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Adaptive Deep Co-Occurrence Feature Learning
Based on Classifier-Fusion for Remote Sensing
Scene Classification

Ronald Tombe

Abstract—Remote sensing scene classification has numerous ap-
plications on land cover land use. However, classifying the scene
images into their correct categories is a challenging task. This
challenge is attributable to the diverse semantics of remote sensing
images. This nature of remote sensing images makes the task of
effective feature extraction and learning complex. Effective image
feature representation is essential in image analysis and interpreta-
tion for accurate scene image classification with machine learning
algorithms. The recent literature shows that convolutional neural
networks are mighty in feature extraction for remote sensing scene
classification. Additionally, recent literature shows that classifier-
fusion attains superior results than individual classifiers. This ar-
ticle proposes the adaptive deep co-accordance feature learning
(ADCFL). The ADCFL method utilizes a convolutional neural
network to extract spatial feature information from an image in
a co-occurrence manner with filters, and then this information is
fed to the multigrain forest for feature learning and classification
through majority votes with ensemble classifiers. An evaluation of
the effectiveness of ADCFL is conducted on the public datasets Re-
sisc45 and Ucmerced. The classification accuracy results attained
by the ADCFL demonstrate that the proposed method achieves
improved results.

Index Terms—Adaptive deep co-occurrence learning, deep
feature extraction, ensemble learning, machine learning,
multigrained forests, scene classification.

1. INTRODUCTION

HE key problem in computer vision is to develop algo-
T rithms for effective image feature processing to detect and
group objects into categories independent of scale, illumina-
tion, clutter, and pose positions. The fundamental question is,
how can a vision system learn image feature representations
effectively, given the huge volumes of image data with diverse
contents? Several image analysis and interpretation techniques
extract features from images [1]-[3]; these features are given
to learning classifiers which apply similarity and dissimilarity
rules to solve pattern recognition problems with positive and
negative examples.
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Effective feature learning is of high significance for the con-
struction of reliable applications. These applications can be in
various contexts such as management and conservation of nat-
ural resources [4], urban planning [5], precision agriculture [6],
and disaster management [7]. Convolutional neural networks
(CNNis) extract high capacity image feature parameters through
convolution and pooling processes to yield image feature repre-
sentations. In this regard, there are various deep learning archi-
tectures in literature [3], [8] which have been adopted for remote
sensing image classifications [9], [10]. The deep learning feature
representation strategies [11], [12] demonstrate impressive clas-
sification accuracies compared to handcrafted [9] and mid-level
methods [10] in remote sensing image scene classification.
Whereas the performance of deep neural networks is of signifi-
cant improvements with high accuracy classification results on
small datasets, this performance degrades with huge datasets that
contain diverse image contents [9], [10]. Owing to the aforemen-
tioned observations, computer vision challenge is attributed to
differences in image statistics such as viewpoints, scale, and se-
mantics, among other factors [13]. Deep learning [14] provides
a means for models that comprise multiple processing layers
to learn feature representations of data with several levels of
abstractions. Deep learning unearths complex structure in large
datasets by using unique algorithms to depict how a machine
should adjust its internal parameters that apply to compute the
feature representations in every layer based on those of the pre-
vious layer. Indeed, the effectiveness of deep feature extraction
is evident in recent literature [9]-[11] on remote sensing scene
classification.

In machine learning, it is common for standard feature learn-
ing algorithms to exhibit performance variations on different
datasets. This implies that the application of a particular algo-
rithm can result in powerful classifiers with some databases;
however, with the same classifiers trained, different datasets
utilizing the identical algorithm may be unsteady. In remote
sensing scene classification, a standard learning technique might
not be capable to effectively learn specific features of the dif-
ferent scene classes. This is because the different class scene
images contain very diverse semantics. The softmax [15] and
support vector machines [16] are popular machine learning
techniques which apply in remote sensing scene classification.
Recent literature [17]-[19] shows that when multiple classifiers
apply in feature learning, they attain improved classification
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accuracy. In their work [17], they utilize CNNLeNet-5 to extract
deep features from digital handwritten images. Then, they apply
multiple classifiers to learn the features of digit for multiclass
classification problem.

