of Eucalypt and
Chinese fir (20 x 20 m) within the study area were established

Location of study area and field inventory plots with two main tree species (Eucalypt and Chinese fir). (a) Distribution of different tree species with

and measured. The coordinates of plot center were positioned
by Trimble Juno T41/5 Handheld GPS instrument (Trimble,
Sunnyvale, CA, USA). For all live trees within each plot, tree
species, diameter at breast height (DBH) (using a diameter tape),
tree height (using Vertex IV hypsometer), tree crown (using
tape), and stand density were recorded with DBH larger than
5 cm.

To test the effect of the number of samples in the performance
of deep learning algorithm, additional sample plots are needed
in the analysis. According to the field measured tree species and
historical survey data, 191 additional square plots in the eucalyp-
tus and Chinese fir dominant stands were extracted, following the
principle of random sampling, resulting in a total of 240 forest
inventory plots. We used the normalized LiDAR data to extract
20 x 20 m square sample plots. Then, the individual trees were
detected using a point cloud segmentation (PCS) algorithm [65].
Tree numbers and each individual tree height of each LiDAR
plot were generated. Tree species specified DBH-height models
were derived to obtain DBH for all trees [66]. The individual
tree-level volume was calculated by the local species-specific
volume equations according to forest inventory DBH and height,
and then, summed into plot-level volume. A summary of forest
inventory parameters was shown in Table I.
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TABLE I
SUMMARY OF FOREST INVENTORY PARAMETERS

Forest structural Eucalyptus plots (£ SD) Chinese fir plots (+ SD)

parameters

DBH (cm) 15.2542.99 17.41£3.23
H (m) 17.5143.53 15.2042.56

V (m’-ha™!) 146.22+66.24 141.93+38.41

D (n-ha™) 973+490 9064323

Notes: DBH = mean diameter at breast height; H = mean height; V = volume; D = stem
density; SD = standard deviation.

TABLE II
AIRBORNE LIDAR DATA ACQUISITION PARAMETERS

Acquisition parameters Description
Laser sensor Rigel LMS-Q680i
Aircraft Speed 180 km/h
Flight altitude 750 m
Swath width 402 m
Max scan angle 30°
Beam divergence 0.5 mrad
Wavelength 1550 nm
Overlap 65%
Pulse Repetition Rate 300 kHz
Scan Frequency 80 Hz

Number of Returns Per Pulse Fullwaveform-derived

Point Density 9.58 ts/m2

C. LiDAR Data Acquisition and Preprocessing

Airborne LiDAR data were acquired in January 2018 using a
Rigel LMS-Q6801i system at an altitude of 750 m above ground
level with a speed of 180 km/h (detailed flight parameters were
shown in Table II). The average point density was 9.58 pts/m?.
LiDAR point clouds were stored in LAS 1.2 format (American
Society for Photogrammetry and Remote Sensing, Bethesda,
MD, USA).

During the preprocessing procedure, LiDAR point clouds
were processed using the LiDAR360 software (GreenValley
International, California, CA, USA). The ground and nonground
returns were classified by the improved progressive triangulated
irregular network (TIN) densification (IPTD) filtering algorithm
developed by Zhao et al. [67]. The ground returns were inter-
polated using the inverse distance weighting (IDW) algorithm,
resulting in a digital terrain model (DTM) with a resolution of
I m. The heights of LiDAR returns were then normalized by the
DTM to generate normalized point clouds. Finally, plot-level
normalized point clouds were extracted by the boundary of field
plots.

D. LiDAR Metrics Extraction and Selection

Plot-level LiDAR metrics were calculated from normalized
point clouds, including height-related metrics and density-
related metrics. Height-related metrics were extracted to rep-
resent the height of returns within the canopy, following the
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approach of [68]. In order to describe the distribution of point
density, LiDAR returns were divided into ten slices with the
same height interval from base to top height. Canopy return
density metrics were finally generated by calculating the pro-
portion of returns in each height interval. These specific LIDAR
metrics were chosen as candidate input data for their ability
to describe forest structural structures, including horizontal and
vertical distribution of vegetation canopy. Typically, heighted-
based metrics were generated to characterize vertical distribu-
tion of canopy elements. Density-based metrics were generated
to describe horizontal canopy heterogeneity. In a combination of
heighted-based and density-based metrics, 3-D structure of the
forest stand was completely characterized as the form of metrics.
The use of meaningful metrics as input helped strengthen the
explaining ability of Deep-RBN. Besides, to remove the effect
of ground and low vegetation [17], all LIDAR metrics were
extracted above 2 m height threshold (see Table III).

