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Spatial–Spectral Fusion of HY-1C COCTS/CZI Data
for Coastal Water Remote Sensing Using

Deep Belief Network
Hongren Ji , Liqiao Tian , Jian Li, Ruqing Tong, Yulong Guo , and Qun Zeng

Abstract—The remote sensing monitoring of coastal waters with
dramatic changes requires images with high spatial and temporal
resolutions and adequate spectral bands. However, a single sensor
is limited to meet these requirements. Image fusion is, therefore,
widely adopted. In this article, a deep belief network (DBN) is
developed to fuse images from the Chinese ocean color and tem-
perature scanner (1000 m, eight bands) and coastal zone imager
(50 m, four bands) onboard HaiYang-1C satellite to generate 50-m,
eight-band, and three-day observations for coastal waters. The
DBN is compared with the existing prevailing Gram–Schmidt
transformation (GS) and inversion-based fusion (IBF) algorithms
over the Bohai Sea at the top-of-atmosphere reflectance and prod-
uct [e.g., chlorophyll-a (chl-a)] levels. Results indicate that for the
spatial aspect, DBN can avoid the block effect and maintain details.
The average structural similarity index of DBN is approximately
22.08% and 3.30% better than that of GS and IBF, respectively; for
the spectral aspect, the mean relative errors for eight bands of DBN
range from 3.15% to 21.54%. The errors are less than 50% and
80% of those of GS, while less than 80% and 110% of those of IBF,
at bands 1–6 and bands 7 and 8, respectively; for chl-a retrieval,
DBN yields better results with the coefficient of determination R2 of
0.78 and root-mean-square error (RMSE) of 0.10 mg/m3 compared
with those of IBF (R2 = 0.59 and RMSE = 0.16 mg/m3). DBN out-
performs GS and IBF at reflectance and product levels, displaying
great potential for the remote sensing monitoring of coastal waters.

Index Terms—Coastal water, deep belief network (DBN), fusion,
HaiYang-1C (HY-1C), remote sensing.
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I. INTRODUCTION

COASTAL waters are defined as those within close prox-
imity to the land whose water constituents are affected by

terrestrial processes [1]. They are important ecological systems
and vital assets for many nations, which are also complex and
dynamic environments where a vast array of coupled biolog-
ical, chemical, geological, and physical processes occur over
multiple temporal and spatial scales [2]. Coastal areas (within
100 km from the coast) are regions where land, ocean, and
atmosphere interact, with approximately 60% of the world’s
population, and have a direct interface with food supply and
human health [3], [4]. Coastal waters are under pressure from
direct human activities and climate changes due to their close
proximity to the human population [5], [6]. Close to shore and
estuaries, coastal water bodies change more rapidly [2]. The
remote sensing observations of coastal waters could cover a large
area synchronously with a certain periodicity but require remote
sensors with high spatial and spectral resolutions.

Satellite remote sensing sensors, however, feature a tradeoff
among spatial, temporal, and spectral resolutions [7]. For exam-
ple, the MODIS onboard Terra/Aqua satellite has 12 spectral
bands that are suitable for ocean color remote sensing with
wavelengths ranging from the visible (VIS) to the near infrared
(NIR) (405–965 nm) and a revisit time of one day, whereas its
spatial resolution is 1000 m [8]. The OLI onboard Landsat-8 has
a fine spatial resolution of 30 m, but the revisit time is 16 days,
which makes applications, such as dynamic coastal monitoring
impossible [9]. Its band setting also makes it difficult to retrieve
the chlorophyll-a (chl-a) concentration. The panchromatic mul-
tispectral sensor onboard Chinese Gaofen-4 is a geostationary
sensor, which could provide real-time observations with a spatial
resolution of 50 m [10]. Nevertheless, it has only four bands
(blue, green, red, and NIR), making it difficult for retriev-
ing several water quality parameters (e.g., chl-a). To alleviate
the aforementioned problems, China launched the HaiYang-1C
(HY-1C) satellite carrying a high spatial resolution sensor named
coastal zone imager (CZI) with a revisit time of three days and an
eight-band multispectral sensor named Chinese ocean color and
temperature scanner (COCTS) with a revisit time of one day on
September 7, 2018 [11]. CZI could meet the spatial requirement
with a spatial resolution of 50 m, but it only has four bands (blue,
green, red, and NIR). Meanwhile, COCTS has eight typical
VIS–NIR bands that are suitable for ocean color remote sensing
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but with a spatial resolution of 1000 m. The spatial–spectral
fusion of HY-1C COCTS and CZI data could generate 50-m,
eight-band, and three-day observations for coastal waters and
meet the requirements of spatial and spectral resolutions.

