
1654 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Detecting of Overshooting Cloud Tops via
Himawari-8 Imagery Using Dual

Channel Multiscale Deep Network
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Abstract—The occurrence of overshooting cloud tops can cause
extremely severe weather such as strong winds and heavy rainfalls.
The traditional overshooting cloud top (OT) detection methods
not only need to choose a reasonable threshold, it is also very
hard to make full advantage of the multispectral information of
cloud images. These make small-scale OT detection very difficult
with poor accuracy of OT boundary determination. In order to
utilize the multispectral information of Himawari-8 satellite cloud
images, in this article, we propose a method for detecting OT based
on the dual channel multiscale deep network (DCMSDN). The
brightness temperature of infrared window and the difference of
brightness temperature between the infrared window and water
vapor window are used as dual channel inputs, respectively. Then,
DCMSDN introduces a multiscale prediction module to improve
the accuracy of small target detection, which makes the network
more suitable for the detection of the OT with small spatial scale.
Experimental results indicate that the proposed method provides
competitive performance with acceptable computational efficiency.
Specifically, for the quantitative indicators of OTs detection, our
approach achieves the accuracy of 89.36%, the precision of 95.63%,
the recall of 88.90%, and the F1-measure of 91.61% for the test
cloud images, which outperforms that of comparative methods.

Index Terms—Deep learning, dual channel multiscale deep
network (DCMSDN), Himawari-8, multiscale prediction fusion,
overshooting cloud tops (OT).

I. INTRODUCTION

OVERSHOOTING cloud tops (OTs) are one of the atmo-
spheric phenomena that often cause meteorological dis-

asters. According to the Glossary of Meteorology of American
Meteorological Society, an overshooting convective cloud top is
defined as “a domelike protrusion above a cumulonimbus anvil,
representing the intrusion of an updraft through its equilibrium

Manuscript received June 29, 2020; revised October 25, 2020 and November
24, 2020; accepted December 5, 2020. Date of publication December 14, 2020;
date of current version January 13, 2021. This work was supported in part
by the National Natural Science Foundation of China under Grant 42071323,
in part by the Natural Science Foundation of Zhejiang Province under Grant
LY20H180003, in part by the Natural Science Foundation of Ningbo under
Grant 2019A610104, in part by the the Public Welfare Science and Technology
Project of Ningbo under Grant 202002N3104, and in part by the K. C. Wong
Magna Fund in Ningbo University. (Corresponding author: Wei Jin.)

Shaojun Zha, Wei Jin, Zhiyuan Chen, Guang Si, and Zhuzhang Jin are with
the Faculty of Electrical Engineering and Computer Science, Ningbo Univer-
sity, Ningbo 315211, China (e-mail: zha950115@163.com; jinwei@nbu.edu.cn;
czy273995492@hotmail.com; siguang1234@163.com; 978117901@qq.com).

Caifen He is with the Zhenghai District Meteorological Bureau, Ningbo
315202, China (e-mail: 468176571@qq.com).

Digital Object Identifier 10.1109/JSTARS.2020.3044618

level.”[1] OT has prominent features of short life cycle, small-
scale space, strong destructiveness, strong convective shear,
strong updraft, etc. When a strong updraft penetrates from the
top of the troposphere into the stratosphere and a deep convective
storm occurs, it can cause cloud-to-ground lightning, strong
winds, heavy rainfall, and other severe weather conditions, af-
fecting the safety of flight and ground operations [2], Therefore,
it is of great significance to detect the occurrence of OT for
monitoring mesoscale severe convection weather.

Utilizing the imaging characteristics of different channels
of the multispectral meteorological satellite imagery, scholars
have carried out the research on the OT detection. Berendes et al
[3] proposed a method for cloud classification and detection of
deep convection and OTs based on the texture of visible and
near-infrared cloud images. However, the OT detection method
which based on visible cloud image is not applicable during
nighttime. The infrared spectral imaging channel can obtain all-
weather images, and the brightness temperature of OT is often
lower than that of non-OT, so the infrared window cloud images
have been widely used for OT detection. The water vapor minus
infrared window brightness temperature difference (WV-IRW
BTD) and infrared window channel brightness temperature
gradients (IRW-texture) are two typical methods. Since water
vapor in the troposphere and a variety of greenhouse gases can be
driven into the stratosphere by strong convection, the brightness
temperature of water vapor channel in the OT is higher than
that of the infrared channel. WV-IRW BTD method uses this
brightness temperature difference to judge the position of OT.
Martin et al. [4]–[8], used WV-IRW BTD method to identify the
existence of OT. However, the literatures [9]–[11] pointed out
that WV-IRW BTD method could easily misinterpret the con-
vective clouds near the OT, and the effectiveness of this method
depends on the water vapor conditions in the atmosphere. In
order to overcome the dependence on the water vapor channel,
Bedka et al. [1] proposed the IRW-texture method, which is
based on the infrared window channel. Not only does OT show a
lower brightness temperature but also its brightness temperature
has a gradient difference with the surrounding due to strong
convection. When the ascending force of an OT is strong, it can
penetrate the tropopause into the bottom of the stratosphere and
maintain a continuous cooling rate of 7–9 K/km, making them
significantly cooler than the surrounding [12], [13]. Bedka et al
[1] used the IRW-texture method combined with the tropopaure
temperature which obtained from the numerical weather