E. Deep Learning Regressor

In this study, we developed a novel deep learning-based
regression algorithm for estimating forest structural parame-
ters, called “Deep-RBN.” In order to assess the efficiency and
capability of the Deep-RBN algorithm, the conventional FCN
deep learning regression algorithm was added to compare the
estimation accuracy of key forest structural parameters. Besides,
the FCN algorithm was also used to be the basic architecture of
the Deep-RBN algorithm.

The Deep-RBN algorithm combined the conventional FCN
deep learning regression framework with the optimized radial
basis network algorithm (RBN), considering the ability of au-
toweight optimization of deep learning, through multiple iter-
ations, to constantly update the internal weights to achieve the
optimization accuracy of model fitting, and also considering the
advantages of optimized RBN algorithm that model accurately
regresses with reduced training samples.

The RBN was a shallow layer neural network made up of
a three-layer network (i.e., one input layer, one hidden layer,
and one output layer), suitable for handling regression problems
[69]. The RBN had the advantage of universal approximation
to avoid local minima issues that produce inaccurate results
[70]. The RBN used radial basis transfer functions (RBF) [71],
commonly Gaussian kernel function, including two parameter
basis functions center (C) and spread (o). However, traditional
RBN usually had the overfitting issue which was primarily
mitigated by setting a basis function center and spread [72].
Bataineh and Marler (2017) designed an optimized RBN algo-
rithm (Opt-RBN) that used a modified orthogonal least squares
(OLS) algorithm to optimize the setting of center (C) and spread
(o) parameters. At the same time, a multistep training process
was used to conduct the OLS algorithm and gradient-based
optimization. It was especially proposed to handle the regression
problems with limited training samples.

In this study, the RBN layer was set to be the first hidden layer
that consisted of RBF neurons. The optimized RBN algorithm
was further modified to undertake the first approximation pro-
cedure and autoprecalculate the respective parameters of RBN
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TABLE III
LIDAR METRICS EXTRACTED FROM NORMALIZED POINT CLOUDS FOR ESTIMATING FOREST STRUCTURAL PARAMETERS

LiDAR metrics Description

Percentile heights (Has, Hso, Hs, Hos) The percentiles of canopy height distributions (25th, 50th, 75th, and 95th) > 2 m
Max height (Hpax) Max of point heights > 2 m

Minimum height (Hpin) Min of point heights >2 m

Mean height (Hinean) Average of point heights > 2 m

Coefficient of variation of heights (H.,)

Canopy return density (D3, Ds, D7, Do)

Coefficient of variation of point heights >2 m

The proportion of points in each height interval (30, 50, 70 and 90) >2 m
(10th, 30th, 50th, 70th and 90th) to total number

TABLE IV
COMPARISON OF ACCURACY AND COMPUTING EFFICIENCY USING DIFFERENT FOREST STRUCTURAL PARAMETER REGRESSION ALGORITHMS

Forest structural parameters Regression algorithms R? RMSE rRMSE MAE Run time (s)
MLR 0.62 2.20 13.41 1.73 67
Mean DBH FCN 0.65 2.94 17.98 2.36 139
Deep-RBN 0.67 2.46 15.04 2.14 143
MLR 0.76 1.33 8.32 1.01 50
Mean height FCN 0.81 1.33 8.27 0.96 143
Deep-RBN 0.86 1.12 6.95 0.90 149
MLR 0.58 28.72 21.34 20.21 43
Volume FCN 0.58 26.07 19.37 19.69 135
Deep-RBN 0.73 19.45 14.45 15.19 169
MLR 0.52 292.20 31.03 228.09 45
Stem density FCN 0.61 291.88 30.99 187.89 133
Deep-RBN 0.72 191.52 20.34 141.82 195

layer [i.e., center (C) and spread (o)]. Finally, the Deep-RBN
algorithm was generated in the FCN deep learning framework
to estimate forest structural parameters with limited training
samples.

