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Combined Sentinel-1A With Sentinel-2A to Estimate
Soil Moisture in Farmland

Ying Liu, Jiaxin Qian , and Hui Yue

Abstract—In this article, seven filter algorithms were compared.
The Lee sigma method was more suitable for estimating soil mois-
ture (SM) than the other filtering methods under different land
cover types. First, we used a combination of roughness and the dual-
polarized Sentinel-1A backscattering coefficients (VV and VH) to
estimate SM in bare soil areas. Second, we employed water cloud
model (WCM) to remove the influence of vegetation signals on the
land surface backscattering and estimate SM in vegetation-covered
areas. SM was also retrieved by modified soil moisture monitor-
ing index (MSMMI) and modified perpendicular drought index
(MPDI) of Sentinel-2A images. The results show that MSMMI can
more accurately monitor SM in bare soil areas, which was slightly
better than synthetic aperture radar (SAR) results. The SAR
backscattering coefficients after the removal of vegetation influence
by WCM can more precisely estimate SM in vegetation-covered
areas, which is significantly better than MSMMI and MPDI, espe-
cially in high vegetation-covered areas. Optics and SAR differ in
their abilities to estimate SM under different land cover, but the
powerful fitting ability of machine learning can make full use of
their advantages. We employed the generalized regression neural
network (GRNN), support vector regression (SVR), random forest
regression (RFR), and deep neural network (DNN) algorithms to
estimate SM combining Sentinel-1A with Sentinel-2A images. The
estimation accuracies of SM by regression algorithms were higher
than those by the semiempirical SAR and optical models. The
accuracy of estimated SM by DNN was higher than that of GRNN
and RFR, which were better than SVR.

Index Terms—Machine learning (ML) regression, Sentinel-1,
Sentinel-2, soil moisture (SM), speckle filter.

I. INTRODUCTION

THE monitoring of soil moisture (SM) on a large scale has
always been the focus and difficulty in the world. The

traditional SM monitoring methods are mainly carried out by
measuring stations or field measurements, which can only obtain
a small amount of point data. It is difficult to timely obtain SM
distribution in a large area and to reflect the change of SM in
space. Remote sensing technique has the advantages of large
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range, real-time, high efficiency, and low cost, which is the
most potent method to quantify SM monitoring [1]. The current
monitoring methods of SM are mainly divided into optical and
microwave remote sensing. The former includes thermal inertia
[2], vegetation water supply index [3], temperature vegetation
drought index [4], anomalous vegetation index [5], conditional
vegetation index [6], vegetation temperature condition index [7],
spectral feature space method [8]–[10], etc. Generally, SM is
studied separately in bare soil and vegetation cover areas by
microwave. In the aspect of SM estimation in bare soil areas,
most researchers established the relationship between synthetic
aperture radar (SAR) data and measured surface parameters
(root mean square height-s and correlation length-l) to obtain
the empirical or semiempirical models. These models, including
Oh model [11], Dubois model [12], Shi model [13], and Bagh-
dadi model [14], have certain physical significance and certain
statistical laws, which can obtain good precision. Besides, many
studies derived the dielectric constant and SM from constructing
the mathematical relationship between the backscatter coeffi-
cient and surface physical and geometric parameters through
the theoretical model of microwave scattering. These theoretical
models mainly include the geometrical optics model [15], the
physical optics model [16], the small perturbation model (SPM)
[17], the integral equation model (IEM) [18], etc. However, these
models are too complex to reversely derive the exact expression
of SM estimation. The neural network, genetic algorithms, and
other optimization algorithms are mostly used to retrieve SM
[19]–[21]. The influence of vegetation on radar signal must
be eliminated when we adopted these microwave models to
evaluate SM in vegetation-covered areas. At present, vegetation
scattering model theory, such as Michigan microwave canopy
scattering model [22] and Karam model [23], or semiempirical
model based on the theoretical model, such as Roo model [24]
and WCM (Water cloud model) model [25] are often adopted
to eliminate its impacts. The SM will be obtained after get rid
of vegetation backscatter from total scatter. The theory of radar
remote sensing to estimate SM is rigorous and clear. However,
radar signal is greatly affected by surface roughness and vege-
tation, whose influence is even greater than that of SM. When
vegetation is relatively dense, radar signals cannot effectively
penetrate vegetation to obtain surface SM signals [18], [26],
[27]. At present, the widest estimation methods used SAR data
to retrieve SM have mainly changed detection [28], regression
analysis [29], and multipolarization method [30].

A major challenge in using SAR to estimate SM is that
it is difficult to simulate the complex natural surface with
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mathematical methods, and precisely measure the two surface
roughness parameters (s and l), especially the acquisition of l.
Zribi et al. (2002) established the empirical relationship between
backscattering coefficient difference and a roughness parameter
(Zs = s2/l) at different incidence angles (39° and 23°) to as-
sess SM [31]. Baghdadi et al. (2006) evaluated the potential
of ASAR (advanced synthetic aperture radar) for estimating
SM in bare soil. The results show that multi-incidence SAR
data can effectively estimate SM, especially at low and high
incidence angles, while using two polarizations (HH and HV,
horizontal–horizontal and horizontal–vertical) provides little or
no improvement over single-polarization (HH or HV) SAR data
[32]. However, the multi-incidence angle SAR data is difficult to
obtain, and most of the current SAR data are multipolarization
combined data. Therefore, it will be of great application value
to develop a multipolarization model that can apply to a wide
range of incident angles. Yu et al. (2010) established an empirical
model among the radar backscattering coefficient, SM, and
roughness function (Rs = s3/l2) to monitor SM through the VV
(vertical–vertical) and VH (vertical–horizontal) polarization of
ASAR data. The results showed that the root mean square error
(MSE) between the estimated SM and the measured SM was
0.041 cm3/cm3. The model could estimate SM in bare soil areas
[33]. This method was employed to assess SM in bare soil areas
with the dual-polarization Sentinel-1 data in this article. The
WCM was adopted to separate vegetation scattering signals
and obtain the surface backscattering coefficient of the land
surface, which was applied to estimate SM. Inherent speckle
noises reduce image quality and make interpretation of fea-
tures from SAR images more difficult. The speckle reduction
can be achieved by spatial filtering or multilook processing.
However, the influence of filtering methods of the backscat-
tering coefficient on SM estimation is rarely discussed in the
existing studies. Therefore, this article focused on analyzing the
influence of different filtering methods on SM estimation at the
pixel scale. Also, modified soil moisture index (MSMMI) and
modified perpendicular drought index (MPDI) were obtained by
the Sentinel-2A images and compared with SAR results [34],
[35].

Optical and SAR data have huge differences in the mechanism
of SM estimation, but each has its advantages. The ability to
monitor SM is inadequate when SAR or optical data used alone.
Many scholars combined them to improve the estimation preci-
sion of SM [26], [27], [36]–[38]. Machine learning (ML) regres-
sion algorithms have powerful fitting capabilities to better build
relationships between different data sources and SM. Therefore,
we employed three ML algorithms [the generalized regression
neural network (GRNN) [39], the support vector regression
(SVR) [40], and the random forest regression (RFR) [41]] and a
deep learning (DL) algorithm [the deep neural network (DNN)
[42]] to combine Sentinel-1A SAR data with Sentinel-2A optical
data in evaluating SM. The estimation results were compared
with those obtained from the semiempirical SAR and optical
models.

This article mainly explored the following questions.
1) Which backscattering coefficients filtering method is more

suitable for dual-polarization Sentinel-1A data to estimate
SM under different land cover at the pixel scale?

Fig. 1. Geographical location of the study area. (a) SM probe sampling points
in bare soil areas. (b) SM probe sampling points in vegetation-covered areas. (c)
Sentinel-2 image of the study area on June 13, 2016.

2) What are the similarities and differences in estimating
SM using the optical models, the semiempirical dual-
polarization SAR models, and the ML regression models?

II. STUDY AREA AND DATA

The study area locates in Elm Creek and Carman, Manitoba,
Canada with an area of 20 × 30 km2 (Fig. 1). It is a typical
temperate continental climate, with hot summer and sunny days,
cold and long winter with sufficient sunshine. The terrain of the
study area is flat and open. Barley, wheat, canola, soybean, and
other cash crops are mainly cultivated in the study area.