This research proposes the adaptive deep co-occurrence fea-
ture learning technique based on classifier-fusion that learns
scene image semantic features at different levels (layers) while
considering the spatial-relative feature arrangements. The rest of
this article is structured as follows. Section II provides a concise
review of works related to this article. Section III presents the
methodology of this article and the operation mechanism of the
proposed method, while Section IV discusses the experiment
setup, dataset, results, analysis, and discussions. Finally, Sec-
tion VI concludes the article.

II. RELATED WORK

This section reviews works in literature that are closely re-
lated to this article. First, this work reviews the literature in
remote sensing image scene classification to highlight the de-
velopments, challenges, and opportunities in this area. Second,
a critical analysis of computer vision methods in the remote
sensing literature is given. To this end, the review is classed
into five aspects, that is, the developments and challenges in re-
mote sensing, conventional feature representation methods, deep
learning and CNNGs, feature learning through CNNs weights, and
deep forests.

A. Remote Sensing Image Scene Classification

Remote sensing images are a valuable source of data that can
be utilized to determine and visualize detailed information on
the Earth’s cover. The exponential increase of remote sensing
images is due to improvements in satellite and sensor technolo-
gies [20], [21], and this has prompted the need for intelligent
earth observations [22], [23]. The corresponding effects are im-
provements in remote sensing images quality spatial resolutions
because of the sensor technology advances. With these gradual
improvements, the recent literature [20] groups remote sensing
image classification into three levels: 1) pixel-level, 2) object-
level, and 3) scene-level. Here, the concept “remote sensing
image classification” is general, encompassing all the three men-
tioned levels. Specifically, the initial literature [24], [25] majorly
focused on human-engineered methods (pixel-level, also called
semantic) to classify remote sensing images. Research is active
in this area of semantic analysis for hyper-spectral and multi-
spectral image analysis [26], [27]. The emergence deep learning
is shifting the research efforts to scene-level classification, where
CNNs apply for scene image feature extraction [9], [11], [28].

Remote sensing image scene classification aims to correctly
annotate the remote sensing images based on their semantic
contents, for instance, classifying a remote sensing image to
agriculture, or airport or dense residential. Ideally, the remote
sensing images comprise various objects from the ground; these
may include buildings, trees, and roads on a residential scene.
Scene classification of remote sensing images is a challenging
problem due to their complex nature; that is, they are character-
ized by 1) high interclass similarity, 2) high intraclass diversity,

3) multiple-scale variances, and 4) coexistence of several ground
objects, as depicted in Figs. 1 and 2. The driving force for remote
sensing image scene classification is its broad application on
real-world applications, such as vegetation mapping [29], [30],
natural hazard detection [31], urban planning [32], [33], and
environmental monitoring [34]-[36].

The challenging research problem in remote sensing is to
develop computer vision techniques that can effectively apply to
interpret and classify remote sensing images accurately. Elabo-
rate researches have been conducted in remote sensing images
scene classification; however, there is still no algorithm that
attains satisfactory accuracy results.

B. Conventional Feature Representation Methods

The majority of recent scene classification techniques use the
pipeline of bag-of-visual features [37]-[39] in encoding fea-
tures. The bag of visual words (BOVWs) feature representation
records the feature occurrences in the image, i.e., BOVWs =
[k1, ka, ..., kr], where k; is the number of feature occurrences.
This is normally a histogram representation. The SIFT method
[24] is quantized using the bag-of-visual feature through the
k-means clustering algorithm. Spatial feature pooling [40], his-
togram feature encoding [39], and fisher vector feature encoding
[41] are popular methods for feature assembly. Whereas these
feature-representation techniques have been proven to work, it
is not clear whether they are optimal for the tasks. This is a
question of great interest in feature learning [42].