Image fusion has been studied considerably in the remote
sensing community. However, most image fusion algorithms are
land oriented and the research on ocean color satellite images
remains rare. Therefore, fusion algorithms for land targets are
often directly applied to water bodies. The conventional im-
age fusion algorithms (pansharpening) include intensity–hue–
saturation transformation [12], principal component analysis
transformation [13], [14], Brovey transformation [15], wavelet
transformation [16], Gram–Schmidt transformation (GS) [17],
and so on. Du et al. [18] proved that GS performs the best for
water bodies in the above-mentioned algorithms. The greatest
problem for the conventional image fusion algorithms is that they
are designed for panchromatic and multispectral image fusion
and only one panchromatic image for multispectral images can
be received [19], that is, the image fusion between two multi-
spectral sensors (e.g., four-band CZI and eight-band COCTS)
could only have one band from CZI images for the fusion of
COCTS data, leading to a considerable loss of spatial informa-
tion in CZI images. In addition, several image fusion algorithms
have been applied in the ocean color remote sensing. Ashraf et al.
[20] tested the subtractive resolution merging technique, which
uses a mix of both spatial and spectral centric approaches, under
a semiaquatic freshwater environment in New Zealand. For
coastal waters, Minghelli-Roman et al. [21] improved MERIS
resolution by merging its images with Landsat-7 ETM+ images
by implementing unmixing-based multisensory multiresolution
fusion [22]. For inland waters, Guo et al. [23] proposed an
inversion-based fusion (IBF) algorithm that performed better
than the unmixing-based fusion algorithm.

The key issue for data fusion is how to build the relationships
among various data, which is exactly what deep learning is good
at [24]. Deep learning can capture the abstract features of remote
sensing observations and learn the potential associations among
different observations through multilayer learning [7]. The four
mainstream deep learning architectures are the autoencoder,
convolutional neural network (CNN), recurrent neural network,
and deep belief network (DBN). With the autoencoder, Liu et al.
[25] proposed a band-independent encoder–decoder network
for pansharpening of remote sensing images. With the CNN,
the most commonly used deep learning architecture in remote
sensing, different research articles have been carried out, such as
cross-source image retrieval [26], deep representation of images
[27], scene image super resolution [28], [29], and image fusion
[30]–[32]. With the DBN, another widely applied deep learning
architecture in remote sensing, the classification of hyperspectral
images [33]–[35], hyperspectral image representation [36], ob-
ject detection [37], and various other research articles have been
done, whose results demonstrated the accuracy and efficiency
of the DBN model. In 2018, Shen et al. [38] applied DBN
to the prediction of ground-level PM2.5 by using the top-of-
atmosphere (TOA) reflectance of MODIS, indicating that the
DBN has potential in predicting continuous data, such as fusion
data. Combined with large amounts of training data, the DBN

Fig. 1. Location of the Bohai Sea. The edge of an HY-1C COCTS image is in
red and the edge of an HY-1C CZI image is in yellow.

is expected to build the accurate spatial–spectral fusion model
and improve the quality of fusion images.

In this article, a DBN model is built to fuse HY-1C COCTS
and CZI images and generate 50-m, eight-band, and three-day
observations for coastal waters. The model is tested on the
Bohai Sea and compared with GS and IBF algorithms at TOA
reflectance and product (chl-a concentration in this study) levels.
Specifically, the training dataset is from one pair of COCTS
and CZI images on August 16, 2019, and the validation dataset
consists of 13 pairs of COCTS and CZI images from August 19,
2019 to November 22, 2019. The DBN-fused TOA reflectance
and chl-a concentration are compared with those from GS, IBF,
and official standard products to evaluate the performance of the
DBN model.

II. MATERIALS AND METHODS

A. Study Area and Dataset

1) Study Area: The Bohai Sea (37°07′–41°N, 117°35′–
122°15′E, as shown in Fig. 1) is a semienclosed marginal sea in
the northwestern Pacific Ocean on the northern coast of China.
It has a water area of∼77 000 km2, a water volume of 1700 km3,
and an average depth of 18 m [39]. The motion of water masses
is dominated by semidiurnal and diurnal tides, which account for
approximately 60% of the current variation and kinetic energy
there [40]. Connected with the Yellow River, the second-longest
river in China, the Bohai Sea receives 1.10 × 109 tons of
sediment per year [41]. The environment of the Bohai Sea has
been deteriorated by contaminants dumped into the sea [39] and
the intensity of coastal land use has become increasingly high
with the rapid economic development. Several problems, such
as destroyed and occupied coastal wetland, estuarine pollution,
eutrophication of seawater, and occurrence of red tide, occur fre-
quently, which affect the sustainable development of the region
[42]. In the past several decades, the Bohai Sea has become
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TABLE I
DATE AND TEMPORAL GAP OF HY-1C COCTS/CZI IMAGES

highly productive but polluted with green macroalgae blooms
reported in recent years [43]. Approximately 0.18 million water
transport vessels [44] and 1.07 million fishing boats [45] were
in operation over the Chinese seas by 2013, approximately one-
third of which navigated over the Bohai Sea [46]. The ecosystem
of the Bohai Sea is rapidly degrading and the sea has basically
lost its ecological function [47]. Thus, the high spatial–spectral
resolution remote sensing observations of the water quality of
the Bohai Sea are crucial for government decision making.

2) Dataset: In this study, 14 pairs of HY-1C COCTS and
CZI images are obtained from the National Satellite Ocean
Application Service of China (NSOAS),1 for DBN training and
validation. The training dataset contains one pair of COCTS and
CZI images of the Bohai Sea on August 16, 2019. The validation
dataset has 13 pairs of COCTS and CZI images from August 19,
2019 to November 22, 2019. The maximum temporal gap is 98
days. In addition, the geostationary ocean color imager (GOCI)
standard chl-a product of August 28, 2019 is acquired for the
validation of fused retrievals of chl-a. The details are listed in
Table I.