The field measured data used in the study were from
SMAPVEX16 (Soil Moisture Active Validation Experiment
2016), including the meteorological data, the land cover type
data, the measured vegetation status data, the measured frac-
tional vegetation cover (FVC) data, the measured surface rough-
ness data, and the measured SM data [43]–[48]. The dataset is
part of passive validation experiments for SM in Carman/Elm,
Manitoba, Canada, in 2016. The experiment was designed to
calibrate and improve the accuracy of NASA’s soil moisture
active and passive products [49].

A. Land Cover Map and State of Vegetation Growth

Land cover type data of the study area in 2016 were obtained
based on optical satellite images (Landsat8, Sentinel-2, and
Gaofen-1) and radar satellite images (Radarsat-2) using the deci-
sion tree classification method. The types of land cover include
crops (food crops, oil crops, and vegetable crops), woodland,
water, bare soil, and cities. The overall accuracy of the dataset
with 30 m spatial resolution is more than 85%. This data was
mainly used to distinguish between vegetated and nonvegetated
areas. The vegetation growth status data mainly includes various
plant characteristics of the study area, such as biomass, plant
height, plant density, plant water content, and growth stage,
which was mainly employed to monitor crop growth status and
verify vegetation water content (VWC) estimation results. A
total of 23 wheat, 7 oat, 5 corn, 4 canola, 3 soybean, and 1 black
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bean samples were measured to obtain VWC on June 13, 2016,
all of which were stems and leaves of crops.

B. Filed Measured Vegetation Coverage

FVC data measured the ratio of the projected areas of vege-
tation coverage to the total projected areas, which was taken by
digital photos at the sample points and processed by ViewNX-2
and CanEye5.1 software. The digital photos were taken with
a Nikon camera with a fish-eye lens at least 50 cm below the
vegetation canopy. There was a total of three sampling points in
each field, and at least 10 photos were taken at each sample point.
A total of 44 FVC samples were measured on June 13, 2016,
including 10 wheat, 12 soybeans (field seeded twice), 9 oats, 5
corn, and 6 canola, ranging from 0.005 to 0.865. The mean and
standard deviation of their FVC values are 0.777 ± 0.063, 0.039
± 0.031, 0.199 ± 0.091, 0.094 ± 0.044, and 0.520 ± 0.130,
respectively. This data was mainly used as the verification data
of the estimated FVC by Sentinel-2A images on June 13, 2016.

C. Filed Measured Surface Roughness

Surface roughness data included root mean square height (s)
and correlation length (l), which were measured using a portable
needle profiler 1 m long with 200 red pins. The spacing between
each probe was 5 mm. The roughness plate was supported by
a pair of brackets and had a mechanism for releasing pins. A
retractable metal bar attached to the whiteboard supported the
digital camera used to take pictures of roughness contours. A
total of 53 roughness samples were measured during June 10 and
15, 2016. The range of s and l are 0.33–1.92 cm and 3.5–32 cm,
respectively, and their mean and standard deviation are 0.91 ±
0.34 cm and 13.72± 8.05 cm, respectively. This data was mainly
used to obtain the empirical coefficients of the SM model by SAR
data on June 13, 2016.

D. Field Measured Soil Moisture

The probe-based and the core-based SM data were measured
the real dielectric constant (RDC) at a depth of 0–5 cm soil.
The collection devices were Stevens Poke and Go. Each probe
point measured the top, middle, and bottom of the 0–5 cm
soil layer (perpendicular to the top, middle, and bottom of the
furrows, respectively). RDC values were converted into volume
SM (cm3/cm3) using a field-specific calibration equation [48].
The distance between each collection point was at least 70m
[Fig. 1(a) and (b)]. All data had been quality-controlled and any
erroneous records had been deleted. The Garmin GPS devices
were used to locate the sample points when FVC and SM
were measured. The accuracy of the GPS was about 3 m. In
this article, the average SM of three depths was taken as the
measured SM. The air temperature in the study area on the
13th and 14th ranged from 15.5 to 27.5 °C, with a mean and
standard deviation of 20.5 and 3.5 °C, respectively. Since there
was no measured SM data in the study area on June 13, 2016,
and no rain after the 13th, the measured SM data on June 14,
2016, was used as SM verification data. A total of 256 SM
samples were measured on June 14, 2016, including 179 bare

soil and 77 vegetation sample points. The range of measured SM
in bare soil areas and vegetation-covered areas is 0.128–0.459
cm3/cm3 and 0.194–0.475 cm3/cm3, respectively. Their mean
and standard deviations are 0.330 ± 0.074 cm3/cm3 and 0.348
± 0.083 cm3/cm3, respectively.

E. Sentinel-1A and Sentinel-2A Data

Sentinel-1A data were obtained from the European Space
Agency (ESA). The wide interference pattern is the most com-
monly used pattern of Sentinel-1, mainly containing two polar-
ization information (VV and VH). The range and azimuth reso-
lutions are 5 × 20 m, respectively. The Level-1 product contains
two kinds of products, i.e., the Single Look Complex (SLC)
and the Ground Range Detected (GRD). The SLC products
include focused SAR data using satellite orbit and attitude data
for geographic reference, which are provided in slant distance
mode. The products, with phase and amplitude information, use
complete signal bandwidth to achieve single-look processing on
each dimension, and complex number to store phase informa-
tion. Because different filtering algorithms will be compared,
GRD products with certain processing were not applied in this
article. The path and frame of Sentinel-1A data are 31 and
25–26, respectively. Sentinel-1A data were mainly employed
to compare the different backscattering filtering methods and
further estimate SM.

Sentinel-2A Level-1C (L1C) data were also obtained from
ESA. L1C data are top of atmosphere reflectance products after
orthographic correction and geometric accuracy correction of
the subpixel level. Atmospheric correction is required to ob-
tain the surface reflectance of each band. The tile numbers of
Sentinel-2A are 55 and 14, respectively. Sentinel-2A data were
mainly used to obtain vegetation indices, optical SM indices,
and FVC.

The dates of remote sensing images and field measured data
used in this article are shown in Table I.

III. METHODS

The technical flow of this article (Fig. 2) mainly included
pretreatment of remote sensing images, comparison of backscat-
tering filtering algorithms, estimation of SM and accuracy veri-
fication, etc.

A. Sentinel-1A and Sentinel-2A Preprocessing

The preprocessing of Sentinel-1A mainly contained precision
orbit correction, thermal noise removal, radiation calibration,
TOPSAR-Deburst, multilook (Range and azimuth looks were
set to 4 and 1, respectively), speckle filtering, the slant distance
converted to the ground distance (nearest neighbor method),
range doppler terrain correction (based on SRTM DEM), radia-
tion normalization, and dB form conversion. Finally, VV and VH
backscattering coefficients (σVV andσVH) images with different
filtering algorithms and 20 m spatial resolution were obtained
by the nearest neighbor method.
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TABLE I
MEASURED DATA AND REMOTE SENSING DATA INFORMATION USED IN THE STUDY

Fig. 2. Technical flowchart.

The Sen2Cor 2.5.5 model was used to generate Sentinel-2A
Level-2A (L2A) data. The SNAP 7.0 (Sentinel application plat-
form) software was adopted to obtain 20 m spatial resolution sur-
face reflectance images with average synthesis. The biological
quantity module of SNAP was used to obtain FVC, LAI (leaf area
index), CWC (canopy water content), CCC (canopy chlorophyll
content), and FAPAR (fraction of absorbed photosynthetically
active radiation) images. In this module, the PROSPECT+SAIL
(scattering by arbitrary inclined leaves) radiation transmission
model and artificial neural network (ANN) are used for estimat-
ing these parameters [50].

B. Filtering Methods for SAR Backscattering Coefficients

Speckle noise is the main feature which is adapted to dis-
tinguish SAR images from optical images. It is related to the
imaging mechanism of SAR images [51]. Speckle filtering can
be realized by filtering or multilook processing. In this article,
seven common filtering methods were selected to explore their
influence on estimating SM at pixel scale, including Mean,
Median, Frost, Lee, Lee sigma, Refined lee, and Gamma map
filter [52]–[59]. The filtering window size of Mean, Median,
Frost, Lee, and Gamma map was set to 5 × 5. The filtering
window size and sigma value of Lee sigma filter were set to
5 × 5 and 0.9, respectively. The filtering window size of the
Refined lee was set to 7× 7. The Pearson correlation between the
filtered backscattering coefficients and the measured probe SM
was employed to evaluate the influence of the filtering method

on estimating SM. Finally, an appropriate filtering method was
selected to further estimate SM by SAR.