C. Deep Learning and Convolution Neural Networks

Deep learning is a multilayer feature learning and representa-
tion technique that transforms image data, i.e., pixels, to a feature
vector that the system can detect and classify patterns. Deep
learning models use nonlinear functions such as rectified linear
units [43] for feature extraction in multiple levels [44], [46].
Deep learning initializes the network through parameter-tuning
in a supervised version [47] where high-level abstract and invari-
ant features in deep layers are learned from low-level features of
the network lower layers. Examples of deep learning models in
literature include deep belief networks [48] and CNNs [8]. CNNs
are a type of deep learning strategy for image feature learning
which applies in task classification. Generally, the CNNs apply
in the following three ways on feature extraction in the context
of remote sensing images.

1) Spectral feature extraction: In these CNN models, pixels
are annotated to individual land-use-land-cover type [49].
CNNs use the raw image data to represent spectral feature
directly as input feature vectors [50] to obtain a 1-D CNN
architecture that receives (V) feature vectors as inputs, N
being the number of spectral bands [47].

2) Spatial feature extraction: In this category, the CNN mod-
els use neighboring pixels of a given pixel in the original
scene image to extract spatial features [50]. 2-D CNN
architectures are applied for neighboring input data patch
of dimensions P x P pixels [7]. Several methods are
implemented to extract high-level spatial features [51],
[52].
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Fig. 1. Sample images of Ucmerced dataset [38].
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Fig. 2. Image samples from Resisc45 dataset [9].

3) Spatial-spectral feature extraction: This strategy entails
a fusion of spectral and spatial features for improved
classification accuracy [53].

The popular CNNs that are utilized in remote sensing include
the following.

1) AlexNet: AlexNet [43] architecture won the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) in 2012.
This network comprises five convolutional layers and three fully
connected layers. Additionally, it has normalization layers after
the first and second convolution layers. The pooling layers are
put after the normalization layers and at the first convolutional
layer. This network has been applied in remote sensing and

harbor

runway

bridge
ground_track_fiel

palace

sparse_residential

e
=5
L& R
baseballdia beach buildings chaparral denseresid
mond ential

2
-
s
E
%
b
)

maobileho
mepark

intersectio mediumres
n idential

tenniscourt

sparseresid
ential ks

chaparral church circular_farmland cloud commercial_area

intersection island lake

parking_lot railway railway_station

industrial_area

rectangular_farm river
land

storage_tank terrace

tennis_court thermal_power_s

tation

it has demonstrated to achieve impressive results [9] in scene
classification.

2) GoogLeNet: The GoogleNet [8] architecture attained
state of the art for object detection and classification tasks in
the ILSVRC 2014. The main attribute of this architecture is
the improved efficiency in the usage of computing resources
within the network. The width and depth of the network are
increased while maintaining the computational-budget constant.
The main advantages of this network are as follows: 1) employ
different filter sizes in the same layer; this keeps most of the
spatial information, and 2) network parameter reduction, thus
making it less prone to overfitting and permitting it to be
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deeper. Compared to AlexNet, GoogleNet has 12 times fewer
parameters.

3) VGGNet: The VGGNet [54] won in tracks of localization
and classification with the ILSCVRC in 2014. VGGNet has
two popular architectures, VGG-16 and VGG-19. The VGG-16
is common in the remote sensing literature. It comprises 13
convolutional layers, 5 pooling layers, and 3 fully connected
layers. The architecture commonly applies transfer learning in
feature extraction of remote sensing imagery.