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6844-4324
mailto:zha950115@163.com
mailto:jinwei@nbu.edu.cn
mailto:czy273995492@hotmail.com
mailto:siguang1234@163.com
mailto:978117901@qq.com
mailto:468176571@qq.com


ZHA et al.: DETECTING OF OT VIA HIMAWARI-8 IMAGERY USING DCMSDN 1655

prediction (NWP) to give the quantitative characteristics of
OTs, and using CloudSat and Cloud Aerosol Lidarand Infrared
Satellite Observation (CALIPSO) satellite data to verify the
performance of OTs detection qualitatively. Wang et al [14] used
IRW-texture combined with mesoscale analysis field data of the
Local Analysis Prediction System (LAPS) to detect the position
of OT, which also achieved good results. However, IRW-texture
can detect the occurrence of OT, but a numerical forecast
product must be combined in order to get more accurate OT
location. At the same time, IRW-texture uses a fixed threshold to
interpret OT, which makes it often unable to detect small-scale
OT with high brightness temperature, resulting in a high-false
alarm rate. Chou et al [15] combined WV-IRW BTD method
and IRW-texture method and proposed a local minimum (Local
Min) method. Although the experimental results are good, the
method requires visible channel in OT detection, which limits
its application value at night. And similar to other mainstream
methods, the method also has high requirements for threshold
selection and relies on artificial knowledge and experiences.

In recent years, the methods of OT detection based on machine
learning have gradually received attention. In 2017, Kim et al
[16] distinguished the OT and non-OT regions by construct-
ing a machine learning model, but the model classifies only
individual pixels without using context information of cloud
images. In 2018, based on the previous work, Kim introduced
the convolutional neural network (CNN) into OT detection by
using the visible channel and infrared window channel images,
which was the first application of deep learning in OT detection
[17]. Since the method uses visible channel image, it is only
applicable to detect OTs during daytime. At the same time,
during OTs detection, this method needs to chop the satellite
cloud image into small patches, which leads to the problems such
as difficulty in determining the OT boundary accurately and the
misjudge of the anvil cloud around the OTs. In order to alleviate
the difficulties faced by traditional methods, the novel OTs
detection method based on dual channel multiscale deep network
(DCMSDN) is proposed in this article. The proposed method can
make full use of the characteristic information of OTs, which
are contained in the brightness temperature of infrared window
channel of Himawari-8 satellite and the brightness temperature
difference between infrared window and water vapor channel.
By combining the dual channel information of the cloud images
with the multiscale feature prediction module, the proposed
method can detect OTs accurately.

II. DATA

A. Imaging Channels and Physical Characteristics
of the Himawari-8 Satellite

The Himawari-8 satellite is a new generation of geostationary
meteorological satellite which onboard advanced Himawari im-
ager (AHI). The AHI has 16 channels with a spatial resolution
ranging from 0.5 to 2 km. The central wavelength, spatial reso-
lution, physical properties, and applications of the AHI imaging
channels are shown in Table I.

It can be seen from Table I that the remote sensing character-
istics of different imaging channels of Himawaria-8 satellite can

TABLE I
SPECIFICATIONS AND PURPOSES OF HIMAWARI-8 SATELLITE CHANNELS

reflect the physical properties of the atmosphere from different
aspects. Due to the height of OT significantly exceeding the
cloud anvil, it appears as a cluster of low-brightness temperature
pixels in the infrared window cloud image of 11-um central
wavelength [18]. As for the water vapor channel, due to strong
convection, the water vapor above the OT can be brought from
the troposphere to the bottom of the stratosphere or even higher,
so the OT often shows a higher brightness temperature in water
vapor channel. Based on these differences and combined with
previous experiences, Himawari-8 water vapor channel (6.2 um)
and infrared window channel (11.2 um) data of 2-km spatial
resolution were employed to detect the OTs.