C. Soil Moisture Estimation Models by SAR

Generally, SM is estimated in the bare soil areas and
vegetation-covered areas, respectively, because the radar echo
signal is greatly affected by land cover. The backscattering
coefficients of SAR in bare soil areas are mainly related to the
surface roughness and the SM content, which can be expressed
as [13], [33], [60]:

σV V (dB) = g (Rs, θ) · f (ξ, θ) (1)

where g(Rs, θ) is a function related to roughness and incident
angle, f(ξ, θ)is a function related to SM and incident angle.

Under the assumption that the surface autocorrelation func-
tion conforms to an exponential distribution if smooth areas and
Gaussian distribution if rough areas, the roughness parameters
only include s and l [60]–[62]. s and l defined the surface
roughness on vertical and horizontal scales, respectively. l is
relatively difficult to obtain, but ignoring the influence of l on
the backscattering coefficients will bring large errors to the final
estimated results of SM [33], [63]–[66]. The roughness function
and the SM content function are independent of each other
according to (1). Therefore, the AIEM (Advanced IEM) model
can be employed to simulate and fix one parameter to analyze the
relationship between the other parameter and the backscattering
coefficient. Finally, the influence of the two factors (s and l)
can be combined to obtain the expressions of the backscattering
coefficient and each parameter. Yu et al. (2010) employed AIEM
to simulate the relationships among backscattering coefficients,
SM, s, and l. The results showed that when the incidence
angle and SM were fixed, and the range of s and l was set at
0.1–2.0 cm and 2–16 cm, respectively, the following relationship
was found by statistical regression:

σVV (dB) = 9.254 ln (s)− 6.21 ln (l) + 5.286

σVV (dB) ≈ 2.98 ln

(
s3

l2

)
+ 5.286. (2)

Therefore, if Rs = s3/l2, a roughness parameter can be sub-
tracted [33]. In the case of specific incident angles and SM, the
VV polarization backscattering coefficients in dB scale can be
expressed as [33], [67]:

σVV (dB) = E · ln (Rs) + F (3)

where E and F represent empirical coefficients.
The logarithmic relationship could better describe the rela-

tionship between σVV and SM than the linear relationship [33],
[68]. Therefore, under the condition of fixed roughness and
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incident angle, the expression is as follows:

σVV (dB) = M · ln (SM) +N (4)

where M and N represent empirical coefficients.
Therefore, when the radar incident angle is constant, the

expression of the backscattering coefficients can be expressed
as follows by combining (3)–(4) [33]:

σVV (dB) = (E ln(Rs) + F ) · (M ln(SM) +N) (5)

which can be written as

σVV (dB) = a ln (Rs) + b ln (SM) + c ln (Rs) ln (SM) + d
(6)

where the empirical coefficients a, b, c, and d can be obtained by
the least square method (LS) according to the measured SM, the
measured surface roughness, and the backscattering coefficients
of SAR images.

The VH polarization backscattering coefficient also has a
similar relationship with SM and Rs, that is [33]

σVH (dB) = e ln (Rs) + f ln (SM) + g ln (Rs) ln (SM) + h
(7)

where e, f, g, and h also can be obtained by LS according to
the measured SM, the measured surface roughness, and the
backscattering coefficients of SAR images.

Rs can be offset and SM can be further obtained by the
simultaneous (6)–(7). Let ln(Rs) be X and ln(SM) be Y. The
specific derivation is as follows:{

σVV (dB) = aX + bY + cXY + d

σVH (dB) = eX + fY + gXY + h{
gσVV = gaX + gbY + gcXY + gd

cσVH = ceX + cfY + cgXY + ch

gσVV − cσVH = (ga− ce)X + (gb− cf)Y + (gd− ch)

X =
gb− cf

ce− ga
Y +

gd− ch

ce− ga
+

cσVH − gσVV

ce− ga
= Δ

σVV = aΔ+ bY + cΔY + d

=
agb− acf

ce− ga
Y +

agd− ach

ce− ga
+

acσVH − agσVV

ce− ga
+ bY

+
cgb− c2f

ce− ga
Y 2 +

cgd− c2h

ce− ga
Y +

c2σVH − cgσVV

ce− ga
Y + d

(
cgb
−c2f

)
Y 2 +

(
agb− acf + bce+ bga
+cgd− c2h+ c2σVH − cgσVV

)
Y

+

(
ga
−ce

)
σVV = 0. (8)

By derivation of (8), X (i.e., Rs) is eliminated. The backscatter-
ing coefficients of VV and VH polarization are known in SAR
images. Therefore, Y (i.e., SM) can be derived by solving the
quadratic equation of one variable.

SAR signals in vegetation-covered areas are affected by vege-
tation, so it is difficult to directly estimate SM by backscattering
coefficients. Attema and Ulaby put forward the classic WCM

based on the radiative transfer theory, mainly for crop covered
[25]. The model assumes that the vegetation layer is composed
of many evenly distributed scattered particles of the same size
and shape, and the multiple scattering of vegetation and surface
soil can be ignored. The expressions are as follows:

σ0 = σ0
veg + γ2σ0

soil

σ0
veg = A× cos (θ)× (

1− γ2
)

γ2 = exp (−2×B ×VWC× sec θ) (9)

whereσ0 is the backscattering coefficient scattered by vegetation
layer, σ0

veg is the backscattering coefficient of vegetation, σ0
soil

is the soil surface backscattering after double-path attenuation
by vegetation layer, γ2 is the double-layer attenuation factor
(transmittance) of radar wave penetrating vegetation layer. The
values of A and B are dependent on the frequency of vegetation
types and incidence angle, θ is the radar incidence angle, and
VWC is VWC.

Accurate estimation of VWC is the key to separate vegetation
signals from total backscattering coefficients of SAR by WCM.
Different CWC indices were compared with measured VWC
data in this article, which including MSI (moisture stress index),
MSI2, SRWI (simple ratio water index), NDMI (normalized
difference moisture index), njormalized difference vegetation
Index, NMDI (normalized multiband drought index) [69]–[74],
and vegetation biomass indices (CCC, CWC, FAPAR, FVC, and
LAI) obtained by SNAP. Their equations are as follows:

MSI = RSWIR1/RNIR;MSI2 = RSWIR2/RNIR

SRWI = RNIR/Rred; NDVI =
RNIR −Rred

RNIR +Rred

NDMI =
RNIR −RSWIR1

RNIR +RSWIR1
;

NMDI =
RNIR −RSWIR1 +RSWIR2

RNIR +RSWIR1 −RSWIR2
(10)

where Rred, RNIR, RSWIR1, and RSWIR2 represent the re-
flectance of Red, NIR (near-infrared), SWIR1 (short-wave
infrared1), and SWIR2 (short-wave infrared2) of Sentinel-2,
respectively.

D. Soil Moisture Estimation Models From Optical Images

The MPDI and the MSMMI from Sentinel-2A images were
selected to retrieve SM, and compared with results by SAR
models. In the NIR-red feature space, the dryness of any point
is determined by PDI and perpendicular vegetation index. The
smaller the SM is, the farther the pixel is from the coordinate’s
origin. The larger the MPDI value is, the more serious the
dryness is [34]. The acquisition of the soil line is easily affected
by soil texture and land cover, which further affects the accuracy
of SM estimation from MPDI. MSMMI reflects the wetness and
dryness condition of the pixel which does not need soil lines [35].
Studies have shown that NIR-red space could not effectively
reflect SM in vegetation-covered areas [74], [75]. The SWIR
band is a strong absorption band of water, which has been proved
to more effectively estimate surface SM. The SWIR1–SWIR2
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feature space was adopted to replace the NIR-red space of MPDI
and MSMMI. The expressions are as follows:

MPDI =

RSWIR1 +M ·RSWIR2 − FVC (Rv,SWIR1 +M ·Rv,SWIR2)

(1− FVC)
√
M2 + 1

(11)

MSMMI =√
(RSWIR1−FVC ·Rv,SWIR1)

2+(RSWIR2−FVC ·Rv,SWIR2)
2

√
2 (1− FVC)

(12)

where M is the slope of the soil line obtained through interactive
data language. FVC is vegetation coverage obtained by SNAP.
Rv, SWIR1, and Rv, SWIR2 is the reflectance of SWIR1 and
SWIR2 bands of pure vegetation (FVC > 0.9).