D. Feature Learning Through CNN Weights

A working CNN step comprises a convolution, pooling, and
fully connected layers. A deep CNN is developed by stacking
multiple convolution and pooling layers together to create deep
architecture. The convolution layer is the first layer of the
network. Neuron ki at x position of the mth feature map in
layer nth is depicted by the following equation:

ey

kfm =9 bim + Z Z lmqk’(rl—i_il
q

where g is the feature-map index of the previous layer ((I — 1)th)
connecting the current feature map, wl o is the position d weight
connecting the gth feature-map, D; is the filter-kernel dimen-
sions, and by, is the bias of mth feature map in the nth layer.
The pooling layer reduces the feature-map resolution, thereby
offering invariance [56]. Every pooling layer communicates with
the previous convolution layer. The max-pooling operation is
depicted in the following equation:

am = max(a] v
Nx1

(n,1)) 2

where a,, is the maximum value in the neuron neighborhood and
v(n, 1) is a window function for the convolutional layer. The
fully connected layers aggregate all the feature-map features
generated by successful pooling layers to form robust feature
representations usable for classification tasks by various ma-
chine learning algorithms.

E. Deep Forests

The deep forest [19] combines different classifiers to form a
cascading training structure whereby each level obtains feature
information in a cascaded manner through processing its previ-
ous level, and then the results are outputs to the following level.
Every level represents an ensemble of classifiers. The classifier
hyper-parameter is the number of trees in every forest. Each
forest generates a prediction on the distribution of classes via
probabilities of the different training classes at the leaf nodes
where the involved sample falls, then an average for all the
trees in the same forest is performed. The objective is to learn
and determine the feature relationship from feature maps of
different scene classes that can apply to categorize new features
of unknown remote sensing scene images.

TABLE I
PARAMETERS OF VGG16 ARCHITECTURE

Blocks
Block1

Parameters
224 x 224 conv, 64
224 x 224 conv, 64
112 x 112 Max-pooling
112 x 112 conv, 128
112 x 112 conv, 128
56 x 56 Max-pooling,128
56 x 56 conv, 256
56 x 56 conv, 256
56 x 56 conv, 256
28 x 28 Max-pooling, 512
28 x 28 conv, 512
28 x 28 conv, 512
28 x 28 conv, 512
14 x 14 Max-pooling, 512
14 x 14 conv, 512
14 x 14 conv, 512
14 x 14 conv, 512
7 x 7 Max-pooling, 512

Block2

Block3

Block4

Block5

III. METHODOLOGY

Consider a training set X = {Image,,y;}" ,, where
Image, € R” is a training instance and y; is the image la-
bel y € Y representing scene class C; Y = {1,2,...,C}. To
perform a remote sensing scene classification with test im-
ages X' = {(image}, y;)}:%,, this research proposes a deep
adaptive co-occurrence feature learning method for RS scene
classification. The proposed strategy consists of two major steps
which are depicted in Fig. 3: 1) spatial feature extraction with
a pretrained convNet, and 2) ensemble learning that entails
multilevel classifier-fusion on multigrain features [19] to learn
co-occurrence deep features from the feature maps with sliding
windows (SLWs). To train multiple classifiers, z learning algo-
rithms apply in training primary classifiers on every feature set
FeatureMap,, thus creating a primary ensemble £;. Eventually,
the n primary ensembles that learn the n feature sets fuse
via majority voting to make a classification prediction. The
more discriminating feature information generated with CNN
combined with effective feature learning with ensemble classi-
fiers can lead to improved remote sensing scene classification
accuracy.

A. Spatial Features Extraction

ConvNets are effective on spatial feature extraction from
images [11], [43]. This work utilizes VGG16 [54], a pretrained
CNN for feature extraction. Table I shows the VGG16 archi-
tecture and its parameters that include 13 convolutional layers
and 5 pooling layers divided into 5 sections, and 3 fully con-
nected layers. This work utilizes feature maps rather than fully
connected layer features.