HY-1C COCTS and CZI have complementary settings. The
COCTS has 2900 km swath width, 1-km spatial resolution, and
eight VIS–NIR bands. The central wavelengths of COCTS bands
are 412, 443, 490, 520, 565, 670, 750, and 865 nm. The CZI has a
950 km swath width, 50 m spatial resolution, and four VIS–NIR
bands. The central wavelengths of CZI bands are 460, 560, 650,
and 825 nm. The spectral bands of COCTS and CZI are plotted
in Fig. 2. COCTS and CZI have a short revisit time (no more
than three days). COCTS and CZI sensors are jointly carried on
HY-1C satellite; hence, the fusion of COCTS and CZI images
has the advantages of a short time interval, consistent obser-
vation attitude, and high similarity of atmospheric conditions,
compared with the image fusion of other sensors.

GOCI provides chl-a concentration products in near real time
during the daytime, from 09:16 to 16:16 local time (a total
of eight images per day), with a spatial resolution of 500 m
[48]–[50]. The GOCI-derived ocean color data can provide an
effective tool to monitor ocean phenomena in the region, such
as the diurnal variation of ocean optical and biogeochemical
properties [51]. A significant noise reduction is found in the
chl-a product at low concentrations (<0.25 mg/m3), leading to a
high precision (∼3% uncertainty) [52]. Thus, GOCI chl-a con-
centration products are suitable for the validation of DBN-fused

1[Online]. Available: https://osdds.nsoas.org.cn/#/

Fig. 2. HY-1C COCTS/CZI spectral response function. The small letters
represent COCTS bands (dash–dotted line), and the capital letters represent
CZI bands (solid line).

chl-a retrievals. The product is available at the official website
of Korea Ocean Satellite Center.2

B. Methods

1) Preprocessing of HY-1C COCTS/CZI Image: The original
pixel value is a digital number DN and is converted into a radi-
ance value through radiometric calibration (1). The calibration
parameters (gain and offset) are provided by the metadata of
each image

LTOA = gain ·DN+ offset (1)

where LTOA is the radiance of TOA.
The image radiance is related to environmental factors and

imaging geometry (e.g., solar–terrestrial distance, solar irradi-
ance, and solar zenith angle); therefore, the radiance is further
converted to the reflectance through (2) [53]. The reflectance
is the percentage of radiant energy reflected by an object in
the total radiant energy, which is mainly determined by the
nature of the material itself [54]. It reduces the cosine effect of
different solar zenith angles due to the time differences among
data acquisitions. It also compensates for the different values of
solar irradiance arising from spectral band differences

RTOA (λ) = π · LTOA (λ) · d2/ (E0 (λ) · cosϑs) (2)

where d represents the earth–sun distance in astronomical units,
E0(λ) is the extraterrestrial solar irradiance, and the pixel-
specific sun zenith angle is denoted as ϑs. E0(λ) is calculated
as follows [55]:

E0 (λ) = ∫ LTOA (λ) · RSR (λ) dλ/ ∫ RSR (λ) dλ (3)

where RSR(λ) is the spectral response function of the corre-
sponding band.

2) Establishment of the DBN Model: The key point of the
DBN algorithm is how to acquire the mapping relation from CZI
bands to COCTS bands. Once the mapping relation is known,
four-band CZI images could be extended to eight-band ones

2[Online]. Available: http://kosc.kiost.ac.kr/eng/p10/kosc_p11.html

https://osdds.nsoas.org.cn/&num;/
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reliably. To ensure high accuracy, the following three premises
are necessary.

1) A correlation exists between the adjacent wavelengths.
2) The spectral mapping of the same region is relatively

stable.
3) The more consistent the band coverage is, the more accu-

rate the prediction is.
Generally, the mapping from hyperspectral bands to a multi-

spectral band is as follows:

y1 = a11x1 + a21x2 + . . .+ an1xn

y2 = a12x1 + a22x2 + . . .+ an2xn

...

ym = a1mx1 + a2mx2 + . . .+ anmxn (4)

where y is the value of the multispectral band, a is the weight
of the hyperspectral band according to the spectral response
function, and x is the value of the hyperspectral band. If we
have hyperspectral values, we can calculate unique multispectral
values under the condition that the spectral response function is
known. Nonetheless, the values are uncertain if we perform the
opposite process. The number of equations is smaller than that
of the unknown quantities (m < n); thus, we need n − m points
at least. However, the observed value differs from the calculated
value when considering the actual situation, in accordance with
the following equation:

xobs = αx̂+Δx1 +Δx2 (5)

where xobs is the observed value, α is the scale factor, x̂ is the
true value,Δx1 is the systematic error, andΔx2 is the accidental
error.

To reconstruct eight COCTS bands from four CZI bands, we
need to construct at least 4n-m (4 × 8 − 4 = 28) equations.
The more equations we have, the less accidental error remains.
Learning through a large amount of data, DBN could gain robust
relations among COCTS and CZI bands, construct the equations,
and obtain optimizations and solutions. The fused eight-band
CZI values are then calculated.