1) FCN Algorithm: We applied the FCN algorithm in Keras
deep learning framework [73], written in Python on top of
TensorFlow [74]. We trained the network with sequential model
and used the adaptive moment estimation (Adam) optimizer
[75], [76] to optimize neural networks. A total of five deep
hidden layers were structured in the architecture. In the network,
the rectified linear unit (ReLLU) activation function was used to
improve neural networks [77]. The dropout regularization was
applied in the networks to avoid the overfitting problem [78].
In the sequential model, the dropout layer was inserted and a
dropout rate of 0.2 was set at the same time. The batch size was
setto 100. The learning rate was set to 0.001 and decay was le-4.
In the FCN models, five hidden layers were set and five different
neuron alternatives ranged from 100 to 20 by decreasing 20 at
each step.

Based on the deep learning framework, the FCN algo-
rithm was finally designed for comparing the estimation ac-
curacy of key forest structural parameters with the Deep-RBN
algorithm.

2) Deep-RBN Algorithm: The framework of the Deep-RBN
algorithm was shown in Fig. 2. First, LIDAR metrics (see Ta-
ble III) of each LiDAR plot were extracted as input data. Second,
all m input neurons were fully interconnected to hidden layers.
The RBN layer was used to convert input data with RBF acti-
vation function. Each RBF neuron with respective parameters

(center C; and spread ;) enabled the first optimal approximation
to true values. After the RBN processing, converted data were
put into deep learning framework that consisted of many deep
layers with k hidden neurons and predesigned hyperparame-
ters (i.e., optimizer, activation function, dropout, learning rate,
and epochs) that were mentioned in the previous section of
FCN algorithm. Further approximation procedure was realized
through autoweight optimization of FCN. Finally, estimated
forest parameters were calculated by two-stage approximation
procedure and this enabled the regression accuracy with limited
training samples.

In the Deep-RBN algorithm, the RBN layer was the first
hidden layer that consisted of RBF neurons to undertake the first
approximation procedure to true values. Each RBF neuron had
the respective parameters that needed to be autoprecalculated by
the independent calculation procedure. In the parameter calcu-
lation procedure, a three-layer (i.e., one input layer, one hidden
layer, and one output layer) RBN network was built to train
the network and obtain the best model approximation accuracy
between input data and true values. According to the advantages
of the Opt-RBN algorithm [72], a modified OLS algorithm and
multistep training process were retained for automatic selection
of RBF parameters.

In the RBN layer, each RBF neuron produced an activation
function to transfer one input vector x = (x1, x2, ..., Xy) (m:
number of LiDAR metrics) to each of the mth neuron output
scalar /;. The activation function was responsible to convert
the relationship between the upper neuron output and the lower
neuron input. The Gaussian kernel function was typically chosen
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as basis function, the specific formula was as follows:
=1,2,....m (D)

Where ¢; and o; were the center and spread of Gaussian function
of the ith hidden neuron, respectively. ¢; = (c¢1, ¢2, ..., ¢y,) for
ith hidden neuron, /; was ith neuron’s output.

Thus, n-dimensional input samples (n: number of training
samples, i.e., LIDAR plots number) were then converted by the
ith neuron to vector k;= (h;1, hso,. .. hy,). Here, the number of
RBF neurons was set equal to the number of LiDAR metrics.