B. Dataset Construction

All experimental cloud images in this study were acquired
from the Himawari-8 satellite data receiving system of our lab.
The time resolution of Himawari-8 satellite data is 10 min,
and the data projection method is equal latitude and longitude
projection. The algorithm research area of this study is from
90 °E to 150 °E and 5 °N to 45 °N. Satellite cloud images
from June to August 2019 were collected for model training and
testing. During this period, severe convective weather occurred
frequently in this area and OT samples were easy to obtain. In
addition, the cloud images in spring at 11:00 A.M. on January
4, 2019 and 21:00 P.M. on February 23, 2019 were selected for
OTs detection to verify the generalization of the model. Table II
details the satellite cloud images used to construct the training
and testing dataset. Referring to the date and time period in
the table, we collect satellite cloud images every 30 min. An
overall 1662 images were collected, of which 1500 images were
randomly selected to form the training dataset, and the rest 162
images to form the test dataset. The IRW BT images and the
WV-IRW BTD images served as input of model. The input
images were preprocessed by min–max normalization method
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TABLE II
INFORMATION OF SATELLITE IMAGERY USED FOR CONSTRUCTING DATASET

[17], which can be described as (X-Xmin)/(Xmax-Xmin), where
Xmin and Xmax are the minimum and maximum pixel value of
the input image, while X represents the current pixel value.

III. METHODOLOGY

A. Analysis of the Characteristics of OT

OT is also called penetrating convective cloud. When OT
appears, it is often accompanied by deep convection, which
makes it easy to be confused with deep convective cloud during
OT detection. Two common OT detection methods are depicted
below.

The WV-IRW BTD method is proposed based on the BTD
value, which uses the brightness temperature differences for
OT detection. The literature [1] pointed out the premise of this
technique for OT detection: 1) The atmospheric temperature
profile warms with height in the lower stratosphere, 2) water
vapor is forced into the lower stratosphere at levels above the
physical cloud top by the overshooting storm updraft, 3) this wa-
ter vapor emits at the warmer stratospheric temperature whereas
emission in the infrared window channel originates from the
colder physical cloud top, and 4) positive differences between
the warmer water vapor brightness temperature (WV BT) and
colder IRW BT can therefore identify where overshooting is
occurring. However, the maximum brightness temperature dif-
ference area does not always correspond to OT. This is because
the source of water vapor in the stratosphere may not be related
to OT.

The IRW-texture method is developed based on the difference
between the brightness temperature of OT and the average
brightness temperature of the surrounding anvil cloud. Since
it does not depend on the water vapor distribution in the lower
stratosphere, IRW-texture method addresses the dependence of
the WV-IRW BTD method on water vapor, thus overcomes the
overdetection of OT by the WV-IRW BTD method. The IRW-
texture method includes the following steps: 1) Define candidate
OT pixels (IRW BT below the bright temperature threshold T0);
define anvil cloud pixels (noncandidate OT pixels and IRW BT
below the bright temperature threshold T1, where T0 < T1); 2)
taking a single candidate OT pixel as the center, the average
brightness temperature T̄1 of the anvil cloud pixels in a certain

Fig. 1. Satellite cloud images of different imaging channels. (a) WV BT
images. (b) IRW BT images. (c) BTD images.

range is calculated; 3) compare the brightness temperature of
a single candidate OT pixel with the corresponding average
brightness temperature of the anvil-shaped cloud pixels. If the
brightness temperature of candidate OT pixel is T K lower than
the average brightness temperature of anvil-shaped cloud (where
T is a threshold, determined by experience), the candidate OT
pixel can be confirmed as real OT pixel, repeat this step 2) and
3) for each candidate OT pixel to get OT region. It can be seen
from the above steps that the method is greatly affected by the
thresholds and is easily affected by some subjective factors.
According to the different characteristics of WV-IRW BTD
and IRW-texture methods, combining with CNN, a novel OTs
detection method is proposed in this article. The WV BT images,
IRW BT images, and BTD images at specific times are shown
in Fig. 1.

In Fig. 1, on the brightness temperature images, the darker
the WV BT and IRW BT images are the lower the brightness
temperature will be, and vice versa. At the same time, textures of
IRW BT images are more obvious than that of WV BT images,
which can be beneficial for CNN learning. BTD images show
the brightness temperature difference, the brighter the larger
the difference. Since most OTs regions come in small size and
usually blurred with the deep convective clouds, their boundaries
cannot be defined accurately. This leads to a large number of false
detections in OTs detection by traditional methods. Therefore,
rich image features and accurate positioning are needed in OTs
detection, and clear boundaries also must be provided at the
same time.

