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Abstract—Beyond the direct hazards of earthquakes, the de-
posited mass of earthquake-induced landslide (EQIL) in the
riverbeds causes the river to thrust upward. The EQIL inven-
tories are generated mostly by the traditional or semisupervised
mapping approaches, which required a parameter’s tuning or
binary threshold decision in the practical application. In this study,
we investigated the impact of optical data from the PlanetScope
sensor and topographic factors from the ALOS sensor on EQIL
mapping using a deep-learning convolution neural network (CNN).
Thus, six training datasets were prepared and used to evaluate
the performance of the CNN model using only optical data and
using these data along with each and all topographic factors across
the west coast of the Trishuli river in Nepal. For the first time,
the Dempster–Shafer (D–S) model was applied for combining the
resulting maps from each CNN stream that trained with different
datasets. Finally, seven different resulting maps were compared
against a detailed and accurate inventory of landslide polygons by
a mean intersection-over-union (mIOU). Our results confirm that
using the training dataset of the spectral information along with the
topographic factor of the slope is helpful to distinguish the landslide
bodies from other similar features, such as barren lands, and
consequently increases the mapping accuracy. The improvement
of the mIOU was a range from approximately zero to more than
17%. Moreover, the D–S model can be considered as an optimizer
method to combine the results from different scenarios.

Index Terms—Earthquake-induced landslide (EQIL),
hydropower, landslide-induced lakes, topographical factors,
Trishuli river.

Manuscript received June 30, 2020; revised July 22, 2020, August 10, 2020,
and October 24, 2020; accepted December 3, 2020. Date of publication De-
cember 10, 2020; date of current version January 6, 2021. This work was
supported in part by the Austrian Science Fund (FWF) through the Doctoral
College GIScience under Grant DK W 1237-N23 at the University of Salzburg.
(Corresponding author: Omid Ghorbanzadeh.)

Omid Ghorbanzadeh, Sepideh Tavakkoli Piralilou, and Thomas Blaschke
are with the Z_GIS Centre for Geoinformatics, University of Salzburg,
5020 Salzburg, Austria (e-mail: omid.ghorbanzadeh@stud.sbg.ac.at; sepideh.
tavakkoli-piralilou@stud.sbg.ac.at; thomas.blaschke@sbg.ac.at).

Sansar Raj Meena is with the Department of Geoinformatics, University of
Salzburg, 5050 Salzburg, Austria (e-mail: sansarraj.meena@sbg.ac.at).

Hejar Shahabi Sorman Abadi is with the Remote Sensing and GIS, University
of Tabriz, Tabriz 5166616471, Iran (e-mail: hejarshahabi@gmail.com).

Lv Zhiyong is with the School of Computer Science and Engineering,
Xi’an University of Technology, Xi’an 710048, China (e-mail: lvzhiyong_fly@
hotmail.com).

Digital Object Identifier 10.1109/JSTARS.2020.3043836

I. INTRODUCTION

THE loss of property and human life due to earthquake-
triggered landslides are significantly high, and due to cli-

mate change, it will certainly rise [1]. Almost 70% of casualties
related to the earthquake are not caused by the shaking of the
ground instead of affected by landslides [2]. About 47 000
earthquake-induced landslides (EQILs) casualties were reported
from 2004 to 2010 [3]. The EQIL has direct and indirect
long-term socioeconomic effects on the society along with the
environmental effects [4]. There are some direct damages of an
earthquake, such as blocking of rural and main roads, damaging
bridges, settlements, and especially the hydroelectric projects
that are considered as one of the main energy supply for the
local population [5], [6]. However, there are some indirect con-
sequences, such as the failure of landslide-induced dams, which
lead to catastrophic floods in the downstream areas [7]–[9],
which is again harmful to several mentioned public and private
infrastructures.

The EQIL and its adverse consequence of landslide dams are
considered to be a significant natural hazard in the mountain
regions of the Himalayas [10], [11]. Although landslides mostly
occur in remote areas, the resulting catastrophic flash floods
are the reason for extensive damage to the downstream regions
of the river in this area. Along with the severe threats to the
environment, these floods have a long-term economic impact on
an area of settlements, hydroelectric projects, and agriculture
fields in the downstream areas.