The ith hidden neuron of the RBN layer was interconnected
with the jth output neuron y; by the weighting factor w;. The
output neuron y; was then transferred to deep hidden layers for
further calculation. j is an index of k.

m
yj=hj - w;=> hy-wy, j=12 ...k ()
i=1
In the multistep training process, the selection of basis func-
tion parameters ¢ and o was mainly to be optimized. The spread
o; represented the width of each RBF neuron and the setting
of spread impacted the network accuracy. In the calculation of
the RBF spread, the spread o; of ith RBF was identified based
on (3), which determined the Euclidean distance between each
RBF center C; and its nearest center Cj. Herein, C; was equal
to the ith input training sample. n is number of training samples

o; = RMSD = \/2?1 (Ci—Cp)*, 1<i<n. (3

In the calculation of the RBF center, it was determined by
the modified OLS algorithm. In the gth iteration process, all
previous g—1 basis function outputs & ,.; were used to calculate
the orthogonal matrix based on QR-decomposition [79]. Q was
an orthogonal matrix and an upper triangular matrix R

H = QR. “

The error reduction ratio [err]; was generated to assess the
importance of each training case for prediction error reduction.
t represented the ground measured true values

lerr], = 93?;;62’ ®)
9: = (QF 1)/(QTQ;) . (6)

Thus, we acquired each RBF center C; by detecting the highest
[err] of the corresponding training samples. Each RBF spread
was calculated by (3). The RBN hidden layer was generated with
respective RBF center and spread of each neuron.

Now that the parameters of respective RBF center and spread
of each neuron were calculated, each input vector x = (x1, x2, ...,
xn) was then converted to each of the m RBF neuron’s output /;.
All m input vectors were thus converted to each of the m RBF
neuron’s output /;. All m input vectors were then converted to m
RBF neuron’s output matrix H = [hq, k2, ..., h,,]. The matrix
H was then transferred to deep hidden layers for further deep
learning procedure.

When considering deep learning framework, we used the
FCN algorithm as the basic architecture of Deep-RBN. The
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FCN algorithm used an FCN structure with many hidden layers
and had the advantage of easy-use in Keras. It learned features
from array or matrix, which resulted in fast speed. Nevertheless,
point-based framework extracted features from raw point cloud
that may consume computing time, resulting in low efficiency.
Proceeding from these backgrounds, the FCN algorithm was
selected as the basic architecture of Deep-RBN.

In the Deep-RBN neural network, the activation function
is a functional relationship that is responsible for converting
the relationship between the output of the upper node and the
input of the lower node. The ReL.U function is popular in the
neural network for its advantages, i.e., computational simplicity,
representational sparsity, linear behavior. The function changes
all negative values to zero while the positive values remain
unchanged. The characteristics of unilateral inhibition make
the neurons in neural networks sparsely activated. It solves the
problem of gradient disappearance, provides higher sensitivity
for activation sum input, and avoids easy saturation. Besides,
the sparse model realized by ReLLU can better mine relevant
features and fit training data. The specific mathematical formula
is as follows:

f (z) = max (0, ). (7)

The choice of the optimization algorithm may affect the
difference of accuracy and efficiency of the deep learning model.
When adjusting the model update internal parameters (weight
and bias), the appropriate optimization algorithm can improve
the training model, making the model converge better and
faster. Adam is a stochastic gradient descent algorithm based on
first-order moment and second-order moment of the gradient to
update network weights. This optimizer combines the optimal
performance of the AdaGrad and RMSProp algorithms and it
provides an optimization method for solving sparse gradients
and noise problems. Compared with other adaptive learning rate
algorithms, its convergence speed is faster and the learning effect
is more effective, and it can correct the problems existing in other
optimization techniques, such as the disappearance of learning
rate, the slow convergence, or the large fluctuation of loss
function caused by the updating of high variance parameters.
The specific mathematical formulas of Adam are as follows:

my = PB1 xmy_1 + (1= F1) X g (8)
ne=Po xni1+ (1= PBa) x g7 9
fg = %tﬁ{ (10)
e = 7—%65 (11)
fiir = 0, —a x % (12)

where ¢g; is gradient descent function on iteration ¢, my is
biased first-order moment estimate of gradient g, n; is bi-
ased second-order raw moment estimate of gradient g;, 57 is
first-order moment attenuation coefficient, 35 is second-order
moment attenuation coefficient, 1, is bias-corrected first-order
moment estimate for my, n; is biased second-order raw moment
estimate for ny, 6, is network parameters on iteration ¢, « is
learning rate which controls stepsize, ¢ is a constant created for
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numerical stability, and 6, is pending update parameters on
iteration ¢ + 1.