The DBN in this study consists of one input layer, two hidden
layers, and one output layer. The TOA reflectance of CZI is
selected as the input data. The structure of DBN is shown in
Fig. 3 and explained as follows.

1) Input layer: TOA reflectance of four CZI bands.
2) Hidden layer: Two fully connected hidden layers with 64

nodes of each layer, and ReLU is chosen as the activation
function.

3) Output layer: TOA reflectance of eight COCTS bands.
A general DBN structure is used in this research [7], [38].

ReLU, the most widely used activation function, is chosen. The
number of nodes of each layer is selected as the multiple of band
numbers (4 and 8) since the number of decomposed values from
bands is the multiple of band numbers. Several multiples of band
numbers are tested preliminarily, such as 16× 16, 32× 32, 64×
64, 128 × 128, 256 × 256, and 512 × 512. For the combinations
1 and 2, the precision is low; for the combinations 4–6, the
precision shows no obvious improvement but more training

Fig. 3. Structure of DBN. Training: The input four-band and eight-band
data are the spatially resampled CZI TOA reflectances and original COCTS
TOA reflectances, respectively. Validation and application: The input four-
band and output eight-band data are the original CZI TOA reflectances and
TOA reflectances of the fused image with similar bands of COCTS and the
spatial resolution of CZI, respectively. More details are further elaborated in
Section IV-C.

Fig. 4. Training losses of hidden layers with different nodes (solid lines).
MSEs calculated from another image pair (dash lines). The training loss axis
is logarithmic. The legend describes the numbers of nodes in the two hidden
layers. For example, “16 × 16” means that the two hidden layers have 16 nodes
and 16 nodes, respectively.

space and data are acquired. The validation shows that the
64× 64 structure maintains the lowest mean-square error (MSE)
when they are examined by another image pair (see Fig. 4).

DBN is first pretrained using the input data and restricted
Boltzmann machine to generate the initial model coefficients
without supervision. This step can avoid the local optimum and
long training time that the traditional neural networks (such as
the backpropagation neural network) have because the weighted
parameters are not randomly initialized. Then, the MSE between
the DBN prediction and reference data is calculated for the
backpropagation algorithm [56]. The circulation breaks when
MSE shows no distinct decrease within ten epochs to avoid
overfitting.
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3) Performance Evaluation: The prevailing fusion methods
of GS and IBF are selected to evaluate the effectiveness of
DBN. We select five indices, namely, the coefficient of de-
termination R2, root-mean-square error (RMSE), relative error
(RE), structural similarity index (SSIM), and goodness-of-fit
coefficient (GFC), to evaluate the accuracy of fusion images.
SSIM is an indicator of the spatial structure preservation of
the estimated image. The higher the SSIM is, the better the
spatial structure preservation will be [57], [58]. GFC is used
to verify the quantitative performance of the spectral reflectance
reconstruction. It measures the similarity between the actual and
reconstructed spectral reflectance [59]. The formulas for SSIM
and GFC are as follows:

SSIM (ρ, ρ̂) =
1

S

S∑
i =1

SSIM
(
ρi, ρ̂i

)
(6)

GFC =
1

N

|∑λ ρ (λ) ρ̂ (λ)|√∑
λ [ρ (λ)]

2
√∑

λ [ρ̂ (λ)]
2

(7)

where SSIM(ρi, ρ̂i) is the SSIM computed between the “true”
and estimated band ρi and ρ̂i, and S is the number of bands.
ρ(λ) and ρ̂(λ) are the “true” and estimated spectral reflectance,
and N is the number of pixels in the image, respectively. Note
that only the final step of the SSIM calculation is shown because
the whole formula is complicated but not all necessary [57]. The
formula and its derivation process could be found in [58].

III. RESULTS

A. Spatial Performance of Fused Reflectance

1) Visual Examination of True Color Images: The RGB fu-
sion results of GS, IBF, and DBN are shown in Fig. 5, and
RGB COCTS and CZI images are also plotted for direct visual
evaluation at spatial and spectral aspects. In the first column of
Fig. 5, the true color synthetic images of COCTS, GS fusion, IBF
fusion, DBN fusion, and CZI show similar color distributions.
In the second column of Fig. 5, COCTS is excessively coarse
to determine the ship wake, the fused images and CZI image
are able to observe the small ship, and the image color of the
DBN fusion is the closest to that of COCTS. In the third column
of Fig. 5, the water frontal surface is clearer and sharper in
Fig. 5(i) (IBF fusion) and Fig. 5(l) (DBN fusion) than that in
Fig. 5(f) (GS fusion). This finding suggests that the three fusion
algorithms can improve the spatial resolution, whereas DBN
can maintain most spectral information. In the third column of
Fig. 5, the clouds are within the scenes. COCTS and GS-fused
images display a color deviation at the cloud edge, whereas IBF-
and DBN-fused images can avoid this effect and obtain clear
images comparable with the CZI image. From the direct visual
examination, we can determine the following.

1) GS, IBF, and DBN can improve the spatial resolution of
COCTS without changing the color distributions.

2) DBN outperforms GS and IBF regarding spectral infor-
mation preservation.

3) GS has problems in fusing the pixels at cloud edges.