E. Machine Learning Regression Models

The physical mechanisms of SM estimation by optical and
SAR remote sensing are completely different, but there are close
relationships between them, which it is difficult to establish
relationships between them directly by the strict mathematical
expression [76]. ML regression algorithms are often applied to
estimate many remote sensing parameters (such as biomass) due
to strong nonlinear fitting characteristics [77]. In this article, the
performance of three traditional ML and a DL regression models
for estimating SM was compared.

The GRNN is an improvement based on radial basis function
[78], and its theoretical basis is nonlinear regression analysis
[39]. GRNN has strong nonlinear mapping ability and learning
speed, and its network finally converges to the optimization re-
gression with more sample size clustering. When the sample data
is small, the prediction effect is very good. The network can also
handle unstable data. In this article, a five-fold cross-validation
method was used to automatically find the optimal parameters of
GRNN between the training sets and test sets with the minimum
MSE and further estimated SM.

The support vector machine (SVM) is an algorithm used for
classification (SVC) and can also be used for regression, namely
the SVR [40]. At present, SVR is widely used in the estimation
of remote sensing quantitative parameters such as LAI, SM, and
FVC [79]–[81]. The difference between SVR and SVC is that
the sample points of SVR end up with only one category. The
optimal hyperplane it seeks is not to separate two or more sample
points as SVM does, but to minimize the total deviation of all
sample points from the hyperplane. The Linear and Gaussian
kernel function were used in this article. The FitrSVM was
used to automatically optimize the hyperparameters (with the
minimum MSE) through five-fold cross-validation and further
estimated SM.

The random forest (RF), as a relatively new ML model,
can well predict the effects of up to thousands of explanatory
variables and is regarded as one of the best ML algorithms
[41]. The RFR algorithm is mainly applied to the estimation
of yield, vegetation biomass, LAI, and SM [82]–[85]. RF is

TABLE II
FEATURES USED FOR SOIL MOISTURE ESTIMATION

composed of multiple decision trees, and there is no correlation
between each decision tree in the forest. When dealing with
the regression problem, the prediction result of RFR is obtained
from the average value of all the prediction results of the internal
decision tree. The importance of features in the RF indicates the
degree of influence of features on the prediction results, which is
determined by the average value of all internal decision trees. In
this article, the number of RFR decision trees was set as 200, and
the maximum characteristic number mode was set as a square
root.

The DNN is an improvement of the multilayer perceptron
[86], [87], which employs ReLU or Maxout transmission func-
tion to replace the Sigmoid function to overcome the gradient
disappearance. Structurally, there is no difference between a
fully connected DNN and a multilayer perceptron. Since the
maximum number of feature variables involved in regression
in this article was 49 (Table II), DNN regression analysis was
performed for all feature variables. The number of input and
output layers of DNN was set as 49 and 1, respectively. The
hidden layer was set as 49. The initial learning rate of DNN
was set as 0.01, the maximum number of single iterations was
set as 500, the activation function was set as ReLU, and the
loss function was set as MSE loss function. The early stop
method was used to prevent overfitting by limiting the number
of iterations (20 times at a time). If the error of training samples
decreased and the test samples’ accuracy did not improve, then
early stop command will be executed.

F. Selection of Machine Learning Regression Features

The feature groups used for ML regression are shown in
Table II. Group (a) contains the traditional spectral features
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(blue, green, red, NIR, and narrow-NIR) and corresponding veg-
etation indices. Group (b) added red edge bands (red edge1, red
edge2, and red edge3), SWIR bands (SWIR1 and SWIR2), cor-
responding vegetation indices, and vegetation biomass features
obtained by SNAP (FVC, CWC, CCC, LAI, and FAPAR). Group
(c) contains SAR features (VV, VH, and radar incident angle).
Group (d) is a combination of Group (a) and Group (c). Group
(e) is a combination of Group (b) and Group (c). Replace red
band in NDVI with three red edge bands of Sentinel-2, and obtain
NDre1, NDre2, and NDre3. Replace red and NIR bands in NDVI
with red egde2 and red egde1 bands, respectively, and obtain
NDVIre21. In the same way, NDVIre31 and NDVIre32 were
obtained. If the central wavelength of the formulae in Table II
could not be obtained in Sentinel-2, the nearest reflectance band
was used instead.

G. Accuracy Validation

In this article, there were 256 samples of measured SM,
including 179 samples in bare soil areas and 77 samples in
vegetation-covered areas. The measured SM sample points were
sorted according to the corresponding FVC value estimated by
SNAP. A total of 86 samples (about 1/3 of all samples) were
selected for verification at intervals of 2. The remaining samples
(a total of 170) were training samples for modeling. The R
(Pearson correlation coefficient), MAE (mean absolute error),
MRE (mean relative error), and RMSE (root mean square error)
were used to evaluate the accuracy of each SM estimation model.
The calculation formulae of the accuracy indices are as follows:

R =
Cov (X,Y )√

Var (X)Var (Y )

MAE =
1

n
·

n∑
i=1

|Xobs,i −Xmod el,i|

MRE =
1

n
·

n∑
i=1

|Xobs,i −Xmod el,i|
Xobs,i

RMSE =

√∑n
i=1 (Xobs,i −Xmod el,i)

2

n
(13)

where X represents estimated SM, Y represents measured SM,
Cov(X,Y) represents the covariance of X and Y, Var(X) and Var(Y)
represents the variance of X and Y, n represents the total number
of validation data, Xobs,i represents the ith value of measured
SM, Xmodel,i represents the ith value of estimated SM.

We can see from Fig. 3, on the whole, the MAE, MRE, and
RMSE of estimated FVC by SNAP are 0.062, 9.977%, and
0.079, respectively. The MAE, MRE, and RMSE of estimated
LAI by SNAP are 0.443, 9.078%, and 0.707, respectively. There-
fore, the vegetation biomass indices derived from the Sentinel-2
L2A product can effectively represent the actual vegetation
coverage in the study area, but the estimated LAI is significantly
underestimated. The FVC in the study area was complex and
the growth of crops varied. 0 ≤ FVC < 0.30 and 0.30 ≤ FVC
< 0.45 were considered as the non-vegetation and the low
vegetation-covered areas, respectively. 0.45 ≤ FVC < 0.60 and

Fig. 3. Comparison between the estimated FVC and LAI by SNAP and
corresponding measured data.

Fig. 4. Correlation between backscatter coefficients after different filtering
algorithms and measured SM.

FVC ≥ 0.60 were regarded as the medium vegetation and the
high vegetation-covered areas, respectively [102].

IV. RESULTS

A. Analysis of Different SAR Backscattering Filtering Methods

The measured SM in different land cover types was adopted
to illustrate the performance of each filtering method. Fig. 4
indicates that R betweenσVV and measured SM in bare soil areas
of each filtering method is higher than that of σVH. The highest
and the lowest is σVV after Lee sigma filtering (R = 0.626)
and the original unfiltered imagery (R = 0.445), respectively.
Only Refined Lee filter and Lee sigma filter of σVH pass 99%
significance test (R = 0.238 and 0.230, respectively). σVV in
vegetation-covered areas of each filtering method is negatively
correlated with measured SM (P < 0.01). R differs little and
the highest is the Lee sigma filter (R = −0.378). R between
σVH and measured SM is significantly lower than that of σVV.
Median, Lee sigma, and Refined Lee filtering methods pass 99%
significance test, but R is low. This is due to the strong penetration
of VV polarization which is still affected by signals such as
VWC. VH polarization has a strong depolarization effect in
vegetation-covered areas, which is mainly affected by vegetation
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Fig. 5. Relationship between estimated SM and measured SM in bare soil
areas.

scattering. Therefore, other auxiliary data must be applied to
eliminate the impact of vegetation cover on the backscattering
coefficients when the study area is covered with vegetation. The
above analysis shows that the Lee sigma filtering algorithm is
the best filtering method to estimate SM using backscattering
coefficients of Sentinel-1.