In recent years, U-net has been successfully applied in image
segmentation, especially in medical image segmentation [19].
By end-to-end training from very few images, U-net can obtain
accurate target boundary location in image segmentation. The
U-net consists of two paths: Down-sampling and up-sampling.
The down-sampling is used to obtain image information. The
up-sampling fully acquires multilevel features of the image and
simultaneously achieves target positioning. Since OTs detection
can be regarded as an image segmentation problem, U-net can
help to achieve OTs detection. However, the pooling operation
of down-sampling in the U-net will lead to the loss of some
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information of cloud image, which not only makes it difficult to
accurately determine the OT area but also causes some small-
scale OT missed detection due to the constant change of cloud
system.

To reduce the disadvantages of pooling operation, the feature
pyramid model [20] which has been widely used in target
detection can be introduced to the U-net structure. Generally
speaking, in deep network, the low-level feature maps can depict
target location information more accurately while the high-level
feature maps only contain rough location information of the
target; in terms of reflecting the semantic features of the target,
the high-level feature maps are more meaningful. By predicting
and fusing the multiscale feature maps to obtain higher resolu-
tion features, the feature pyramid mode can detect targets with
different scales and improve the detection accuracy of small
targets. Moreover, U-net can just process single channel cloud
image which cannot reflect the occurrence and development of
OTs comprehensively, thus restricting its performance in OTs
detection.

Following the analysis mentioned above, a DCMSDN is
proposed for detecting OTs by the IRW BT image and BTD
image. Due to introducing dual channel and multiscale structure,
inheriting the down-sampling and up-sampling paths of U-net,
the DCMSDN can take full advantages of the multispectral char-
acteristics of satellite cloud images and has good OT boundary
positioning capability.

B. Structure of the Dual Channel Multiscale Deep Network

The single-channel input structure of the traditional U-net
network is difficult to comprehensively utilize the multispectral
information of the satellite cloud images. Based on the codec
structure of the U-net, starting from the actual needs of OTs
detection, the U-net has been improved as follows: 1) Designing
a coding structure with dual-channel input. The 2-D convolution
and down-sampling of the IRW BT images and BTD images,
which are suitable for the detection of OTs, are used as the inputs
of the two coding channels. After the encoding procedure, the
information of the two channels will be fused by superimposing
the corresponding scale feature maps of the two channels. In the
decoding procedure, corresponding to the encoding operation,
the up-sampling and convolution operation were carried out on
the fused feature map to gradually recover the size of each hidden
layer, so as to restore the details of OT and output the probability
maps to position the OT accurately; 2) introducing a multiscale
prediction module. Due to the small spatial scale of OT, the intro-
duction of multiscale prediction module in the coding process
can fuse the features of cloud maps at different scales, which
not only enhances the detection accuracy for small-scale OT
but also guides the network to carry out OT detection oriented
learning; 3) using batch normalization (BN) [21] in training.
Except for the last convolutional layer, there is an additional
BN layer after each convolutional layer. This operation can
effectively reduce the problem of gradient vanishing of low-level
neural network during error back propagation. At the same time,
in order to reduce the loss of OT boundary information during
down-sampling and ensure the consistent size of input and output

images, the padding parameters of convolutional and pooling
were set as 1, and then the Crop layer was replaced with a Copy
layer in the feature fusion; 4) introducing inception module.
Inspired by Inception V3 [22], in order to control the number of
parameters while increasing the depth and width of the network,
which are aimed to extract the spectral information of the cloud
images more effectively, 1 × 3 convolutional layer and then
followed by 3 × 1 convolutional layer instead of the traditional
3×3 convolutional layer are implemented. This not only reduces
the number of network parameters but also improves the training
efficiency. The structure of DCMSDN is shown in Fig. 2.

It can be seen, the DCMSDN has a symmetric structure. In
the stage of down-sampling, DCMSDN applies same levels
of Group module A and Max pooling module processing to
the dual-channel inputs IRW BT image and BTD image, re-
spectively, so that OTs related characteristics can be obtained.
Every step in the up-sampling path consists of a Predict module
and then concatenation of the feature maps of the dual-channel
contracting paths followed by a Group module B. After the same
levels of processing as the down-sampling, the multispectral,
multilevel, and multiscale characteristics of OTs can be fused.
At the final layer a 1 × 1 convolution is used to map the feature
maps, which have been processed by the fourth layer group
module B, to the results and obtain the desired OTs. In order
to training DCMSDN effectively, a reasonable loss function is
designed by calculating the distance between the output image
and the real label image.