Therefore, there is a growing demand for making EQIL inven-
tories and we have still inadequate information on the landslide
occurrence across the drainage networks. This uncertainty in
the landslide inventory production affects the further hazard
and risk analysis [12]. All landslide susceptibility modeling and
mapping approaches are based on an accurate inventory dataset.
This inventory dataset is usually used for training the hazard
models to find the potential landslide-prone areas [13], [14].

Moreover, this inventory dataset is crucial for the evaluation
and accuracy assessment processes of the resulting hazard maps
[15], [16]. Consequently, imprecise potential landslide-prone
areas may result in driving the wrong risk modeling and mapping
[17]. Several studies have analyzed hazard mitigation strategies
and the application of landslide risk potential mapping is increas-
ing [18]. The reliability of such studies is strongly dependent
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on the accurate and complete inventory datasets of past hazard
events, to make spatial predictions for future events [19], [20].

To achieve the hazard potential assessment and risk mapping,
there is very limited information related to EQIL, and the main
reason for having limited access to landslides information is
the remoteness of most of the mountainous regions that make it
difficult and, in some cases, impossible to conduct field surveys
[21]. Therefore, remote sensing (RS) data are considered as the
main source of getting information about the impacts of a natural
hazard on the environment [22]. Different studies have used
various geodatabases, including different RS products optical
data and topographical information for the landslide detection.

In recent years, the RS data, including very high-resolution
(VHR) images, are widely applied for the EQIL detection
and mapping using multiple methodologies, including machine
learning (ML) models [23]. Mezaal et al. [24] applied the
object-based landslide detection using different ML models
of support vector machines (SVM), K-nearest neighbor, and
random forest (RF). Danneels et al. [25] used an artificial neural
network (ANN) as an automatic landslide detection methodol-
ogy by multispectral advanced spaceborne thermal emission and
reflection radiometer images. An unsupervised feature learning
method of a stochastic neural network of the restricted Boltz-
mann machine was applied by Zhu et al. [26] for landslide
susceptibility assessment. Martha et al. [27] used spectral in-
formation together with morphometric characteristics and shape
to separate landslides from nonlandslide areas. Hölbling et al.
[28] also used object-based environment spectral, spatial, and
morphological properties as well as context information for the
landslide detection.

During the last decade, deep-learning models, other ML meth-
ods, and CNNs have been applied successfully in broad range
object detection aims [29]. A deep belief network along with a
logistic regression classifier was used by Ye et al.[30] to detect
landslides on hyperspectral images. Guirado et al. [31] and Lv
et al. [32] used freely available high-resolution Google Earth im-
ages for the scattered shrub detection with a CNN model. Ghor-
banzadeh et al. [33] and Quinn et al. [34] applied the CNN model
for dwelling detection in refugee camps from VHR imagery
sources, including worldview imagery (0.3–0.5 m) in different
studies. Although CNN models have acquired surprising results
for some object annotation from the aerial images, a limited
number of studies exist that use the CNN model for the EQIL
detection. Ghorbanzadeh et al. [12] evaluated the performance
of different CNN models for landslide detection and compared
it with those of three different ML models, namely, ANN, SVM,
and RF. A comprehensive meta-analysis and systematic review
for the RS image classification by Sheykhmousa et al. [35]. A
four layers CNN model was structured and used by Lu et al. [36]
for the soil detection.

The literature review shows that the potential of CNN models
for the EQIL mapping has not been fully explored yet. Fur-
thermore, our study can be considered as one of the first studies
using the CNN model for the detection of EQILs considering the
impact of topographical factors. The impact of every applied
topographical factor is assessed using the Dempster–Shafer
(D–S) model. The fusion of different spatial data with the D–S

model, as well as its application in the landslide detection and
susceptibility modeling, has been presented and fully described
by Piralilou et al. [13], Nachappa et al. [20], and Althuwaynee et
al. [37], respectively. However, the capability of this model for
combining the results of different CNN streams is still unclear.
Moreover, we want to introduce an optimized EQIL map by
combining the resulting maps from each training dataset of the
spectral information along with every single topographic factor.
Therefore, we do not rely only on the data fusion within the
CNN but the probability model of D–S is used to enhance the
mapping. The applied CNN structure in this study is designed
and trained in Trimble’s eCognition software based on the
Google TensorFlow software library and the D–S model is done
within the QGIS environment.