In the deep hidden layers, we set the same parameter architec-
ture with the FCN algorithm, i.e., five hidden layers with five dif-
ferent neuron alternatives ranged from 100 to 20 by decreasing
20 ateach step. k was 100 for the first hidden layer of deep hidden
layers, 80 for the second layer, 60 for the third layer, 40 for the
fourth layer, and 20 for the fifth layer. The neurons architecture of
the whole Deep-RBN was n-m-100-80-60-40-20-1. The output
neuron number was 1. The hyperparameter setting was the same
with the FCN algorithm.

F. Traditional Regressor

Due to the advantage of easy understanding and widespread
application for developing predictive models, multiple linear
regression (MLR) was used in this study to estimate forest
structural parameters. The forward stepwise modeling approach
was used to build regression models that the selected LiDAR
metrics and field data as input. All regression analyses were
conducted in MATLAB R2016b (The MathWorks Inc., Natick,
MA, USA).

G. Model Evaluation and Accuracy Assessment

We estimated four key forest structural parameters (mean
DBH, mean height, volume, and stem density) by the statistical
model (MLR), FCN model (FCN), and deep learning-based
model (Deep-RBN) in this study, respectively. All plots were
split into training set and test set according to the ratio of
7:3. The performance of predictive models was evaluated by
the coefficient of determination (R?), root-mean-square error
(RMSE), relative RMSE (rRMSE), and mean absolute error
(MAE).

R2— 1_— i (@i — 55%‘)2

= — (13)
Dy (@i — mi)2
— 1 " 5 \2
RMSE = \/n Zi:l (x; — T4) (14)
MSE
RMSE = 2 _S x 100% (15)
1 n
MAE = = —r 1
= lwi— | (16)

i=1
where z; represents measured value; Z; is the average measured
value; z; is the estimated value; z is the mean field measured

values; p is the number of LiDAR metrics; ¢ is the plot number;
n is the number of plots.

III. RESULTS

A. Accuracy Assessment Using Different Modeling Algorithms

In order to assess the ability of deep learning regressor
(Deep-RBN), different modeling algorithms (i.e., MLR, FCN,
and Deep-RBN) were tested and compared with the predictive
accuracy in estimating four key forest structural parameters.
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The accuracy assessment results of three predictive meth-
ods showed that Deep-RBN had the highest accuracy (R> =
0.67-0.86, TRMSE = 6.95%-20.34%) within the three modeling
algorithms (Table IV). FCN had a relatively lower accuracy (R?
=0.58-0.81, rRMSE = 8.27%-30.99%) than Deep-RBN. MLR
had the lowest accuracy (R2 = 0.52-0.76, FRMSE = 8.32%—
31.03%). For forest structural parameters, mean height had the
highest accuracy (R? = 0.76-0.86, IRMSE = 6.95%—8.32%),
followed by DBH (R? = 0.62-0.67, IRMSE = 13.4%-17.98%)
and volume (R*> = 0.58-0.73, IRMSE = 14.45%—-21.34%), stem
density had the lowest accuracy (R* = 0.52-0.72, rRMSE =
20.34%-31.03%).

B. Mapping Results Assessment Using Different
Modeling Algorithms

Accuracy and detailed mapping for key forest structural
parameters are essential for characterizing forest composites
and structure, and supporting forest decisions. The core region
(see Fig. 1) within the study area was especially extracted to
compare the detailed mapping results using MLR, FCN, and
Deep-RBN methods (see Fig. 4). The nonforest (road, building,
and water) cells were masked to eliminate the impact. Eucalypt
and Chinese fir (field measured tree species) stand were retained
to compare the forest structural parameter mapping results. The
first column was MLR, the second column was FCN, the third
column was Deep-RBN. Overall, MLR, FCN, and Deep-RBN
had similar estimation values. For a-3, Deep-RBN detected
detailed information, which represented accurate values of forest
parameters. For subfigures of b-3, c-3, d-3, Deep-RBN repre-
sented more variation, which characterized the greater difference
within forest stands. In conclusion, the Deep-RBN algorithm had
a strong capacity to characterize the detailed forest structural
information.