Fig. 5. (a)–(c) RGB images of HY-1C COCTS. (d)–(f) GS fusion. (g)–(i) IBF
fusion. (j)–(l) DBN fusion. (m)–(o) HY-1C CZI. Images in the second (ship) and
third (cloud) columns are the regional expansion of images in the first column
at I and II, respectively.

2) Spatial Distributions of REs and Regression Analysis:
The REs of the entire fusion image acquired on August 16, 2019
are calculated and shown in Fig. 6 with the COCTS image as
a reference. For the GS-fused image, the REs are significantly
higher than those of the IBF- and DBN-fused images. The REs
of most regions are higher than 20% and that of approximately
one-third of the region are approximately 40% at bands 7 and
8. In Fig. 6(f)–(h), high REs appear in the image center. They
basically coincide with much clearer water with a much lower
reflectance signal in red–NIR bands. Thus, there is a great
possibility that the high REs are caused by the decrease in the
denominator and lower signal–noise ratio (SNR) at longer bands.
For the IBF-fused image, the REs are similar to those of the
DBN-fused image, indicating that the performance of DBN is
comparable with that of IBF and better than that of GS in terms of
REs in comparison with the COCTS image. For the DBN-fused
image, REs are less than 10% in most areas of the Bohai Sea at
bands 1–6, whereas they may reach approximately 40% in some
areas at bands 7 and 8. This difference may be caused by the fact
that for longer bands, the reflectance is far less than that of the
shorter bands due to strong water absorption. The decrease in
denominator results in the overall increase in REs. Moreover,
the lower SNR at longer bands may lead to larger REs.

The regression analysis of TOA reflectance between the fused
images and the reference image (COCTS image) is conducted
and plotted in Fig. 7 to assess the reflectance of fused images
quantitatively. The performance of the GS algorithm is the
poorest among the three fusion methods with the largest RMSE
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Fig. 6. RE maps of (a)–(h) GS-, (i)–(p) IBF-, and (q)–(x) DBN-fused images
at bands 1–8 (B1–B8). Note that the COCTS image is used as a “true” value.

Fig. 7. Regression analysis of (a) GS-, (b) IBF-, and (c) DBN-fused images
with the reference COCTS image.

of 0.96% and the smallest SSIM of 0.80. Although the R2 is larger
than 0.98, the gain coefficient of the fitting line is far away from
1:1, suggesting that GS may overestimate the reflectance during
the fusion.

The IBF algorithm has the smallest R2 among the three
algorithms, indicating that the prediction of IBF contains the
most uncertainties. Consequently, the scatters of the IBF al-
gorithm are substantially diffuse. In Fig. 7(b), a small number
of scatters away from the fitting line are the hot pixels, which
are produced by wrong pixel matching and excessive prediction
errors. The reflectance of DBN-fused and COCTS images is

Fig. 8. COCTS and fused spectra (solid lines). REs are in dash lines. (a) Ocean
water. (b) Coastal water.

closely distributed to 1:1 line with the highest R2 of 0.9928,
SSIM of 0.97, and the smallest RMSE of 0.22%, indicating that
the DBN algorithm can make stable and reliable predictions.
The regression analysis demonstrates that DBN is the best fusion
algorithm among the three methods.

B. Spectral Performance of Fused Reflectance

1) Spectral Consistency: The relative relationship among
bands, that is, the shape of the spectral curve, is a piece of
important information contained in remote sensing images. We
randomly select an ocean water pixel and a coastal water pixel
from fused images to compare their spectra with the “true”
spectra of COCTS. The results are shown in Fig. 8.

For the ocean water pixel, the prediction errors of GS are larger
than 20% for all bands, although the spectral shape is correct.
The prediction errors of IBF are within 20% but approximately
5% higher than those of DBN. The spectrum of the DBN-fused
image is highly consistent with that of the COCTS image. The
prediction errors are within 10% for bands 1–6 and within 20%
for bands 7 and 8.

For the coastal water pixel, the prediction of GS is always
higher than “true” values. And GS performs the worst among
the three algorithms. As for IBF, it could maintain the prediction
errors of approximately 10% for all bands. For bands 7 and 8,
it performs better than DBN, although its prediction errors also
increase. The prediction errors of DBN are within 5% for bands
1–5. For bands 6–8, a significant increase in prediction errors
occurs. The reason is that NIR bands have a relatively low SNR
compared with VIS bands.

To sum up, DBN performs best at bands 1–6, IBF is the
best fusion algorithm at bands 7 and 8, and GS has the worst
performance and overestimates the reflectance values.

2) Spectral Mean RE: The mean REs (MREs) of each band
from GS, IBF, and DBN compared with COCTS are shown in
Fig. 9. The MREs of DBN are obviously smaller than those
of GS. Specifically, the DBN MREs of bands 1–8 are 82%,
79%, 76%, 69%, 68%, 53%, 32%, and 23% less than those of
GS, respectively. Compared with the MREs of IBF, the MREs
of DBN are smaller at the first six bands and are 72%, 67%,
55%, 45%, 41%, and 22% smaller, respectively. Nonetheless,
IBF performs better at bands 7 and 8, and the MREs of DBN are
0.2% and 9% larger, respectively.