In the Lee sigma algorithm, the number of iterations (k) has
great influences on the final filtering results. In this article, the
target window was set as 3 × 3, the filtering window as 5 × 5,
the k value as 1, 2, and 3, and the sigma value as 0.9. The results
show that when k increases, R between σVV and measured SM
in bare soil areas decreases, while R in vegetation-covered areas
remains unchanged. R between σVH and measured bare soil and
vegetation-covered SM increased gradually, but the improve-
ment is small. Therefore, k in the Lee sigma filter method was
set as 1 to meet the requirements for estimating SM.

B. Estimation of Soil Moisture by SAR Empirical Models

According to (6) and (7) of the empirical SAR model, the
combined roughness (Rs) by field measurement, the measured
SM and the Sentinel-1 dual-polarization backscattering coeffi-
cients after Lee sigma filter method were directly introduced to
obtain empirical coefficients a-h of (6) and (7). The empirical
models of equations were

σVV (dB) = − 2.144 ln (Rs)− 14.039 ln (mv)

− 2.610 ln (Rs) ln (mv)− 19.349 (14)

σVH (dB) = 2.205 ln (Rs) + 10.370 ln (mv)

+ 1.759 ln (Rs) ln (mv)− 4.585. (15)

By combining (14) and (15), SM can be derived after offset-
ting the roughness. Fig. 5 demonstrates that R between estimated

Fig. 6. Comparison between estimated VWC and measured VWC.

SM from dual-polarization backscattering coefficients and mea-
sured SM is 0.776. The corresponding MAE, MRE, and RMSE
are 0.044 cm3/cm3, 14.143%, and 0.053 cm3/cm3, respectively.
Most points are within the bias range of 10%, and few points
are outside the bias range of 20%, which may be affected by
the surface roughness or SAR speckle noise. The above results
show that the semiempirical model with combined roughness
(Rs) can effectively monitor SM in bare soil areas in the study
area.

Estimated VWC is the key to precisely separate vegetation
signals from the backscattering of the surface soil by WCM.
Compared with measured VWC on June 13, 2016, we found
that MSI, MSI2, and NMDI have obvious power relationships
with measured VWC (R is 0.890, 0.875, and 0.872, respectively).
NDVI and NDMI have an obvious exponential relationship with
measured VWC (R is 0.836 and 0.892, respectively), and SRWI
has an obvious linear relationship with measured VWC (R =
0.920). There is also a significant linear relationship between
CCC, CWC, FAPAR, FVC, LAI, and measured VWC (R is
0.878, 0.919, 0.906, 0.911, and 0.924, respectively). The above
results show that SRWI, CWC, and LAI are highly correlated
with measured VWC. Fig. 6 indicates that the scatter points of
estimated VWC (from SRWI, CWC, and LAI) and measured
data are uniformly distributed on both sides of the 1:1 trend
line. The estimation accuracy of the three indices is almost the
same. As LAI has the lowest MAE and RMSE and has a good
correlation with the measured LAI (Fig. 3), it was adopted to
estimate VWC in the WCM. The VWC equation is as follows:

VWC = 0.396 · LAI + 0.020. (16)

Due to rich types of vegetation cover in the study area, the
coefficients A and B in the WCM were set to 0.0012 and
0.091, respectively [23]. Therefore, backscattering coefficients
of surface soil in the vegetation-covered areas after WCM can
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Fig. 7. (a) Difference between different polarization backscattering coeffi-
cients before and after removal of vegetation under different FVC conditions.
(b) Average difference between the backscattering coefficients under FVC ≤
0.45 and FVC > 0.45.

be further expressed as

σ0
soil =

σ0 − 0.0012 cos (θ)

exp [−2 · 0.091 (0.396 · LAI + 0.020) · sec (θ)]
+ 0.0012 cos (θ) (17)

where σ0
soil is the soil backscattering coefficient after removing

the influence of vegetation, σ0 is the total backscattering coef-
ficient of the vegetation layer, LAI represents the LAI obtained
by SNAP, θ represents the radar incident angle.

Fig. 7 shows that σVV have no significant difference before
and after vegetation correction in 0.3 < FVC ≤ 0.45. The vari-
ation ranges from 0.5 to 1.5 dB. While the difference is obvious
in FVC > 0.45 which ranges from 1.0 to 4.0 dB. σVH has a
significant difference before and after correction in 0.3<FVC≤
0.45, ranging from 1.0 to 3.0 dB, which ranges from 1.5 to 6.0 dB
in FVC>0.45. The difference betweenσVH before and after cor-
rection is significantly greater than that of σVV under the same
FVC condition. When FVC ≤ 0.45, the average difference σVV

andσVH is 0.75 and 1.55 dB, respectively. When FVC > 0.45,
the average difference of σVV is 2.32 dB, while σVH is 3.71 dB.
The copolarized backscattering has good penetrability and is less
relatively affected by VWC. However, cross-polarization mainly
reflects the scattering signal of vegetation. The backscattering
coefficient before and after removing the influence of vegetation
by WCM is quite different, especially in the areas with medium
and high vegetation coverage.

Fig. 8 shows that there is a significant negative correlation
(P < 0.01) among σVV, σVH and measured SM after removing
vegetation influences by WCM. Compared with the vegeta-
tion signals not removed (Fig. 4), R between backscattering
coefficients and measured SM was increased after vegetation
correction. R between σVV and measured SM in the whole
vegetation-covered areas is −0.828, while it is −0.886 between
σVH and measured SM. R between σVV and measured SM
in the wheat field is −0.602 (P < 0.01), which is low in the
canola field (P > 0.01). R between σVH and measured SM in

Fig. 8. Relationships between backscattering coefficients of VV (a) and VH
(b) and measured SM after removal of vegetation by WCM.

the wheat field is −0.422 (P < 0.01), which is −0.723 (P <
0.01) in the canola field. This indicates that VV polarization
of Sentinel-1 can better describe the SM in the wheat field,
while VH polarization can more precisely describe the SM in
the canola field. The average FVC of the whole crop was 0.510
(±0.138, STD). The average FVC of wheat and canola were
0.572 (±0.149) and 0.433 (±0.071), respectively. The wheat
was in the stage of three-leaf unfolding, which required a lot
of water. Most canola was in the early stage of growth, with
a small root amount, few leaves, small transpiration area, and
relatively small water demand. Therefore, SM in the wheat field
was relatively higher than that of canola. This further proves that
backscattering coefficients after removing vegetation influence
by WCM can precisely estimate SM in vegetation-covered areas.
VH polarization could more precisely assess the overall SM
conditions in this period in the study area.

C. Comparison Between SAR Models and Optical Models

In part B of the Results section, Sentinel-1 data was employed
to separately estimate SM in bare soil areas and vegetation-
covered areas. This section mainly compares the similarities
and differences between optical models (MSMMI and MPDI by
Sentinel-2) and SAR models in estimating SM under different
land cover types. There are significant negative linear corre-
lations between MSMMI and MPDI from the SWIR1-SWIR2
feature space and measured SM. Fig. 9 demonstrates that R
between estimated SM by VH polarization and measured SM
is the highest (R = 0.807), followed by VV polarization (R =
0.787). R between estimated SM by MSMMI and measured SM
is 0.710, which is higher than that from MPDI (R = 0.550). R
between estimated SM by SAR and measured SM in bare soil
areas (FVC < 0.30) is 0.776, slightly higher than MPDI (R =
0.770), which significantly lower than MSMMI (R=0.837). The
estimation results by SAR are better than MSMMI and MPDI
in vegetation-covered areas. We can see from Fig. 10 that, when
0.30 ≤ FVC < 0.60, estimation accuracy of VH polarization
is the highest, which is slightly better than VV polarization,
significantly better than MSMMI and MPDI. When FVC >
0.60, estimation accuracy of VV polarization is the highest,
which is slightly better than VH polarization, also significantly
better than MPDI and MSMMI. The above results show that the
estimation accuracy of SM from MSMMI in bare soil areas is
slightly higher than that of SAR, which is significantly higher
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Fig. 9. Scatter diagrams of estimated SM and measured SM. (a), (b), estimated
SM in bare soil areas (FVC < 0.30) by VV and VH polarization, and estimated
SM in vegetation-covered areas (FVC ≥ 0.30) by WCM, respectively. (c), (d),
estimated SM by MSMMI and MPDI from SWIR1–SWIR2 space, respectively.