In the remainder of this article, we compare the CNN results
generated from different training datasets with a precise EQIL
inventory of polygons using the mean intersection-over-union
(mIOU) validation method.

Our study can be considered as the first study that lies in
evaluating the impact of topographic factors for EQILs detection
using convolutional neural networks (CNNs). In this regard, we
present the RS approach based on the optical satellite imagery
from the PlanetScope sensor and topographical factors prepared
from a 5 m resolution digital elevation model (DEM) acquired
from the Japanese aerospace exploration agency JAXA ALOS
sensor to detect the EQILs using the CNN model.

II. STUDY AREA

The study area is located in the higher Himalayas and is one
of the most landslide-prone regions along the Trishuli river in
the Rasuwa district in Nepal (see Fig. 1).

In the summer of 2015 after the Gorkha earthquake, more
than 80 people were killed due to EQILs and flood events near
the Mailung village hydropower plant camps. The damages led
to a decline in energy production and high economic losses
(Schwanghart et al. [38], 2018). Therefore, the landslide suscep-
tibility and risk mapping in the upstream areas of the river is an
essential requirement for securing hydroelectric project sites and
consequently, the local energy supply. Forest is the predominant
land cover, followed by grassland, shrubland, agriculture, and
rural habituated areas. The climate of this region is under the
influence of the orographic monsoon precipitation with the
annual average rainfall of 691 mm. EQIL dammed the river
that leads to the occurrence of some lakes behind the dams in
several locations. Water blockage behind the landslides induced
dams is the main reason for the catastrophic flash floods along
with the monsoonal rains. The flash floods of this river caused
damage to the hydropower project sites that are present in the
study area.

III. MATERIALS AND METHODS

A. Inventory Records

In this study, an inventory dataset of the polygons of the
landslides for the study area was prepared from a manual delin-
eation of landslides based on the PlanetScope imagery. We used
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Fig. 1. Geographic location of the study area illustrated by a true color
composite of PlanetScope bands 3/2/1 acquired on 28 November 2015.

cloud-free planet scope imagery from November 2019 to digitize
landslides using the visual image interpretation manually. A
total number of 168 landslide events were mapped as polygons,
which cover an area of 326.59 hectares. The prepared landslide
inventory dataset was then visually verified using the available
field data of GPS points of the landslide.

B. Satellite Imagery

The satellite images are taken from the Planet Labs, Inc.
PlanetScope that includes about 120 dove satellites, which pro-
vide 3-m spatial resolution images in four-band multispectral
[blue (455–515 nm), green (500–590 nm), red (590–670 nm),
and NIR (780–860 nm)] [39]. Landslides often have the same
spectral response to their surrounding environment [40]. The
analysis of the multispectral data in the study by Fayne et al. [41]
suggested that increases in the red wavelength band enable the
detection of the spectral characteristics of landslides and barren
areas in hilly terrain and forested areas. The optical band of
single red, green, and blue (RGB) is useful for the identification
of landslides areas in the imagery but it is not sufficient to
differentiate between vegetation growths in a shadow region. In
that case, the additional band of infrared enables preventing the
drawbacks of the mixed spectral response of landslides to only
RGB spectral data. The PlanetScope four spectral bands were
used for calculating the normalized difference vegetation index
(NDVI) [see (1)] as the basis for the landslide detection. The
NDVI represents the surface reflectance and gives the estimate

of vegetation growth or loss in the study area, which may affect
the landslide occurrence.

NDVI =
(NIR− Red)

(NIR + Red)
. (1)

C. Topographical Factors

The physical and environmental conditions of a region affect
the landslide occurrence [42], [43]. Based on the previous studies
in the study area and extensive literature review as well as the
field survey point out that the topographical factors selected in
this study are well associated with the distribution of landslide
occurrence and their spatial distribution [12]. Also, the selec-
tion of landslide detection data depends on the local terrain
conditions and their relation to the physiographical features
of the study area [44]. The occurrence of landslides is highly
dependent on the surface topography [37] and most of the study
area consists of hilly terrain. Topographical information was
extracted from a DEM 12.5 m from the ALOS PALSAR sensor
(see Fig. 2).