Group module A and group module B are shown in Fig. 3.
Both of them consist of the repeated application of two 1 × 3
and 3 × 1 convolutions, each 3 × 1 convolutions is followed
by a batch normalization (BN) and rectified linear unit (ReLU).
The design inspiration of these structures comes from Inception
V3, and the network parameters can be effectively reduced
by convolution kernel decomposition. For example, a 3 × 3
convolution kernel with 9 parameters is decomposed to one
1 × 3 and one 3 × 1 convolution kernel, and the parameters
can be reduced to 6. At the same time, the convolution kernel is
decomposed in this way, which greatly enhances the nonlinearity
of the network.

The prediction module is shown in Fig. 4. The module de-
signed draws on the feature pyramid model. For input feature
maps of each scale, a 1 × 1 convolution is used to map feature
maps to the desired prediction result of the corresponding scale.
Then, the input feature maps and prediction result is fused
by concatenating correspondingly using the skip connection.
In order to eliminate the aliasing effect, 1 × 3 and 3 × 1
convolutions are applied to the fused results so as to obtain output
features of the corresponding layer.

As for the design of loss function, considering that in the
OTs detection, it is not uncommon that the OTs occupies only
a very small region of the satellite cloud image. This often
causes the learning process to get trapped in local minima of the
loss function yielding a network whose predictions are strongly
biased toward background. As a result the OTs regions are
often missing or only partially detected. The traditional way
to solve this problem is often to resort to loss functions based on
sample reweighting, where foreground regions are given more
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Fig. 2. Structure of DCMSDN.

Fig. 3. Structure of the Group module.

Fig. 4. Structure of the Predict module.

importance than background ones during learning. In this work
we propose a novel loss function based on the Dice similarity
coefficient which can be defined as

S =
2 |X ∩ Y |
|X|+ |Y | (1)

where the X represents the predicted OTs regions and the Y
represents the real OTs regions. Using this formulation we do
not need to assign weights to samples of different classes to
establish the right balance between OTs and non-OTs pixels,
and we can obtain much better results than that of the traditional
methods.

C. Determination of the Sample Label of OTs

The accuracy and reliability of the sample labels are critical to
the OTs detection. Literature [17] proposes to divide the satellite
cloud image into patches with the size of 31 × 31, and mark
the image patches as OT and non-OT (1 indicates OT, and 0
indicates a non-OT). Due to the irregular boundary of OT, by
marking the entire patches as 1 or 0, this method is not only
difficult to define the boundary of OT accurately but also often
marks the non-OT pixels surrounding the OT region as OT by
mistake. Based on Chou’s method [15], we propose a pixel-level
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Fig. 5. Process flow diagram of labeling OTs regions.

classification method to obtain the OTs labels as the reference
data. The specific steps are as follows.

1) Segmenting the infrared window brightness temperature
(IRW BT) cloud image into patches.

2) Finding the minimum brightness temperature T i
minof the

ith patch.
3) Determining the initial candidate OT pixels T i

H_OT (n)

which satisfy both T i
H_OT (n) < T i

min + 4 and T i
H_OT (n)

< 215, where n = 1, 2 . . . . . . N .
4) Determining the anvil-shaped cloud pixels T i

Z_OT (m)

which satisfy both T i
Z_OT (m) < T i

min + 15 and T i
Z_OT (m)

< 225 , where m = 1, 2 . . . . . .M .
5) With each initial candidate OT pixel as the center, calculate

the average brightness temperature of allT i
Z_OT (m) within

8–24 km and denoted as T̄ i.
6) The T i

H_OT (n) can be determined as candidate OT pixel,

if T i
H_OT (n) < T̄ i − 6.5 and the WV-IRW BTD of the

corresponding pixel is greater than 1.
7) Repeat steps 3), 4), 5), and 6) to obtain all candidate

OT pixels, and then merge adjacent OT pixels to form
a candidate OTs regions.

8) The candidate OTs regions were further confirmed by two
weather experts with more than 5-year experience in cloud
image interpretation. Through the above steps, almost all
OTs have been detected, but some anvil clouds with lower
brightness temperature were mistakenly classified as OTs,
and there is a certain false alarm. When confirming the
candidate OTs regions, weather experts will refer to local
meteorological data such as actual precipitation to elimi-
nate the false alarm pixels, so as to objectively delineate
the boundary of each OT.