C. Spatial Extrapolation of Forest Structural Parameters
Using Deep-RBN Models

Wall-to-wall mapping of study area was generated by Deep-
RBN models. Eucalypt and Chinese fir stand were used to show
forest structural parameter mapping results. Fig. 5 represented
the spatial extrapolation results of forest structural parameters,
which indicated the spatial distribution of DBH, mean height,
volume, and stem density. Forest attribute maps ranged from blue
to red, which represented the values. It was indicated that forest
structural parameters had specific and related spatial distribution
patterns.

D. Hyperparameter Tuning of Deep-RBN Models

Determining the optimal structure and parameter settings of
the Deep-RBN model was critical for optimizing the model pre-
diction results and improving the computational efficiency [80].
Hyperparameters determined the neural network structure (e.g.,
number of layers and neurons) and the training algorithm (e.g.,
learning rate and epoch number) [81]. It was helpful to tailor
the behavior of deep learning algorithms to the given dataset.
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Fig. 4. Mapping result comparison using MLR, FCN, and Deep-RBN for forest structural parameters in the core region, i.e., (a-1, a-2, a-3) mean DBH, (b-1,
b-2, b-3) mean height, (c-1, c-2, c-3) volume, and (d-1, d-2, d-3) stem density. MLR: a-1, b-1, c-1, d-1; FCN: a-2, b-2, c¢-2, d-2; Deep-RBN: a-3, b-3, ¢-3, d-3.
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However, excessive hyperparameters may have a negative im-
pact on the tuning process and model performance consistency.
Thus, we tuned the learning rate and epoch number in this study
to choose the best configuration of Deep-RBN models.

Learning rate (Lr) was a key hyperparameter that controlled
how quickly the neural network updates its parameters in re-
sponse to the estimated error. It was a challenging work to
choose optimal Lr when configuring the neural network. When
the learning rate was too large, the model may not converge,
resulting in an unstable training process; if the learning rate was
too small, the convergence speed of the model will be slow,
which required longer training time. Usually, the Lr value was
0.01, 0.001, 0.0001. Herein, we test these three Lr values for
estimating forest structural parameters. The epoch that defined
how many times the neural network trained was set as 20000 so
that we could find a stable time of model training.

In Fig. 6, the curve represented relative mean squared error
(RMSE) loss over training epochs. The values of RMSE under
different Lr were given out (epoch = 10000). For all forest
structural parameters, it was indicated that Lr = 0.001 (blue
curve) was the best choice for the Deep-RBN in this study
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Spatial extrapolation of forest structural parameters using Deep-RBN models. (a) Mean DBH. (b) Mean height. (c) Volume. (d) Stem density.

because it acquired the lowest error and the most stable condition
than the other two Lr values.

E. Influence of Training Sample Numbers on Deep-RBN
Model Accuracy

Although deep learning algorithms have excellent perfor-
mance with large samples, the behaviors may be restricted with
reduced training samples for practical cost and labor limitations.
Therefore, it was greatly significant to balance training case
numbers and Deep-RBN model accuracy. Herein, we selected
the optimized hyperparameters (i.e., Lr = 0.001) according to
Fig. 6 and test the sensitivity of the number of training samples
for Deep-RBN model results.

We selected training and test samples from all 240 samples
and grouped them according to the scales of 70% training and
30% test samples. The number of training samples ranged from
20 to 160. Once, ten additional training samples were added to
Deep-RBN models. Once the model was fitted, test cases were
used to verify model accuracy (see Fig. 7). It was indicated
that with the increase of training samples, the validation error
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The curve represents relative mean squared error (RMSE) loss over training epochs. Orange, blue, and gray curves represent different learning rates of 0.0001,

0.001, and 0.01, respectively.

decreased. When training samples were larger than 70, the error
of mean DBH, mean height, and volume were lower than 20%.

FE. Influence of Other Factors on Deep-RBN Model Accuracy

In order to test the uncertainty of various forest structural
parameters and the reliability of Deep-RBN algorithms, the
influence of other factors was also considered, such as terrain
and different tree species.