The lower fusion accuracy at bands 7 and 8 is related to the
lower SNR. COCTS and CZI sensors have a relatively low SNR
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Fig. 9. MREs of DBN, GS, and IBF algorithms.

in the NIR bands, which results in considerable uncertainties.
Fig. 9 shows that the MREs of the three algorithms are higher at
NIR bands 7 and 8. GS and IBF use the corresponding COCTS
pixels as guidance; as a result, MREs are constrained. However,
DBN reconstructs spectra in accordance with CZI pixels without
COCTS pixels; thus, poor data quality could cause greater errors
for DBN.

GFCs are also calculated and plotted in Fig. 9. GFC indicates
improved performance when it is close to 1. The GFC of GS is
much smaller than those of IBF and DBN. Although both the
GFCs of IBF and DBN are high and larger than 0.9, the GFC of
DBN is the highest and reaches 0.95, indicating that DBN can
best preserve spectral shape.

C. Performance of Chl-a Retrieval

Chl-a is one of the three most frequently retrieved water
parameters by remote sensing [60]. The RGB + NIR four-band
setting of the CZI sensor makes it difficult to conduct accurate
retrieval because of the lack of chl-a sensitive bands [61]. We
have obtained an eight-band-fused image; its capability in the
chl-a retrieval should be evaluated. According to NSOAS [11],
bands 2, 3, and 5 of COCTS are highly sensitive to the chl-a
concentration. As shown in Fig. 9, the MRE of DBN at the three
bands is the smallest among the three algorithms, indicating that
the DBN-fused image may perform the best in the chl-a retrieval.

In this study, the GOCI standard chl-a product is used as the
“true” value, which has been widely proven accurate [50]–[52],
[62]. The chl-a concentration of fused images is retrieved as
follows [63]:

CHL = 1.853

(
B1 +B2−B3

B4

)−3.263

(8)

where B1, B2, B3, and B4 are the atmospherically corrected
reflectance by using the revised Rrs (NIR) model [64] of the sec-
ond, third, first, and fifth band of the fused images, respectively.

Fig. 10. (a) GOCI chl-a product. (b) Chl-a derived using a DBN-fused image.
(c) Chl-a derived using an IBF-fused image. (d) Regional expansion of Fig. 10(c)
at I. (e) Regression analysis between GOCI and DBN chl-a products. (f)
Regression analysis between GOCI and IBF chl-a products.

The GS algorithm is not adopted here because it has been
proven obviously inferior to DBN and IBF. The GOCI standard
chl-a product and chl-a derived from DBN- and IBF-fused
images are shown in Fig. 10. The DBN-derived result of chl-a, as
shown in Fig. 10(b), achieves higher precision at both low and
high concentrations than the IBF-derived result, as shown in
Fig. 10(c). The spatial distribution of DBN-derived chl-a shows
more obvious gradations. It proves that the DBN algorithm
improved the spatial resolution and maintained the details. How-
ever, the IBF algorithm improves the spatial resolution but loses
more crucial details than the DBN-derived result. The regression
analysis between them is also plotted. The regression results
prove that the pixels of the IBF-fused image are more dispersed
with an R2 of 0.59 and RMSE of 0.16 mg/m3. The gain factor of
the fitting line is 0.76, which is far away from 1:1 line, indicating
that the chl-a concentration retrieved from the IBF-fused image
is generally underestimated. In addition, from Fig. 10(d), the
enlargement of Fig. 10(c), the IBF algorithm leads to the block
effect. The block effect makes the fused image homogeneous
and smooth, but adjacent fused pixels are anomalously different
at block edges.

Benefited from reconstructing spectra pixel-by-pixel, the
DBN algorithm is free from the block effect. With the highly
accurate spectra and 50-m spatial resolution, the retrieved chl-a
concentration from the DBN-fused image is well consistent
with that of the GOCI standard product with improved spatial
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Fig. 11. RE distribution of different bands and days of DBN images. Rows
1–4 are the RE spatial distribution of different bands. (a)–(d) Band 2. (e)–(h)
Band 3. (i)–(l) Band 5. (m)–(p) Band 8. Columns 1–4 are the fusion images on
different dates. (a), (e), (i), and (m) August 19, 2019. (b), (f), (j), and (n) August
25, 2019. (c), (g), (k), and (o) August 28, 2019. (d), (h), (l), and (p) August
31, 2019. The DBN model is trained using the COCTS and CZI image pair on
August 16, 2019.

resolution and more details. As a result, DBN achieves a higher
R2 of 0.78 and a lower RMSE of 0.10 mg/m3 than IBF.

IV. DISCUSSION

A. Influence of Temporal Gaps Between Image Pairs

Ideally, fusion results with the highest accuracy can be ob-
tained through modeling and applying by using intraday images.
However, the reality is that the optical remote sensing images
are often covered by clouds, resulting in the lack of fusion image
pair on the same day. Therefore, exploring how the temporal gap
between the training and applying data influences the COCTS
and CZI mapping relationship is necessary.