Fig. 10. Estimated accuracy of SM by each index under different vegetation
coverage (the error line represents the standard deviation).

than that of MPDI. The semiempirical model based on VV and
VH backscattering coefficients can reflect the SM in bare soil
areas to a certain extent. σVV and σVH after removing veg-
etation influence by WCM can precisely monitor SM status in
vegetation-covered areas, which is higher than that of optical SM
models. The estimation accuracy of MSMMI was significantly
higher than that of MPDI in middle and low vegetation-covered
areas, while lower than that of MPDI in high vegetation-covered
areas. Fig. 9(d) indicates that the scatter points of estimated SM
and measured SM by MPDI under different FVC are stratified,
which is the reason why the overall estimation accuracy is low.

Fig. 11 expresses that the spatial distribution of SM estimated
by SAR is generally consistent with that from the optical SM in-
dex (MSMMI). As shown in Fig. 12, the histogram of estimated
SM by SAR images presents a standard Gaussian distribution.
Estimation results by optical images are also Gaussian, but
there is a small uplift in the SM high-value region. The mean
and standard deviation of estimated SM by SAR and optical
images are 0.3753 ± 0.1016 cm3/cm3 and 0.3427 ± 0.0662
cm3/cm3, respectively. Estimated SM by SAR which greater

Fig. 11. SM spatial distribution maps are estimated by optical images and
SAR images on June 13, 2016. (a) Sentinel-2A imagery. (b) FVC. (c) Estimated
SM by SAR images on June 13, 2016 (SM in bare soil areas was estimated by
VV and VH polarization, and which in vegetation areas was estimated by VH
polarization and WCM model). (d) Estimated SM by MSMMI on June 13, 2016.
(e) Difference of estimated SM between SAR images and optical images (the
former minus the latter).

Fig. 12. Histogram of estimated SM by SAR and optical images.

than 0.4 cm3/cm3 and 0.45 cm3/cm3 accounted for about 36%
and 17%, respectively, while the optical estimation results are
only about 11% and 3%, respectively. Fig. 11(c) shows that
the estimated SM by SAR in bare soil areas was relatively
low, which was high in the vegetation-covered areas. The sat-
urated water was mainly located in the water areas and part of
vegetation-covered areas. Fig. 11(d) indicates that areas with
low SM estimated by MSMMI were mainly located in the bare
soil areas and part of vegetation-covered areas in the northwest
region, while areas with relatively high SM were mainly located
in vegetation cover areas. Fig. 11(e) illustrates that the difference
between estimated SM by SAR and by optics at 0.0–0.1cm3/cm3
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Fig. 13. Accuracy of estimated SM by different traditional machine learning
regression algorithms.

and −0.1–0.0 cm3/cm3 accounts for about 29% and 38%, re-
spectively. The proportion of difference at 0.1–0.2 cm3/cm3

was about 7.72%, and >0.2 cm3/cm3 was about 2.32%. The
proportion of difference at −0.2–−0.1cm3/cm3 accounted for
about 15.79%, and <−0.2 cm3/cm3 accounted for about 6.15%.
The areas with a positive difference of SM were mainly located in
a small part of bare soil areas in the northwest of the study area
and vegetation-covered areas (mainly wheat). The areas with
negative SM difference were were mainly located in the bare soil
areas in the middle of the study area. The proportion of estimated
SM by SAR images higher than that by MSMMI was 39.04%,
which was mainly located in the vegetation-covered areas. Its
spatial distribution is highly consistent with the middle and high
vegetation-covered areas in the study area (the proportion of
FVC ≥ 0.45 was about 34.58%). Combined with field measured
data [Fig. 9(c)], we can find that MSMMI significantly under-
estimated SM in high vegetation-covered areas, mainly because
optical images mainly reflected vegetation canopy information
and can only indirectly reflected the dryness and wetness condi-
tions of vegetation underlie. SAR images were greatly affected
by surface roughness and other factors and may overestimate or
underestimate SM in part bare soil areas.

D. Estimation of Soil Moisture by Regression Algorithms

We can see in part C of the Results section, the best semiem-
pirical models are needed to be selected reasonably according
to land cover types and further effectively reflect the overall
dryness and wetness distribution in the study area. Optical and
SAR images have their respective advantages in estimating SM
under different land cover types. Machine learning regression
can take advantage of different data sources and establish their
relationships with SM [103], [104].

Fig. 13 shows that in three traditional machine learning
algorithms (GRNN, RFR, and SVR), the estimation accuracy
of optical features (Group a or b) or SAR features (Group c)
is significantly lower than that of combined optical and SAR
features (Group d or e). On the whole, the estimation accuracy
of Group (d) by RFR is the highest. R between estimated SM

Fig. 14. Relationships between the number of iterations and estimation accu-
racy of SM by DNN (loss is the result of MSE loss function).

and measured SM is 0.9355. The MAE, MRE, and RMSE are
0.0224 cm3/cm3, 7.81%, and 0.0284 cm3/cm3, respectively. Es-
timation accuracy of Group (d) by GRNN is followed, with R of
0.9318, MAE, MRE, and RMSE of 0.0222 cm3/cm3, 0.0758, and
0.0288 cm3/cm3, respectively. The estimation accuracy of SVR
is inferior to that of GRNN and RFR. When traditional spectral
features (blue, green, red, NIR, nNIR, and corresponding vegeta-
tion indices), namely Group (a), are participated in the regression
alone, the estimation accuracy of RFR is the highest, followed
by GRNN. SVR is the worst. When all optical features are
participated in the regression (Group b), the estimation accuracy
of GRNN is the highest. RFR is followed and SVR is also worst.
Compared with Group (a), the accuracy of Group (b) is greatly
improved by GRNN (about 10%) and significantly reduced
(about 15%) by SVR, respectively. The accuracy of RFR is
slightly improved. This may be due to redundancy in the optical
features. When SAR features (Group c) has participated in the
regression alone, the estimation accuracy of RFR is the highest
with RMSE of 0.0329 cm3/cm3, followed by GRNN (RMSE =
0.0316 cm3/cm3) and SVR (RMSE = 0.0398 cm3/cm3). The es-
timation accuracy of the three regression algorithms in Group (c)
was slightly higher than that in Group (a). When traditional opti-
cal features and SAR features are involved in regression (Group
d), the estimation accuracy is significantly improved. Estimation
accuracy of RFR is the highest (RMSE = 0.0284 cm3/cm3),
followed by GRNN (RMSE = 0.0288 cm3/cm3). SVR is also
the worst, but the accuracy is fine (RMSE = 0.0314 cm3/cm3).
When all-optical and SAR features (Group e) were involved
in regression, estimation accuracy by RFR is also the highest
(RMSE = 0.0299 cm3/cm3), but it is slightly lower than Group
(d). Accuracy of SVR and GRNN is similar, but compared with
Group (d), the accuracy dropped slightly.

Fig. 14(a) indicates that, with the increase of iterations, the
estimation accuracy of DNN fluctuates sharply. After a certain
number of iterations (about 75), the accuracy declines steadily.
When the iteration reaches 13, as shown in Fig. 14(b), RMSE
between estimated SM and measured SM is the smallest, only
0.0045 cm3/cm3. The corresponding R, MAE, and MRE are
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0.9980, 0.0039 cm3/cm3, and 1.05%, respectively. However,
with the increase of iteration times, the accuracy decreases
obviously. When the number of iterations increases by two
(about 15), RMSE is down to 0.1 cm3/cm3. When the number
of iterations increases by five (about 18), RMSE is down to
0.2 cm3/cm3. Therefore, the number of iterations affects the final
estimation results when the construction of DNN is completed.
The above result indicates that the accuracy of SM by DNN is
much higher than that of traditional machine learning.

V. DISCUSSIONS

A. Optimal Filtering Method for Estimating SM by Sentinel-1

The radar backscattering coefficient is the direct reflection of
surface SM and roughness, but it is easily affected by speckle
noise and radar system parameters. Accurate estimation of the
coefficients in the semiempirical models and accurate suppres-
sion of the influence of speckle noise is the key to accurately
estimate SM in bare soil areas. This article discussed the filtering
performance of seven filtering algorithms and their influences on
SM estimation. We find that the Lee sigma filter can effectively
suppress speck noise for different polarization backscattering
coefficients under different land cover. In the last five years
of research on estimating SM with 10–20 m resolutions by
dual-polarized Sentinel-1 data, the filtering methods of SAR
backscattering were different. Most studies employed Refined
Lee filter [26], [105]–[110]. A small number of studies employed
Mean filter [111], [112] and Lee filter [113], [114]. Some studies
did not filter the backscattering coefficients images of Sentinel-1
[115], [116] or did not explain the filtering methods [117]–[120].
This article finds that the filtering effect of the Refined Lee filter
for SM extraction is reasonable, but still inferior to the Lee
sigma filter. If the VH backscattering coefficient after Mean
or Lee filtering methods is used to estimate SM, the error
in vegetation-covered areas is inestimable. For the above, the
Lee sigma filter is the most suitable backscattering coefficient
filtering method for estimating SM in the study area.