Assume  conv;(Image;) =  FeatureMaps;, where
FeatureMaps; €"***? are output feature maps of size
(h x w x d) obtained from the layer /th by conv; of a pretrained
convNet. For input FeatureMaps,; that characterizes the input
image Image;, the SLW with dimensions (hs X w;) slides on
the FeatureMaps, with s strides to generate feature samples «
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B. Deep Co-occurrence Feature Learning With Multigrained
Cascade Forests

Let M, ,, € R"7*"*% be a 3-D matrix, where jthis a feature
map of an image Image,, then, for every location (u,v),j <
u<mnjandj <v < ny, mlfjv forms an a;-dimensional feature
representation for alocal patch of Image; . Following this process
obtains hs x ws local feature maps of an image Image, in conv;
layer [ of size SLW.

Let m] and mi; be two image feature patches satisfying a
predicate condition in the visual words dictionary [40]. The deep
features spatial-pyramid co-occurrence can be computed as per
the following equation:

Zwlz Z min(m{ (z, u, v), m§ (y,u,v))

T w,veM
(4)

where x is the relative arrangements of spatial feature patches.
Combining predicates to characterize different spatial relation-
ships, for instance, combining orientation and proximity predi-
cates may represent the spatial distribution of features and the
shape of local response regions. Remotely sensed images gen-
erally do not contain an absolute referencing frame; therefore,
“relative spatial arrangements” of image contents which are
key discriminating features are captured by the multigrained
scanning windows (SLW). At this stage, the multigrain feature
scanning transforms the 3-D feature maps into a 1-D feature
vector (FV) representation.

X(m7, mb)

Feature extraction with transfer learning and co-occurrence feature learning by multigrained forest classifiers for remote sensing scene classification.

If the number of forests used is F, and patches,, k €
[1, Npatches], every forest f,, p € [1, F] generates the class
outputs that correspond to probability vectors (PV): f, (o) =
PVP, where |[PV?| = C. All class probabilities, C' = [PV?|
generated with f forests and N« samples, are concatenated to
form a final feature vector (FV) output [see (5)] of the multigrain
features scan patches. A flowchart of the presented method is
given in Fig. 3.

[FV| = Na x f x C. 3)

The multigrained forest provides a means to process the
extracted feature vectors layer-by-layer, and the final layer per-
forms the scene label prediction using a majority vote. Every
level (layer) of the multigrain forest has decision trees 7.
Consider the cascade forest layer Ly, ¢ € [1,Q], where gth is
cascade layer while () is the number of layers in the multigrain
forest. Every layer comprises Z forest classifiers, F'7, z € [1, Z].
The feature patches F'V, outputs by the Lzh are inputs to
the following layer ¢ + 1. For each tree (t2)s, ft € [1,T7,
the forest classier z in this layer fJ obtains the \/d features
vector that are selected randomly [19] from the previous layer
(¢ — 1) ¢ with class probability (C?) s, outputs. Each forest in
F every level/layer generates a class distribution (CD) vector by
computing the average class probabilities which are estimated
by their total trees [see (6)]

T

CD¢? = average Z({C’g}ft)
ft

(6)

Then, aggregation of the different CD? generated with forests
Fis performed using the original feature vector input. This gives
the final layer output; the final layer gets all the class probability
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Algorithm 1: Co-Occurrence Feature Learning.

Require: features(«), forestTrees
while (f <= F) do
PV « fy(aq) =PV}
C + |[PVY]
[FV|=Nax fxC
for (t < T) do
Vd < (#2) 50 + f1
CD! «+ average[Z?t({Cg}ft)
end for
CDﬁnal — average[zgj?es{S(CDg)z]
end while
 + argmaxCD(y), {y € [1,C]

vectors and averages them (7), and by the majority-voting (8), a
prediction of scene class ¢ is performed.

N Forests
CDyy = average Z (CDY)z @)
z=1
j=argmaxCD(y), {y € [1,C] . ®)

IV. DATASET DESCRIPTION AND EXPERIMENTAL SETUP

This section discusses the dataset, tools, and the experimental
setups that apply in this research. Further, this section presents
the result, analysis, and discussions.