To test the influence of terrain, LiDAR-extracted DEM was
used to calculate the slope of all plots. All plots were classified
to low slope group that has the slope values between 0° and 30°
and to high slope group that has the slope values between 30°
and 60°. Next, in each group, 70% training samples were used
to build forest structural parameter models, 30% test samples
were used to verify the model accuracy. The Deep-RBN model
results were shown in Table V. The difference of predictive
accuracy (rRMSE) between low slope group (0°-30°) and high
slope group (30°-60°) is 2.24% for mean DBH, 1.99% for mean
height, 2.36% for volume, and 0.04% for stem density. Re-
sults showed the relative stable predictive accuracy (difference:
0.04%-2.36%).

TABLE V
ACCURACY (rRMSE) COMPARISON BETWEEN LOW SLOPE GROUP (0°-30°)
AND HIGH SLOPE GROUP (30°-60°)

Slope Forest structural RMSE rRMSE MAE
parameters (%)

Mean DBH 2.66 16.61 2.15

Low slope Mean height 1.99 11.70 1.47
(0°-30°) Volume 27.51 17.75 20.76
Stem density 199.50 21.26 148.46

Mean DBH 2.29 14.37 1.82

High slope Mean height 1.62 9.71 1.27
(30°-60°) Volume 22.76 15.39 16.53
Stem density 205.47 21.30 153.23

To test the influence of tree species, we test two main tree
species (i.e., Eucalyptus and Chinese fir) into the Deep-RBN
models. According to historical survey stand data of tree species,
all plots are grouped as Eucalyptus group and Chinese fir group.
Next, in each group, 70% training samples were used to build
forest structural parameter models, 30% test samples were used
to verify the model accuracy. The Deep-RBN model results
were shown in Table VI. The difference of predictive accuracy
(rRMSE) between Eucalyptus group and Chinese fir group is
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Fig. 7.  Sensitivity of training sample numbers for Deep-RBN model results.

TABLE VI
ACCURACY (RRMSE) COMPARISON BETWEEN EUCALYPTUS GROUP AND
CHINESE FIR GROUP

Tree species Forest structural RMSE rRMSE MAE
parameters (%)

Mean DBH 2.05 13.46 1.63

Eucalyptus Mean height 1.87 10.72 1.46
Volume 26.08 17.66 20.65
Stem density 207.21 21.34 143.96

Mean DBH 2.21 12.42 1.84

. Mean height 1.39 9.04 1.06
Chinese fir Volume 22.03 14.53 17.88
Stem density 177.83 19.87 151.27

1.04% for mean DBH, 1.68% for mean height, 3.13% for vol-
ume, and 1.47% for stem density. Results showed the relative
stable predictive accuracy (difference: 1.04%—-3.13%).

In summary, it was indicated that the estimated accuracy of
Deep-RBN algorithm was relatively reliable and stable under
different factor tests.

IV. DISCUSSION
A. Interpretation of Deep-RBN Models

In this study, the Deep-RBN algorithm was implemented in
estimating forest structural parameters with the accurate es-
timations. Deep learning was able to generalize discrete and
continuous data well and was little affected by the factors,
such as terrain, tree species. [41]. Similar to common machine
learning methods, deep learning was also known as the “black
box.” Although the model obtains optimal fitting results and
mapping performance, it was of great significance to understand
how Deep-RBN model worked and what knowledge would be
learned. To interpret the predictive model, variable importance
was used to determine the weight of each metric, which rep-
resented the relative importance within each Deep-RBN model
(see Fig. 8). For Deep-RBN models, variable importance was
calculated using Gedeon’s method [82], which considered the
weights of the data input to the first two hidden layers for its
simplicity and efficiency [83].
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According to the best predictive models, i.e., Deep-RBN
models, the variable importance of each forest parameters was
summarized (see Fig. 8). The relative importance of LiDAR
metrics was related to the explanatory ability of each forest
structural parameter. For DBH model, D5, Hgkewness, and Hos
were the top three predictors. For mean height model, D5, Hos,
and Hyyedian had the highest importance. For volume model,
Hss, D5, and H., contributed to approximately 13% of the
importance. For density model, D5, H, and Hgyewness had the
highest importance values for model predictors.