Specifically, we first use an image pair acquired on August
16, 2019 to build the DBN model and apply this model to the
CZI images acquired on August 19, 25, 28, and 31, 2019. The
spatial distribution of RE on different dates is shown in Fig. 11.
The REs at bands 2, 3, and 5 are relatively low, regardless of the
temporal gaps. Nevertheless, at band 8, the RE increases as the
temporal gap increases. The RE increases gradually from band
2 to 8, which could be attributed to the lower SNR at longer
COCTS bands. The SNRs of COCTS bands 2, 3, 5, and 8 are
767, 668, 637, and 424, respectively.

The cloud edge pixels of DBN have high RE, especially on
August 19 and 25, 2019, because the thin clouds around thick
clouds are difficult to discriminate. The COCTS and CZI sensors
record the mixed spectra of clouds and water for thin clouds.
Compared with pure water spectra, the mixed spectra contain
more uncertainty from thin cloud pixels.

Thus, the temporal gaps of the training and applying data of
DBN should be carefully selected. For VIS bands, the temporal
gap can be relatively long; for inhomogeneous areas, the tem-
poral gap should be shorter than that for homogeneous regions.

Fig. 12. Variations in the RE of the DBN-fused image along with temporal
gaps. The RE surface below the red (GS) or green (IBF) line indicates that the
DBN has better performance than GS or IBF modeled and applied on the same
day.

In consideration of the number of available images and the
temporal influence, a temporal gap of 98 days (about three
months) is selected. During this period, 14 images are available,
which are enough for training and validation. Fig. 12 shows
that with an increase in the temporal gap, RE is undoubtedly
increased, but the growth rate is low. The unusual RE of the
fused image with a 33-day or 81-day temporal gap is mainly
caused by the thin cloud covering almost the entire image. In
most cases, the RE of the DBN-fused image at bands 1–6 is
lower than that of the IBF-fused images. When the temporal gap
is within 30 days, the RE of the DBN-fused image at bands 7 and
8 is higher than that of the IBF-fused images. This is consistent
with the above-mentioned conclusion. When the temporal gap
is up to 30 days, the RE at band 8 increases to the level of the GS
algorithm. When the temporal gap is up to 98 days, the RE of
VIS bands 1–5 is still lower than 20%. Therefore, images before
and after the target time can be used for training, and images with
the temporal gaps of more than 30 days are not recommended.

Considering that the revisit time of HY-1C is approximately
three days, we can acquire several images of the target re-
gions every month, which will greatly increase the possibility
of obtaining adequate image pairs. Despite pixels with good
qualities on the same day are insufficient, adjacent image pairs
on other days can be used to train the DBN model because of
the high-frequency HY-1C observations.

B. Fusion at the Reflectance or Product Level

In this study, we fuse images from HY-1C COCTS and CZI,
which are designed for the ocean color remote sensing and
water quality monitoring. Thus, the retrieval of water quality
parameters (e.g., chl-a) is the primary goal of HY-1C, and we
try to understand whether we should fuse COCTS and CZI at
the reflectance or product level.

The GOCI chl-a product is used to fuse the COCTS-derived
chl-a product, considering that CZI is unsuitable to derive the
chl-a concentration directly. The GOCI chl-a product is also
used as the “true” value, which may give advantages to this
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Fig. 13. (a) GOCI standard chl-a product (500 m). (b) Retrieved chl-a con-
centration by using the DBN-fused image (50 m). (c) Fused chl-a concentration
by using the STARFM algorithm (500 m). (d) Regression between the GOCI
standard chl-a product and the fused chl-a concentration by using the STARFM
algorithm.

fusion. The widely used STARFM algorithm without additional
bands needed is adopted to complete the fusion at the chl-a
level. The STARFM algorithm has been successfully used for
the fusion of water parameters [65]–[67]. The GOCI standard
chl-a product, DBN-fused chl-a map at the reflectance level,
and STARFM-fused chl-a product at the chl-a level are shown
in Fig. 13.

Restricted by the 500 m GOCI standard chl-a product, the
STARFM-fused chl-a image could not reveal fine details, such
as the disturbance of the ship wake in the DBN-fused chl-a map.
In addition, the high value of the STARFM-fused chl-a image is
obviously lower than the “true” value, indicating that STARFM
tends to underestimate chl-a values, as proven by the gain factor
(0.82 < 1.0) of the fitting line in Fig. 13(d). The gain factor of
STARFM at the chl-a level (0.82) is worse than that of DBN
at the reflectance level [0.93, as shown in Fig. 10(e)], and the
R2 (0.56) is also much lower than that of the DBN-fused chl-a
concentration [0.78, as shown in Fig. 10(e)].

Although using the GOCI chl-a product as the “true” value
provides privileges to fusion at the chl-a level, its performance is
still worse than that of the DBN-fused image at the reflectance
level. Thus, fusing images at the reflectance level rather than
at the product level is recommended because the spectral infor-
mation will not be lost. CZI is also unsuitable to derive several
water quality parameters (e.g., chl-a) due to the lack of spectral
bands.

C. Comparison Among GS, IBF, and DBN Algorithms

The procedure of the GS algorithm is described as follows.
1) A low spatial resolution panchromatic band simulated

using the multispectral bands is added, and GS is applied.

2) The input high spatial resolution panchromatic band is
adjusted to be consistent with the low spatial resolution
panchromatic band after GS.