A. Ucmerced Dataset

Ucmerced dataset [38] consist of 21 classes as shown in Fig. 1
and each class contains 100 images with three color channels.
Each image dimension is 256 x 256 pixels and they have a
spatial resolution of 1 ft. The classes are highly overlapped
(e.g., agricultural and forest differ by vegetation cover; dense
residence and medium residence differ by the number of units
); this diverse image content pattern is a challenge for effective
feature representations. Further, the images of Ucmerced dataset
have many common low-level features with multipurpose visible
images; hence, they are suitable candidates for fine-tuning with
pretrained CNNGs.

B. Resisc45 Dataset

The Resisc45 dataset [9] contains 31 500 scene images that
are grouped to 45 classes; every class comprises 700 images
with dimensions 256 x 256 pixels in three channels color space.
Spatial resolutions of the images range approximately between
30 and 0.2 m per pixel. Image samples of RESISC45 dataset
are shown in Fig. 2. The images in RESISC45 dataset are se-
lected under varying conditions including different weather and
seasons, various illuminations, and are varying resolutions and
scales. Therefore, there are rich variations in object pose, trans-
lation, and appearance, viewpoint, illumination, occlusions, and
background in this RESISC45 dataset. This dataset is more chal-
lenging, requiring innovative and sophisticated image feature

TABLE II
OVERALL ACCURACY (OA%) CLASSIFICATION PERFORMANCES
ON RESISC45 DATASET

Feature learning method Resisc45 OA%

VGG- 16 with XGBoost[18] 83.37

VGG-16 with Bag of convolutional features [37] 84.32
VGG-16 82.12
VGG16-Classifier-fusion(proposed) 91.05

analysis and representation mechanisms for effective feature
characterization.

C. Experimental Setups

In the experiment study, the entire process entails feature ex-
traction, selection of features, multilevel training, and classifier-
fusion. For feature extraction, a pretrained VGG-16 is used with
input images of size 224 x 224. For purposes evaluating the
different classifiers, implementation strategies effectiveness in
feature learning, two implementation strategies are adopted with
VGGI16 under different settings; i.e., 1) the multilevel fusion
of classifiers for feature learning and RS scene classification;
2) We fine-tune the VGG16 with remote sensing datasets in
Sections IV-A and IV-B and then apply the softmax classifier
for RS scene classification. The experimental results for both
strategies are reported. The experiments are implemented with
python 3.7.5 and Keras on the googlecobab-GPU. For fair com-
parison on the classification results, the parameter settings for
both experiments are the same, that is, the training, validation,
and testing ratios are set to 70%:20%:10% on the Ucmerced
dataset and 15%:80%:5% on Resisc45 dataset.

In the first implementation strategy, this research utilizes
VGG-16 5-3 feature maps of size 14 x 14 (Table I). These
features are then fed to multigrained forests for learning. The
cascade forests of the deep forest are adaptively (automatically)
established in the course of training, utilizing the early stop-
ping strategy. As in [19], every cascade layer uses two forests
(complete random forests and random forests); this increases the
model balance between variance and bias. The classifier-fusion
is accomplished by averaging their inner outputs (probabilities
of every class), that is, mean algebraic fusion [55].

For the second implementation strategy, transfer learning of
features with remote sensing datasets is conducted with 30
epochs in batches of 32, and then followed by a fine-tuning phase
with the same settings. The learning rates and weight decays are
the same as [9], that is, 0.001 and 0.0005, respectively.