1) Elevation: Elevation affects the topographical attributes
and earth surface morphology, which influences the spatial vari-
ability of precipitation, vegetation, soil thickness, and credibility
of the rock mass [45]. In a study related to EQIL by Fan et al.
[46] shows that coseismic landslides frequently occur at higher
elevations as they is influenced by the gravity.

2) Slope: The slope is crucial because the sliding of a mass of
the earth is directly linked to the slope steepness. The slope angle
can represent the steepness of terrain and the slopes with high
steepness are prone to landslide occurrence. On the other hand,
low-angle slopes are more prone to the activity of channelized
deposits, which results in fall and debris slides [46].

3) Aspect: The slope aspect is essential because the slope
with different orientation experiences different solar radiation
and precipitation, which can influence the slope stability [47].
The slope aspect is classified into eight classes representing
geographical directions and an additional class represents the
flat surface. The slope aspect influences the spatial distribution
of landslide occurrence as it impacts the infiltrating properties,
permeability, and pore water pressure of the surface.

4) Plan Curvature: The plan curvature reflects the topog-
raphy and the complexity of the terrain. The convergence and
divergence of water downslope are influenced by the plan cur-
vature. When the flow of water increases down the slope, it
leads to a considerable amount of erosion, which leads to the
instability of the slope. The positive values of plan curvature
represent the convexity of the slope, the negative values represent
the concavity, and the null value shows the linear or flat surface.

D. Convolution Neural Network

Deep learning (DL) is based on ANN and considered as a
subset of ML, including techniques that mimic how our brain
works. DL is largely based on ANN with several hidden layers
that require a considerable amount of data to train, so to get
better performance [31], [48]. The flowchart of the whole applied
methodology is represented in Fig. 3.
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Fig. 2. Layer of conditioning factors. (a) Slope aspect. (b) Altitude. (c) NDVI. (d) Plan curvature. (e) Slope.

We use a type of DL in this study called CNN. One of the
advantages of using the CNN model is that it can learn useful
feature representations of an image with no need to design the
low-level ones manually. However, this matter makes it hard
to explain what it exactly learns [49]. The CNN model has
a specific architecture and contains convolutional and pooling

layers, whereby the convolutional layer is the primary building
block of any CNN model. In any neural network, all neurons
existing in the layer n are acting as the inputs to layer n+1
neurons, while in a CNN model, the neurons of layer (n +1) are
not fully connected to all neurons of layer n but only connected
to a corresponding subset of them, which is called the receptive
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Fig. 3. Applied CNN model architecture trained separately with two different training datasets.

field. The reason behind that is feedforwarding an image of
32 × 32 as an input, the first layer will require 1024 neural
nodes and also much more nodes within the next hidden layers.
Moreover, the fully connected networks make the model more
complicated with more number of weight parameters, which is
expensive to run and hinder the training process [50]. To deal
with this problem, the conventional neural networks with the
local connection among layers were introduced by LeCun and
Bengio [51]. The local connections among layers turned the DLs
into one of the most popular models in the image classification.
Several articles provided comprehensive descriptions of the
structure of CNN models and the way that they used to handle
training and testing processes [47], [52].

In our case, the first convolution layer was used with a kernel
size of five and continued with three convolution layers with a
kernel size of three. The pooling layer is used to down/subsample
the output of the convolutional layer to produce a concise set
of feature maps. The pooling layer reduces the spatial size of
feature maps that leads to a reduction of the computation volume
for the reminder layers. In the CNN model of this study, three
max-pooling layers of 2 × 2 were applied.

Our CNN model was fed once with a five-layer training
dataset, including the optical data of spectral bands and the
NDVI (we call it CNNO). Then we added topographic factor
layers, namely, slope, aspect, plan curvature, and altitude to
the previous dataset, to train our CNNOT model. In this case,
the optical data (spectral bands) along with the topographic
factor layers fed to the CNNOT, where T refers to the applied

Fig. 4. Random window shifting technique.

topographic factor layers for training the model. Therefore, we
use two main CNN models of CNNO and CNNOT.

E. Data Augmentation

The CNN model needs a considerable amount of data for
efficient training, and the size of the training dataset can consid-
erably affect the results of the CNN model. In the present study,
due to the different sizes, shapes, and directions of the EQILs,
we applied a random original window shifting technique (see
Fig. 4). In this regard, the central point of the sample window
was shifted randomly within a small buffer, and consequently,
the window itself was shifted and covered other areas in the
sample.