3) The high spatial resolution panchromatic band is used to
replace the low spatial resolution panchromatic band, and
inversed GS is used to add spatial information [17].

The inevitability of imaging gaps reveals the natural defects of
the GS fusion: first, differences between the two images caused
by temporal gaps will cause serious errors to the fusion results,
which cannot be predicted or avoided; second, the accurate
registration is extremely difficult under the condition that the
spatial resolution of CZI is 20× higher than that of COCTS,
which means one COCTS pixel corresponds to 400 CZI pix-
els. Therefore, the incorrect correspondence of edge pixels is
common in all image pairs.

The procedure of the IBF algorithm is as follows.
1) The spectral and spatial resolutions are enhanced via nor-

malization and bilinear interpolation.
2) The ratio matrix, which is defined as the ratio of each pixel

in an n× n region, is calculated.
3) Seed pixel spectra, the independent variables in the inver-

sion system, are retrieved, and least squares inversion is
performed via the minimization of the cost function by
using the quasi-Newton method.

4) The spectra of other pixels in the region are calculated, and
this step is repeated until all regions are processed [23].

The IBF fusion process is guided by COCTS images. The
value of the fused spectrum is restricted by that of the COCTS
spectrum. As a result, the MREs of all bands are close. The block
effect of IBF is caused by its principle and a 20 × 20 window
exists for each COCTS pixel. This finding suggests that spectra
at the window edge are relatively different from those of the
adjacent pixels corresponding to another window.

The DBN model is first trained using the resampled CZI
images and concurrent COCTS images and learns spectral map-
ping relationships between the CZI and COCTS bands. Then,
the values of fused images are recovered pixel-by-pixel based
on nonresampled CZI images. In the first step, COCTS and
CZI images are matched according to their spatial information.
Specifically, CZI images are resampled to the spatial resolution
of COCTS images after the image registration. Using COCTS
images as the “true” values, the DBN model learns the mapping
relationships between the input CZI and COCTS bands. The
high-resolution spatial information of CZI is lost at this stage,
while the spectral mapping relations are learned. In the second
step, when the DBN model is applied to other CZI images,
the CZI images remained nonresampled to maintain the high-
resolution spatial information and learn spectral information of
COCTS from DBN. Thus, the fused images are with the spectral
information of COCTS and the spatial resolution of CZI. The
aforementioned problems are avoided in principle. If the two
mapping images have differences caused by the temporal gap,
the ground objects in the DBN-fused image will be the same as
those in the CZI image because only the CZI image is used in the
spectral reconstruction. The effect of registration deviation can
be corrected using the majority of normally corresponded pixels
in DBN learning and training because incorrectly corresponded
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pixels only account for a small proportion and their influence on
the final weights is negligible. Without the guidance of COCTS
images, the inconsistency caused by lower SNR at longer bands
could contribute to much more errors for the DBN method than
the IBF method. This is why DBN performs better in bands 1–6
rather than bands 7 and 8.

As a result, compared with GS and IBF algorithms, DBN
alleviates the problems of color deviation, spectral distortion,
and block effect. The DBN-fused images perform well at the
reflectance level and chl-a retrieval level. It is the best fusion
method among the three algorithms and is suitable to fuse
COCTS and CZI images for the remote sensing of coastal waters.

V. CONCLUSION

Monitoring the details of water bodies is of great significance.
COCTS and CZI onboard HY-1C provide 50-m, eight-band, and
three-day observations when the images of the two sensors are
combined. In this study, a DBN model is developed to fuse
images from COCTS and CZI and is compared with widely
used GS and IBF algorithms at the Bohai Sea. The results are
analyzed at the reflectance and product levels.

The results demonstrate the following.
1) DBN can fuse COCTS and CZI multispectral images and

avoid the color deviation and spectral distortion of GS and
the block effect of IBF.

2) DBN is a more accurate fusion model for COCTS and CZI
data compared with GS and IBF in terms of fusing the TOA
reflectance. The MRE of the DBN model is at least 50%
smaller than that of GS and 20% smaller than that of IBF
at bands 1–6. The average GFC increases from 0.80 (GS)
and 0.94 (IBF) to 0.97 (DBN), which rises by 21.25% and
3.19%, respectively. The average SSIM increases from
0.77 (GS) and 0.91 (IBF) to 0.94, which rises by 22.08%
and 3.30%, respectively.

3) Images at the reflectance level rather than at the product
level are recommended to fuse. The chl-a derived from
the DBN-fused reflectance image obtains a higher R2 of
0.78 and a lower RMSE of 0.10 mg/m3 compared with the
chl-a fused from GOCI and COCTS chl-a products (R2 =
0.56 and RMSE = 0.15 mg/m3).

Onboard the same satellite (HY-1C), COCTS and CZI sensors
have the advantages of short imaging temporal gaps and high
similarity of atmospheric conditions, whereas most ocean color
remote sensing sensors are carried on different satellites. Thus,
they provide a great opportunity to fuse the images from the
two sensors and obtain suitable observations for dynamic coastal
waters. The proposed DBN model can serve as a baseline for the
fusion of COCTS and CZI images and a complement to the re-
mote sensing monitoring of coastal regions. Future experiments
in various waters should be performed.
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