V. RESULTS, ANALYSIS, AND DISCUSSION

To evaluate the classification performance for the two datasets
(Resisc45 and Ucmerced), overall accuracy (OA) [9] is com-
puted as per (9) and the results are given in Tables II and III.
In this research, for the initial experiments, the VGG-16 is
fine-tuned to extract features from the Resisc45 and Ucmerced
datasets; then application of the softmax function for scene
classification of remote sensing images. Figs. 4 and 5 show
the number of epochs versus train accuracy on Resisc45 and
Ucmerced datasets with the fine-turned VGG-16. Fig. 8 provides
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TABLE III
OVERALL ACCURACY (OA%) CLASSIFICATION PERFORMANCES
ON UCMERCED DATASET

Feature learning method Ucmerced OA%

VGG- 16 with XGBoost[18] 95.57
VGG-16 [28] 97.10
Adaptive deep pyramid matching Method [57] 94.92
VGG-1 96.92
VGG16-Classifier-fusion(proposed) 96.55
100 1
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Fig. 4. Epochs versus accuracy of fine-tuned VGG-16 on Resisc45 dataset.
0.96 -
T T
0.92
>
& - A o - A
g 090
o
0| 1
0.86
o [e]
100 200 300 400 500
Number of trees
Fig. 5. Epochs versus accuracy of fine-tuned VGG-16 on Ucmerced dataset.

the confusion matrix that shows the predictions versus true
label results with test images of the Ucmerced dataset with the
fine-turned VGG-16. For ensemble learning, that is fusion of
classifiers. Figs. 6 and 7 show the number of trees versus the
training accuracy with Resisc45 and Ucmerced datasets

Correctly Classified Images

OA = x 100. 9)

Sampled Images

It can be observed from Tables II and III that the fine-tuned
VGG-16 in our experiments achieves more or less the same
results with those attained by other works in the literature.
This, therefore, sets a definitive benchmark in demonstrating
that classifier-fusion achieves better classification results with
remote sensing datasets. Comparing performance of the adaptive
deep co-accordance feature learning (ADCFL) and the softmax
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Fig. 6. Ensemble trees versus classification accuracy on Resisc45 dataset.
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Fig. 7. Ensemble trees versus classification accuracy on Ucmerced dataset.

classifiers on two datasets (Resisc45 and Ucmerced) from Ta-
bles II and IIT , it can be observed that there is a significant
improvement on the OA on Resisc45 dataset with the ADCFL.
This implies that the application of a particular algorithm can
result in powerful classifiers with some databases; however,
the classifiers trained with more diverse datasets utilizing the
identical algorithm may be unsteady. In remote sensing scene
classification, a standard learning technique might not be capable
to effectively learn all specific features of the different scene
classes on more diverse datasets which contain high semantics
variations. For pattern recognition problems from feature maps
with machine learning, it is common for standard feature learn-
ing algorithms to exhibit performance variations on different
datasets [17], [18]. This is evident from Fig. 8; for instance,
there are confusions between the classes medium-residential
and dense residence, resulting in low prediction results of 0.5.
This research fuses complete random forest and random for-
est classifiers in multigrained feature learning [19] and as the
experimental results demonstrate, the proposed method attains
superior classification as compared to those of a single classifier.
Furthermore, the adaptive deep co-occurrence feature learning
method demonstrates superiority in terms of classification accu-
racy compared to the other methods in literature as summarized
in Table II.
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Confusion_Matrix
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airplane { 00 00 00 0O 0O 0O OO OO 0O OO 0O 0O 0O OO OO0 00 00 00 00
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Fig. 8. Confusion matrix for Ucmerced dataset.
VI. CONCLUSION REFERENCES

This article proposes the ADCFL based on classifier-fusion
for remote sensing scene classification. Specifically, this re-
search utilizes the VGG-16 for spatial feature co-occurrence
learning. These features are then fed to a deep multigrain
(classifier-fusion) for feature learning and classification. To es-
tablish superiority of the proposed method, this research utilizes
two different machine learning implementation approaches. The
experimental results demonstrate that the classifier-fusion strat-
egy attains superiority for remote sensing scene classification.

The future research investigation will investigate strategies for
optimal classifier-fusion with different pretrained CNN features
for remote sensing scene classification.
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