Using this augmentation technique for both our training, the
datasets increase the size of them about two times.
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F. Application of D–S Model

The concept of the D–S model is introduced by Dempster
[53], which is based on the Bayesian probability theory [54]. It
is considered a practical approach to integrate the spatial data
with mathematical representation to deal with the associated
uncertainty in mapping and modeling approaches [55]. Within a
set of mutually exclusive hypotheses, which is called the frame
of discernment, more evidence can be considered [56]. The D–S
model is a converted form of events to the proposition and an
event set to the proposition set, which defines the concept of the
function m known as the basic probability assignments function,
degree of belief of the element A from event set called Bel (A),
and the degree of plausibility (or verisimilitude) of the element A
shown as Pl (A). The functions of Bel and Pl show the value of the
lower and upper bound for an unknown probability function. The
difference between these two functions indicates the associated
uncertainty.

For the case of spatial data integration, the D–S model de-
livers a framework for evaluating the associated uncertainty of
mapping and modeling approaches with an uncertain event of
the probability P(Ml) that another result Ml, l = 1, …, n is
correct. Therefore, the lower bound shows the degree of belief
that indicates Ml is correct and refers to Bel (Ml), while the
upper bound shows the probability of Ml as the plausibility Pl
(Ml) [57] as follows:

Bel (A) =
∑

B⊆A

m (B) (2)

Pl (A) =
∑

B∩A �=0

m (B) (3)

where Bel (A) is the minimum belief in hypothesis A and the
Pl (A) refers to the maximum belief in hypothesis A. Therefore,
the resulting interval of �Bel(A),Pl(A)� that Bel (A) ≤ Pl(A)
is considered as a measure to show the associated uncertainty
within set A [58]. Unlike the probabilistic model that assigns a
mass to the individual elementary events, the D–S model makes
m(A) on the set A of the P(z), power sets of the space Z event.
Thus, m(A) states the degree of belief that the element of x goes to
the set A itself and not its subsets [13], [59]. The basic probability
assignments that give a mass in the interval of [0, 1] every subset
of set A is based on the following:

m : P (z) → [0, 1] , m (ϕ) = 0;
∑

A∈Z
m (A) = 1. (4)

If we have n data sources, the probability masses of mi (Bj)
should be specified for every data source i with 1 ≤ I ≤ n and
for all sets, Bj ∈ 2θ. The D–S MODEL allows the combination
of these probability masses from the results of each approach
and the applied inventory dataset to represent an integrated
probability mass for each set [20]. The composition rule in the
D–S model is the basis of the integrating of mass functions mi

found from n different sources of data given in the following
equations:

m(A) = m1 (B1)m2 (B2)m3 (B3) . . . mn (Bn) (5)

m (A) =

∑
B1∩B2 ...Bn= A

∏n
i = 1 mi (Bj)

(1−K)
(6)

where K denotes the degree of conflict given as

K =
∑

B1∩B2 ...Bn= ϕ

n∏

i = 1

mi (Bj) . (7)

For further explanation of the D–S model and the mathemat-
ical formulation, refer to [55] and [60]. In the present study,
the CNN model was trained based on the optical data and then
each topographic factor of the slope angle, slope aspect, plan
curvature, and altitude was added to the optical data as auxiliary
information to the EQIL detection. Based on considering dif-
ferent training datasets, different landslide detection maps were
generated and grouped by the fusion level analysis technique
[24]. This technique sets different classified pixels together
and fuses them into the desirable class according to the belief
confusion matrix [61]. Thus, the resulting EQIL detections based
on each training datasets were combined by fusing the D–S
model with the inventory dataset that is used for training the
CNN. The D–S model used the fused class label of the EQIL or
non-EQIL represented by any single pixel in the maximal belief
function. The definition of the precision accuracy assessment
metric is used for the estimation of the belief functions for the
classification results. A confusion matrix is used for this aim,
which fuses the highest probability of a class.