(OT tends to correspond to the region where heavy pre-
cipitation occurs). And if the opinions of the two experts are
inconsistent, the delineated results were evaluated by another
meteorologist with more than 10-year experience in cloud image
interpretation to make sure they agree. Based on the above
scheme, we mark the OTs regions and determine each OT
boundary. The process flow diagram of labeling OTs regions
is shown in Fig. 5.

Fig. 6 shows the IRW BT images and the BTD images at 10:30
on June 27 and 15:30 on August 12, 2019 as well as the marked
OTs regions.

Fig. 6. IRW BT images, the BTD images and the marked OTs regions.
(a) IRW BT images. (b) BTD images. (c) Marked OTs regions.

D. Performance Indicators of OTs Detection

The performance indicators of evaluating different OTs de-
tection methods were generated based on true positive (TP),
true negative (TN), false positive (FP), and false negative (FN).
Where TP is the number of pixels that belong to OT and were
detected exactly as OT by the model; TN is the number of pixels
that do not belong to OT and were assigned to non-OT correctly;
FP is the number of pixels that do not belong to OT but were
predicted positively to OT while FN are the pixels that belong
to OT but were not detected. Specifically, the five performance
indicators were calculated as follows.

1) Accuracy: This indicates the ratio of correctly assigned
pixels in the total pixels as seen in (2). This indicator can
be used to measure the overall detection accuracy of the
model

Accuracy =
TP + TN

TP + FP + TN+ FN
. (2)

2) Precision: This indicates the ratio of correctly detected as
OT pixels in the total detected OT pixels as seen in (3).
The higher value of precision, the less likely the non-OT
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pixels will be detected as OT pixels

Precision =
TP

TP + FP
. (3)

3) Recall: The recall is the ratio of the correctly detected as
OT pixels in the total true OT pixels as indicated in (4).
The higher value of recall, the less the OT pixels well be
missed detection

Recall =
TP

TP + FN
. (4)

4) F1-Measure: Since recall and precision are contradictory
in some cases, high recall often means low precision,
so F1-measure is included in the evaluation indicators.
F1-measure is a weighted harmonic mean of precision
and recall, computed using (5). The higher value of
F1-measure, the better the comprehensive performance
of recall and precision, and the better the ability of OTs
detection

F1−Measure = 2∗ Precision ∗ Recall
Precision + Recall

. (5)

5) False Alarm Ratio (FAR): The FAR, gives the fraction
of detected as OT pixels that were observed to be non-
OT pixels as seen in (6). Contrary to precision, the lower
the FAR value, the less likely the non-OT pixels will be
mistakenly detected as OT pixels

FAR =
FP

TP + FP
. (6)

IV. EXPERIMENTAL RESULTS

The performance of the proposed OTs detection method was
evaluated by the following experiments. All the experiments
were performed on an Intel Core i7-7700 CPU at 3.5 GHz with
64-GB RAM. Unless otherwise specified, for all models, we
initialized the weights with random values, set the batch size
to 5, set learning rate to 0.0001 and trained 2000 epochs on
11G NVIDIA GeForce GTX 1080Ti GPU, stochastic gradient
descent (SGD) as optimizer.

A. Visualization of Feature Information

In order to evaluate the effectiveness of the DCMSDN pro-
posed in this article, DCMSDN feature maps at different levels
are visualized and compared against the single-channel feature
maps of the U-net. Fig. 7 shows the visualization feature maps
of the group module A1–A4 from DCMSDN, cloud images
occurred at 19:30 on June 26, 2019 as an example.

It can be seen that in the contracting path (the path of down-
sampling) of the DCMSDN, the feature maps of the IRW BT
image mainly depict the areas with low brightness temperature
(dark areas in the input image), the characteristics of the areas
with relatively low bright temperature are extracted by the shal-
low group module and with the deepening of the network, OT
can be identified clearly. For the feature maps of BTD image, the
contracting path extract the overall contour and texture features
of BTD image, with the deepening of the network, the areas with
large bright temperature differences can be well represented.

Fig. 7. Feature maps of group module A1–A4. (a) Input images. (b) Feature
maps of group module A1. (c) Feature maps of group module A2. (d) Feature
maps of group module A3. (e) Feature maps of group module A4.

Fig. 8. Comparison of the fusion feature maps of different levels between the
DCMSDN and the single channel U-net. (a) Fusion 1. (b) Fusion 2. (c) Fusion
3. (d) Fusion 4.