B. Comparison of Estimating SM Between SAR and Optics

For bare soil covered areas, optical remote sensing images
can directly reflect the surface spectral information (SM and soil
texture) after precise atmospheric correction. Many studies use
SWIR bands to estimate SM with higher monitoring accuracy
than other optical indices (such as NIR bands or land surface
temperature) [74], [75]. As a strong absorptive band of water
vapor, SWIR bands can effectively reflect SM in bare soil areas.
Ma et al. (2018) used dual-polarized Sentinel-1 data to invert SM
and compared it with the SMMI (soil moisture monitor index)
based on Landsat images. The results showed that SMMI from
NIR-SWIR2 space could effectively reflect the surface dryness
and wetness conditions in the semi-arid area of China, which
was consistent with the SAR results [121]. Tripathi et al. (2020)
employed dual-polarized Sentinel-1 data to invert surface SM in
farmland and used NDMI based on Sentinel-2 as the verification
data. The results showed that estimated SM results by SAR
and optics were highly correlated [122]. The above studies lack

a comprehensive comparison between SAR estimation results
and optical estimation results by SWIR bands under different
vegetation cover conditions. In this article, MSMMI and MPDI
from SWIR1-SWIR2 based on Sentinel-2 were used as optical
models to estimate SM. We find that MSMMI can more precisely
estimate SM in the bare soil areas, which was slightly better
than the dual-polarization Sentinel-1 result, and better than
MPDI. The optical models can effectively reflect the dryness and
wetness condition of bare soil without the support of measured
data. It can be seen from Fig. 6 that the combined (14) and (15)
can realize the estimation of SM by VV and VH polarization,
however, there are still a small number of sample points outside
the 20% error bias line. These sample points underestimated
[the black circle in Fig. 9(a)] were mainly located in the bare
soil areas in the northwest of the study area with relatively low
roughness (s was 0.53 cm, and l was 4.5 cm). The sample points
overestimated [the red arrow in Fig. 9(a)] was located in the
bare soil areas in the north of the study area with relatively high
roughness (s was 1.13 cm, and l was 31.5 cm). Other studies
have also shown that SM will be underestimated by SAR when
roughness is low and overestimated when roughness is high [11],
[12]–[14]. Surface roughness is one of the important factors that
affect the accuracy of the estimated SM by SAR. For areas with
very high or very low roughness, the SAR model monitoring
effect still needs to be improved. When the surface roughness is
high and the radar signal value is saturated, the estimated SM
by SAR model in this study will have a large error. The SAR
model has good estimation results in the range of s < 1.5 cm
and l � (4,18) cm. When s is greater than 2 cm and l is greater
than 18 cm, the error of the model is larger. To further improve
the estimation accuracy of SM, in the future, full-polarization
SAR data can be used to estimate SM.

For vegetation-covered areas, SM indices obtained by optical
remote sensing often reflect crop canopy information, which
can only indirectly estimate SM under the vegetation-covered
areas. Vegetation types, VWC, growth stage, water retention
ability, and the lag of SM response will affect the spectral
information, and further influence the accuracy of SM esti-
mation. Due to the penetration of radar remote sensing, it is
more suitable for estimating SM in vegetation-covered areas,
which is especially obvious in high FVC. The influence of
vegetation on the microwave signal may be far greater than that
of SM when FVC is high. Therefore, it is very important to
correct the influence of vegetation, especially for the Sentinel-1
C-band. Optical remote sensing images can precisely simulate
vegetation biochemical parameters through the characteristic
changes of reflected radiation of ground objects. VWC is mainly
used to represent vegetation information in the WCM model.
We compared seven CWC indices and five biomass parameters
obtained by the SNAP biomass module. The results showed that
SRWI, LAI, and CWC (the latter two are derived from SNAP)
have strong linear relationships with measured VWC. Estimated
VWC from LAI has the lowest MAE and RMSE, so it is taken
as the vegetation parameter in the WCM model. Many previous
studies used LAI as input parameters of WCM [123], [124].
LAI can be acquired indirectly from other vegetation indices
or physical models or measured data. At present, the common
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LAI product is MOD15A2 data with low resolution [125]. The
biophysical quantity module specially designed for Sentinel-2
data can more easily obtain the biomass indices such as LAI and
CWC with 10–20 m spatial resolution that can represent VWC.
For other remote sensing satellites such as Landsat and Gaofen,
SRWI is an alternative index. In this article, the vegetation SM
samples were mainly wheat and canola, with different growth
and development stages, which included low to high FVC.
After removing the influence of vegetation, VH polarization
is slightly superior to VV polarization in estimating SM in
medium and low vegetation cover areas (0.30 ≤ FVC < 0.60),
while it is lower than VV polarization in high vegetation cover
areas (FVC > 0.60). That is mainly because copolarization has
better penetrability and can better reflect the information on the
underlying surface of closed vegetation. The cross-polarization
signals contain the volume scattering of vegetation. Moreover,
VV polarization is more suitable for monitoring the SM of
wheat crops, while VH polarization is more suitable for canola.
This is consistent with previous studies of Mercier et al. [126],
El et al. [127], Xing et al. [128], and Kumar et al. [129]. El
et al. (2019) showed that for C-band SAR when NDVI was
between 0.4 and 0.7, the correlation between VH polarization
and SM in vegetation-covered areas was slightly higher than
that between VV polarization [127]. The disadvantage of using
WCM and SAR to invert SM in vegetation-covered areas is
that the WCM model ignores the second-order contribution
of multiple scattering between soil and vegetation, it may not
be suitable for estimating SM of tall crops [27], [124], [128].
Besides, LAI obtained by SNAP is underestimated compared
with measured LAI data, which may further affect the estimation
accuracy of SM. Therefore, future studies still need to explore
the suitability of WCM introduced into LAI for monitoring SM
of other crops.

Finally, SAR and optics were combined to estimate SM in the
study area. Sentinel-2A data was used to estimate SM in the bare
soil areas by the MSMMI index. The VV and VH polarization
backscattering coefficients of Sentinel-1A data were used to
estimate SM in the wheat and canola fields, respectively. We can
find from Fig. 15 that R between estimated SM and measured
SM can be increased to 0.8886. The corresponding MAE, MRE,
and RMSE is 0.0301 cm3/cm3, 10.23%, and 0.0391 cm3/cm3,
respectively. Most SM scatter points are within the 5% error
lines. The above results indicate that the estimation accuracy
of combined SAR data and optical data will be improved [26],
[38], [107], [108], [113], [120], [122].

C. Comparison of Estimating SM by Regression Algorithms

Spectral features of optical images have different responses
to SM in bare soil or vegetation-covered areas. Soil structure,
soil surface roughness, organic matter content, and vegetation
types will affect the accuracy of estimating SM. For SAR data,
the permittivity of soil increases in an approximately linear way
with the increase of SM, resulting in a decrease in emissivity.
This linear relationship is not immutable and is affected by
SAR frequency, incident angle, and surface roughness. With the
increase of roughness, emissivity decreases slowly with SM.

Fig. 15. Estimated SM under different land cover types by combining Sentinel-
1A and Sentinel-2A.

However, response degrees of different land cover to SM are
difficult to be expressed by conventional statistical methods.
Powerful nonlinear fitting characteristics of machine learning
can precisely describe relationships between remote sensing data
and SM.

Among three traditional machine learning algorithms, the
combination of the traditional optical spectrum (blue, green, red,
NIR, and corresponding vegetation indexes) and SAR (VV, VH
polarization, and radar incident angle) can effectively estimate
SM. But too many optics features may slightly increase or
even decrease final accuracies by traditional machine learning
regression. RFR has an excellent regression performance, which
is equal to GRNN and better than SVR.