B. Volume Distribution Mapping for Different Tree
Species and Forest Types

As a basic unit in silvicultural practices, forest stand was the
spatial subdivision region that has the steady and homogeneous
characters, such as forest type, tree species, age class, site quality.
Wall-to-wall forest parameter mapping in stand-level with Deep-
RBN predictive model is beneficial for forestry applications,
such as forestry management and silviculture.

Based on the mapping results, we extracted the stand-level
volume distribution map of Eucalypt (E.Rob) and Chinese fir
(C.Fir) stand, as well as the histogram of stand-level volume
distribution statistics, which was important for understanding
the current situation of forest management and future forest
management.

Two tree species (i.e., E.Rob, C.Fir) with different forest types
(i.e., species dominate forest and mixed forest) that exhibited
typicality and representativeness in the study area were shown
in Fig. 9. The stand boundary that is overlaid on the volume map
clearly distinguished each subclass.

According to stand-level summary results, the volume distri-
bution of E.Rob dominate forest, C.Fir dominate forest, E.Rob
mixed forest, and C.Fir mixed forest were calculated and dis-
played in Fig. 9(b)—(e), respectively. Each volume class was set
to 10m?-ha~! and ranged from 0 to 300 m*-ha~!. Proportions of
each volume class indicated the condition of forest stands and
difference of tree species and forest types. From the aspect of
histogram shape, values distributed more evenly in each class
in E.Rob forest and sharper in C.Fir forest. From the aspect of
histogram peak value location, E.Rob dominate forest was about
100m3-ha~!, C.Fir dominate forest was about 130m?3-ha~!,
E.Rob mixed forest was about 140m>-ha~!, and C.Fir mixed
forest was about 140m3-ha=!.

C. Advantages of the Deep-RBN Algorithm

The Deep-RBN algorithm was tested to assess its capability
and efficiency with the FCN algorithm and MLR. It indicated
that Deep-RBN had the highest accuracy and better performance
for relatively small training samples. It benefited from the pre-
processing of the optimized RBN algorithm and the framework
of deep learning.

In the optimized RBN algorithm designed for reduced train-
ing sample regression, we retained a modified OLS algorithm
and multistep training process. The optimized RBN algorithm
helped to undertake the first approximation procedure between
LiDAR metrics and the ground true values. At the same time,
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Fig. 9. Volume distribution of study area for two main tree species (i.e., Eucalyptus and Chinese fir) in different forest types (i.e., species dominate forest and

mixed forest).

parameters of the RBN layer were automatically calculated
for further processing. In the second approximation procedure,
deep learning framework was used to undertake the autoweight
optimization processing to improve the accuracy of the fitted
model. Thus, a two-stage approximation procedure ensured the
outstanding results of forest structural parameter estimation with
limited training samples.

Besides, the deep learning-based regression algorithm may
achieve better fitting models by tuning the hyperparameters. The
results showed that along with the increasing training sample
number, the models tended to have stably higher accuracy. It
indicated that the tradeoff of the number of samples should be
considered while applying the Deep-RBN algorithm in different
forests which others could do.
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V. CONCLUSION

This study demonstrated that the novel deep learning regres-
sion algorithm is a promising tool to use airborne LiDAR data to
estimate and map forest structural parameters in the subtropical
planted forest of southern China. The Deep-RBN algorithm
had the advantages of the FCN algorithm with the optimized
RBN algorithm. We found that it was suitable to estimate forest
structural parameters with limited training samples. Through
comparing the FCN algorithm with traditional regression algo-
rithm, it indicated that the Deep-RBN algorithm obtained the
highest accuracy of predictive models and the most detailed
mapping information, which were essential for estimating forest
parameters and monitoring forest resources at large scale. We
found that it helped to improve the Deep-RBN algorithm by
tuning the hyperparameters. Besides, the volume distribution of
the volume map showed the various forest conditions of different
tree species and forest types. This will help to observe the present
situation of forest management more intuitively and provide the
basis for future forest decision-making.
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