Every step in the expansive path (the path of up-sampling)
fuses the corresponding multiscale feature map which from the
contracting paths of IRW BT image and BTD image by concate-
nating. Due to the features of IRW BT image and BTD image
were extracted by the down-sampling process of DCMSDN, this
structure is conducive to guiding the network to carry out fine
characterization of the OT region, thus improving the accuracy
of OTs detection. Fig. 8 shows the comparison of the fusion
feature maps of different levels between the DCMSDN and the
single channel U-net.

The different levels feature maps of the IRW BT image and
BTD image which represented by the U-net are shown in the
first and the second row of the Fig. 8, while the corresponding
feature maps which are obtained by the DCMSDN via fusion the
information of the IRW BT image and BTD image are shown in
the third row of the Fig. 8. It can be seen that the single-channel
network like U-net cannot represent the characteristic of OT
well; consequently it is easy to mistakenly identify the deep
convective clouds surrounding the OT region as OT. On the other
hand, by fusing the dual-channel and multiscale features of IRW
BT image and BTD image, the DCMSDN can not only detect
small-scale OT effectively but also better describe the boundary
of OT well and distinguish OT from deep convective clouds
simultaneously.

B. Effectiveness Analysis of the Dual Channel Model

In order to evaluate the effectiveness of DCMSDN for OTs
detection, we took BTD images and IRW BT images as U-net
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Fig. 9. Comparison of OT detection results via single-channel and dual-channel networks, the OTs are denoted as white in the detection results. (a) IRW BT
image. (b) BTD image. (c) Labeled OT image. (d) Detection result of the DCMSDN. (e) Detection result of the U-net_IRW. (f) Detection result of the U-net_BTD.

TABLE III
COMPARISON OF EXPERIMENTAL RESULTS

inputs for OTs detection, and then compared the detection
results with the results of DCMSDN. Table III tabulates the
comparison of experimental results. Among them, U-net_BTD
and U-net_IRW represent the single-channel detection results
using the BTD image and IRW BT image as the U-net input.
In contrast, the DCMSDN represents the detection results using
both the BTD images and IRW BT images as the dual channel
inputs. Compared with the results obtained by single-channel
U-net, the outputs of DCMSDN are about 5% higher at least in
term of Accuracy and F1-measure, and more than 7% in term of
Precision and Recall.

In order to show the detection effect visually, Fig. 9 shows
the detection results of various models (the upper right corner is
the zoom in of the detection result). From visual assessment, the
single-channel models U-net_IRW and U-net_BTD can detect
the rough region of the OT but produce inaccurate definition of
the OT boundary. In contrast, the detection result of DCMSDN
has obvious advantages in depicting OT boundary by combining
feature maps of different levels of IRW BT image and BTD
image.

C. Comparisons With Other Methods

Various techniques and methods have been used for detecting
OTs in satellite imagery. Each technique has its own respective

TABLE IV
COMPARISON OF OTS DETECTION ACCURACY VIA DIFFERENT METHODS

accuracy level. Here, DCMSDN was compared with traditional
methods IRW-texture [14], WV-IRW BTD [15], and Local Min
[15].

Table IV tabulates the comprehensive evaluation indicators
of OTs detection by different methods. It can be seen that the
Precision of the IRW-texture method reaches 100%, but its
Recall is very low. The main reason is that the threshold of
the bright temperature in the IRW-texture is a sensitive factor,
which has a particularly important influence on the detection
results. For example, some OTs may easily be missed with a
low threshold, while a higher threshold is prone to label some
convective clouds, especially deep convective clouds, as OTs and
resulting in many misjudgments. Although the WV-IRW BTD
method is not sensitive to the threshold, it is affected greatly
by water vapor. Meanwhile, the selection of the threshold for
the brightness temperature difference is also very important, so
there are a lot of false detections. Compared with the above two
methods, the Local Min method combines the advantages of the
above two methods and improves the accuracy of OTs detection.
However, the detection results of the Local Min are not as good
as the method proposed in this article. From the perspective of
Accuracy and F1-measure, the proposed method is about 13%
and 7% higher than that of the Local Min method, respectively.
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Fig. 10. Visualization of the OTs, the OTs are denoted as red in (a) and (b). (a) OTs on the BTD image. (b) OTs on the IRW BT image. (c) Pseudocolor
visualization of the IRW BT image.

Fig. 11. Comparison of OTs by different methods, the OTs are denoted as red. (a) Label image. (b) DCMSDN. (c) Local Min. (d) IRW-Texture. (e) WV-IRW
BTD.