IV. RESULTS AND VALIDATION

First CNN was trained with five spectral layers from the
PlanetScope imagery (R, G, B, NIR, and NDVI). Besides, we
created five additional topographical layers, i.e., slope, aspect,
plan curvature, and altitude. The EQIL distribution in each class
of the applied conditioning factors for training the CNN model
is represented in Fig. 5. The described architecture of the CNN
model was trained with six training datasets from outside of the
study site. Then the trained model was tested in the study site of
the hydroelectric project. The detected polygons as the landslide,
which were smaller than 350 m2, were ignored regarding reduc-
ing the false-negative (FN) results. The optimal thresholds of
more than 90% were used to select the most appropriate landslide
detection within cross validation for all resulting CNN-based
probability maps. The D–S model was used to combine all
resulting maps from different applied scenarios. The resulting
maps are presented in Fig. 6.

We outline four accuracy assessment methods, which are
widely used in computer vision and object detection. The accu-
racy assessment process was used to evaluate the effectiveness
and performance of the applied CNN model using different
training datasets comparing with that of the D–S model. The
quantitative accuracy assessment measures of precision (8), re-
call (9), and F1-score (10) [62] were used to assess the accuracy
of the resulting EQIL detections. The results were compared
with the inventory landslide dataset, which was reserved for
result validation and was not used for the training process.
Precision measures how each training dataset could detect the
landslides and recall refers to how many landslides are correctly
detected. The accuracy assessment measure of F1-score is a
combination element between precision and recall [63]. The
mIOU is another accuracy assessment measure used to evaluate
the accuracy of the EQIL detection results. The mIOU is used
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Fig. 5. Landslide distribution in each topographic factor.

by Ghorbanzadeh et al. [12] to validate the results of landslide
detection based on different ML models and DL approaches.
This validation measure is extensively used in the image pro-
cessing and computer vision for object detection cases [64]. The
mIOU (11) is an appropriate measure to validate the results that
are in polygon based on an inventory dataset of which is also
represented by polygons [see Fig. 7 and (5)].

All applied accuracy assessment measures were calculated
based on three metrics, namely, FNs, true positives (TPs), and
false positives (FPs). The FNs indicate the EQILs that are not
detected. The TPs are correctly identified landslides and the FPs
metric refers to misdetected landslides (see Table I). The results
of each single accuracy assessment measure for every landslide
detection approach are represented in Table II

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 = 2× Precision × Recall

Precision + Recall
(10)

IOU =
Area of Overlap

Area of Union
. (11)

V. DISCUSSION

Extracting and detecting the exact border of EQIL to avoid
their threats to the riverbeds and the hydroelectric projects in

the mountain regions of the Himalayas is an important task
(see Fig. 9). Therefore, it is essential to evaluate the impact
of the condition factors on the detection of the EQILs. The
present study proves that it is essential to select the appropriate
training factors for landslide detection within a CNN model. The
results of our study showed that using some of the topographical
layers as part of the CNN model, the training dataset somewhat
reduced the accuracy of EQIL mapping in our study site. This
lower accuracy is mainly due to most of these factors cannot
specify the landslide area with the neighboring areas in land-
slide detection [12]. However, this matter is entirely vice versa
regarding using these factors for the landslide susceptibility
mapping as it has been proved in several published articles
in this field. For example, aspect information can show the
higher frequency of the landslide events that happened in a
specific aspect (e.g., northeast) in a study area. While if the
CNN trained that the northeast aspect has a higher probability
of the landslide event, it might increase FPs and FNs in areas
in this aspect where it has spectral similarities with a landslide.
We used different additional layers as auxiliary topographical
input information to help our model to distinguish between
riverbeds, the built-up areas, and the landslides, which have
spectral similarities but usually have different topography. The
CNN model, which was trained with data, including the slope
layer, performed better (0.72 F-score) than when we added other
topographical layers, including aspect, curvature, and DEM to
the optical data. Although for the case that was trained with
the auxiliary data of the DEM layer, the F-score was the lowest
value of 0.58, this layer could successfully separate riverbeds
from the landslides. However, the huge amount of FPs (343.81
ha) mostly in the higher elevations did not let this scenario get a
high F-score, while the curvature layer was useful to carefully
detect the landslides in the higher elevations. Nevertheless, the
riverbed was the main challenge for the model trained by adding
the curvature layer. As most of the landslide in our case study
area happened in the south and southeast of the valley, the
trained model with the aspect layer could not properly detect
the landslides happened in the other aspects, such as the north
aspect (see Fig. 8).