From the perspective of FAR, the proposed method DCMSDN is
not the best one, but considering all these evaluation indicators,
the MCMSDN is the optimal method.

Fig. 10 shows the cloud images at 21:30 on June 28 as an ex-
ample, Fig. 10(a) and (b) are the BTD image and IRW BT image,
respectively, the OTs regions are shown in red. It can be seen that
the OT located at the low brightness temperature region of IRW
BT image and the high water vapor-infrared window brightness
temperature difference region of BTD image. However, not all
pixels in the low brightness temperature region belong to OT.
Fig. 10(c) is the pseudocolor visualization of the Fig. 10(b),
from which it can be seen clearly the region of OT is much
smaller than the low brightness temperature region. The zoom
in of the OTs regions of Fig. 10 were shown in Fig. 11, and the
results of OTs detection by different methods were also shown
in Fig. 11, where Fig. 11(a) was the labeled image which was
confirmed by weather experts, and Fig. 11(b)–(e) were the results
of OTs detection using DCMSDN, Local Min, IRW-Texture, and
WV-IRW BTD-based methods, respectively. It can be seen from
the Fig. 11 that lots of pixels that do not belong to OTs were
assigned as OTs mistakenly for the IRW-texture and WV-IRW
BTD-based methods. The performance of the Local Min-based
method is better than that of the IRW-texture-based method and
the WV-IRW BTD-based method, but the false alarm of OTs still

exists. According to the discussions above, the proposed method
which based on DCMSDN is the best in terms of detection
accuracy and visual inspection.

D. Analysis of the Generalization Ability

In order to verify the generalization ability of the DCMSDN,
we have selected two cloud images in spring which at 11:00 A.M.
on January 4, 2019 and 21:00 P.M. on February 23, 2019 for OTs
detection. The test results as shown in Fig. 12. It can be seen that
the OTs areas detected by the DCMSDN are coincided with the
label generally. Table V gives quantitative evaluation indicators.
As seen from the table, most of the indicators that measure the
accuracy of OTs detection exceeded 80% and the FAR less than
20%. Judging by these indicators, the model constructed in this
article is suitable for OTs detection in other seasons, and has
strong generalization performance.

E. Analysis of Computational Efficiency

To evaluate the computation efficiency, for 162 cloud images
in the test dataset, the total time of OTs detection by various
methods was counted respectively. And then, we calculate the
average time of OTs detection for single cloud image of each
method. Table VI tabulates the average computing time for
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Fig. 12. OTs detection results of another season, the OTs are denoted as white in the detection results. (a) IRW BT images. (b) BTD images. (c) The detection
results of the DCMSDN. (d) The labeled OTs images.

TABLE V
QUANTITATIVE EVALUATION INDICATORS FOR OTS

DETECTION IN OTHER SEASONS

TABLE VI
AVERAGE COMPUTATION TIME TO DETECT OTS WITH DIFFERENT MODELS

IRW-texture, WV-IRW BTD, Local Min, U-net, and DCMSDN
methods. It can be seen that Local Min takes the longest time
to detect a single cloud image as of 0.889 s, followed by
WV-IRW BTD and IRW-texture, 0.579 and 0.374 s, respectively.
The average OTs detection time of the U-net-based method is
the shortest, requiring only 0.045 s. Because the structure of
DCMSDN is more complex than that of U-net, the average
computing time of the proposed DCMSDN method is slightly
longer than that of the U-net method. In general, compared with

the competing methods, the proposed method has higher OTs
detection performance with acceptable efficiency.

V. CONCLUSION

This article studies the deep learning-based solutions to OTs
detection for the Himawari-8 satellite imagery and constructs
a new dual channel multiscale deep network as DCMSDN in
detail. The DCMSDN follows the codec structure of the U-net
and has dual-channel input. The features of OTs region can
be extracted from IRW BT image and BTD image, respec-
tively, by using the dual-channel structure of DCMSDN. By
introducing multiscale prediction module and inception module,
and adopting the Dice similarity coefficient-based loss func-
tion, the DCMSDN is more suitable for the detection of OT
with small spatial scale. Different OTs detection methods were
benchmarked on their detection accuracy by data labeled by
weather experts, the results show that the proposed method
which is based on DCMSDN is better than U-net-based methods
and other traditional methods such as IRW-texture, WV-IRW
BTD, and Local Min etc. Future works will aim at enhancing
the generalization ability of the model to further improve the
accuracy of OTs detection in different seasons, and extending
the DCMSDN to other satellite cloud image processing tasks.
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