The lowest TPs of 273.01 ha were resulted by using all of
the topographic factors for training the CNN model. However,
using only the optical data led to the highest TPs of 322.39.
The topographic factors are always considered as the main
conditioning factors for landslide modeling. However, these
factors were not generally helpful to the detection of this natural
hazard using our applied CNN model. Nevertheless, adding
the slope data as auxiliary information was very practical for
separating the landslide areas from the riverbed (see Fig. 8) as
the slope angle within the riverbeds is usually a value close to
zero, unlike the EQIL areas. Moreover, spectral information,
especially NDVI was cooperative for detecting the exact border
of EQIL along with the whole landslide. The reduction of the
accuracy using topographical factors can be described as most of
the landslides are located in steep areas along the river; the CNN
model overestimates landslides in these areas. We may say that,
in the present study, using the topographical information did not
improve the landslide detection results. Nevertheless, it is not
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Fig. 6. Landslide detection results.

as simple as to generally concluding such that since the specific
characteristics of our study site, such as the fully vegetated land
cover, made it easier to landslide detection using only spectral
information.

Based on our results, the topographic factors did not extremely
contribute to higher accuracies comparing with optical data
in the EQIL detection. However, several landslide areas were
detected by using topographical factors, which were impossible
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Fig. 7. Illustration of the (a) area of union and that of the and (b) overlap.

TABLE I
RESULTING TP, FP, AND FN AREAS

TABLE II
LANDSLIDE DETECTION RESULTS FOR OUR STUDY SITE FOR THE RESULTS

BASED ON DIFFERENT TRAINING DATASETS

Accuracies are stated as precision, recall, F1-score, and mIOU.

to be identified by using only optical data. This matter is also de-
pendent on the applied topographical factor. For example, adding
the aspect layer resulted in the detection of some landslides
that using the plan curvature was not successful. Therefore, all
of the topographic factors could help to detect some landslide
areas or increase the accuracy of the border of the EQIL area.
However, they were unable to get higher accuracies because
of their more amount of FPs and FNs. In this study, we used

Fig. 8. Enlarged subarea of landslide detection results of the CNN model using
different training datasets.

the D–S model to take advantage of all the capabilities of every
applied topographic factor for landslide detection. In this regard,
we integrated all the results based on all factors using the D–S
model and it was helpful to merge the TPs from different results,
which significantly improved the EQIL detection accuracy. The
D–S model combined the majority of TPs and then allocated
them to the class of the EQIL area.
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Fig. 9. (a) Landslide-induced dam near Mailung on the Trishuli river. (b)
Overview of landslides coming to the riverbed. (c) Landslide debris coming to
the hydroelectric project camp. (d) Damaged hydroelectric project camp near
Mailung village.

VI. CONCLUSION

Our results confirm that combining the resulting maps from
two or more CNN streams is possible with the D–S model.
We combined CNNO and CNNOT, which were trained by the
spectral information along with different topographic factors.
Thus, the role of the topographical information for landslides
detection was evaluated and the accuracy metrics were cal-
culated for any single scenario. The results were important,
as landslides detection from RS data is vital for preparing
reliable inventory datasets for further landslide analyses, such
as susceptibility, risk modeling, and mapping. In this regard,
two different training datasets were prepared using spectral and
topographical information. Hence, the CNN model was trained
once with only spectral information and then with both spectral
and topographical ones. All trained CNN models were tested on
the study site for the EQIL detection along the Trishuli river.
The resulting landslide maps were validated and the model that
trained with only spectral information represented a slightly
better accuracy in landslide detection. The application of the
D–S model to integrate all resulting maps could increase the
accuracy of landslide detection. Based on the achieved results
in our study, employing the CNN model along with the D–S
model gives us a comprehensive view of the effect of each
and all topographic factors on landslide detection. Turning to
the topographic factors, the slope information could effectively
remove the riverbeds, which have almost a similar spectral
information from the detected EQILs.

In this study, we used the CNN model that we structured for
our specific use case. Thus, the main limitation of this study can
be the absence of the comparison of our results with the results
of the current-designed CNNs. Our future work will focus on
the application of the current-designed CNN models for our aim
of the landslide detection.
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