RF is a classifier containing multiple decision trees. The mode
of output category is used to improve the accuracy of predic-
tion and control overfitting. In the five regression experiments,
the estimation accuracy of Group (d) (namely SAR features
and traditional optical features) by RFR is the highest. RMSE
between estimated SM and measured SM is 0.0284 cm3/cm3.
Compared with the estimation results of combining SAR and
optical semiempirical models (Fig. 15), the accuracy of the RFR
regression model is improved by about 27.37% (Relative to
RMSE). The excellent regression ability of RFR on estimating
SM had also been confirmed in many studies [130], [131].

GRNN is also widely used in SM estimation and prediction,
but few studies are comparing its performance with RFR [133].
We find that GRNN has a good regression performance, for
example, in Group (b) (namely all optical features participa-
tion), estimation accuracy by GRNN is the highest (RMSE
= 0.0308 cm3/cm3) which slightly higher than RFR. In other
regression experiments, GRNN was slightly weaker than RFR.
Also, the accuracies of all regression models by GRNN and RFR
are better than those of semi-empirical SM models.

SVR has a worst regression performance in the five regres-
sion experiments, for example, when only optical features are
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TABLE III
FEATURES USED FOR SOIL MOISTURE ESTIMATION BY RFR

Note: The groups in italic bold are the same as those in Table II.

included (Group a or b) are included, the estimation accu-
racy of SVR will be greatly reduced and lower than that of
semiempirical SM models. This conclusion contradicts previous
research [109], [134]. This indicates that there may are many
redundant features in the optical features. The robustness of
SVR is inadequate when dealing with redundant feature sets.
However, the estimation accuracy of SM combining optical data
and SAR data by SVR is reasonable, although lower than RFR
or GRNN.

The above results indicate that the RFR algorithm has rela-
tively high estimation accuracy and also can evaluate the impor-
tance of input variables to the predicted results [41], [85], [130],
[131]. We further subdivided and added the feature variable
groups (Table III) to explore the influence of traditional spectrum
features, red edge spectrum features, SWIR spectrum features,
biomass features, and SAR features on the estimation of SM by
RFR. Among them, Group (a)–(e) in Table II is consistent with
Group (a1), (e1), (f1), (k1), and (m1) in Table III. Group (b1)
contains both traditional and red edge spectrum features. Group
(c1) contains both traditional and SWIR spectrum features.
Group (d1) contains traditional, red edge, and SWIR spectrum
features. Group (g1) contains both traditional and SAR features
without radar incident angle. Group (h1) contains traditional,
red edge spectrum and SAR features. Group (i1) contains tradi-
tional, SWIR spectrum and SAR features. Group (j1) contains
traditional, red edge, SWIR spectrum, and SAR features. Group
(l1) contains traditional, red edge spectrum, biomass, and SAR
features without radar incident angle. Group (n1) contains SAR
features but no radar incidence angle.

Fig. 16 shows that on the whole, the estimation accuracy of the
combined optics and SAR images is higher than that of the opti-
cal or SAR images alone. When the SAR feature was used alone
(Group m1) to estimate SM, good accuracy can be achieved, with
R of 0.9145 and RMSE of 0.0329 cm3/cm3. When the radar
incidence angle did not participate in regression (Group n1),
the accuracy decreased obviously (about 48.94%, relative to the
RMSE), with R of 0.7867 and RMSE of 0.049 cm3/cm3. When
traditional spectrum and SAR features (Group f1) participated
in regression, the estimation accuracy is also the highest, with
R of 0.9355 and RMSE of 0.0284 cm3/cm3. However, RMSE

Fig. 16. Accuracy of estimated SM based on RFR for different characteristic
variable groups.

accuracy decreased by about 23.33% without incident angle
participation (Group g1). Groups k1 and l1 had similar results.
This indicates that the radar incidence angle can effectively
improve the accuracy of SM estimation by SAR features. When
only traditional spectrum features were involved in regression
(Group a1), the estimation accuracy was relatively low, R and
RMSE were 0.8919 and 0.0356 cm3/cm3, respectively. The
introduction of all red edge spectrum feature (Group b1) will
reduce the RMSE accuracy by about 11.23%. The introduction
of SWIR or biomass features (Group c1 and d1) will improve
the estimation accuracy, but the improvement is low and less
than that of the introduction of SAR. When traditional spectrum,
red edge, SWIR, biomass, and SAR features were involved in
regression (Group h1, i1, j1, and k1), the accuracy was basically
the same, obviously higher than that of optical or SAR features
alone, but slightly lower than that of the traditional spectrum and
SAR features (Group f1). This indicates that combined optical
and SAR features can effectively improve the accuracy of SM
estimation. When SAR features are involved in regression, the
estimation accuracy of introducing features such as red edge,
SWIR, or biomass is lower than that of traditional spectrum fea-
tures. Radar incidence angle has great influences on estimating
SM by SAR features, so it needs to be considered in practical
application.

In addition, we ranked the importance scores (by RFR) of each
variable with measured SM and explored the relationship be-
tween the number of features and the accuracy of estimated SM.
Fig. 17 shows that the top 10 variables of importance to measured
SM are SWIR1, Red edge1, SWIR2, VH, VV-VH, NDVIre3,
VV, green, MRESR, and EVI. All SAR features scored high
in importance. In optical features, the importance scores of
reflectance bands were higher than those of multiband vegetation
indices. The top scores of traditional spectrum features are green,
EVI, NIR, and red, while DVI, RVI, NDVI, and MSAVI scored
relatively low. The top scores of red edge features are red edge1,
NDVIre3, MRESR, ARI1, MTCI, and S2REP. This is mainly
because these indices contain the Red edge1 band (705 nm)
of Sentinel-2, which is conducive to reflecting the growth and
development status of vegetation, thus effectively representing
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TABLE IV
ADVANTAGES AND DISADVANTAGES OF DIFFERENT SOIL MOISTURE ESTIMATION METHODS

Fig. 17. Distribution of importance score of each variable to measured SM.

Fig. 18. Relationship between the number of optimizing features and the
accuracy of estimated SM based on RFR.

the SM on the underlying surface [135]. The remaining red
edge features had little effect on the estimation of SM due to
low importance. The top scores of SWIR features are SWIR1,
SWIR2, and MSI, while NDMI and NMDI scored low. This is
mainly because SWIR are water-absorbing bands, both for bare
soil areas and vegetation-covered areas, and they can reflect the
surface SM. The above analysis also indicates that SAR and
optical features have respective advantages in estimating SM.

According to the ranking of feature importance (Fig. 17),
the estimation accuracy of each feature group was obtained by
accumulating five features. Fig. 18 shows that the estimation
accuracy of RFR shows a sharp increase with the increase in
the number of features (the first 20), followed by a slow rise in
fluctuation. When the number of features reached 20, 40, and
49, respectively, the R between estimated SM and measured SM
reached the maximum value (about 0.9302), and the estimation
accuracy had been improved steadily, RMSE reaching 0.0299
cm3/cm3 with 49 features. The estimation accuracy (RMSE) of
20 features was about 6.95% higher than that of five features,
while the estimation accuracy of 40 and 49 features was only
1.26% and 1.78% higher than that of 20 features, respectively.
This indicates that the estimation accuracy increased with the
increase in the number of optimizing features, but the improve-
ment was low after the number of features reached 20. Besides,
the estimation accuracy of the optimizing features is still lower
than that of the traditional spectrum and SAR features (Group
f1 in Table III).

In DNN, the optimization extremum solution of the loss
function is generally completed step by step by iteration through
the gradient descent method. The number of iterations has a
great influence on the final prediction result of DNN. Too many
iterations will significantly reduce the prediction accuracy. In
this article, when the number of iterations reaches 13 after
the framework of DNN is built, RMSE between estimated SM
and measured SM was only 0.0045 cm3/cm3. DL’s powerful
nonlinear fitting ability can be adaptive to input feature variables
through multilayer networks. Achieng et al. (2019) also came
to a similar conclusion that the estimation accuracy of SM by
DNN was significantly better than that of ANN. The estimation
accuracy by DNN in the test set could reach 0.003 cm3/cm3

[134]. This indicates that DL regression based on SAR and
optical remote sensing data can estimate SM in farmland with
great accuracy, which is better than the traditional machine
learning algorithms [134], [136].

Although DL can almost perfectly fit relationships between
different remote sensing data and measured SM, it needs to
spend a lot of time building the network framework and ad-
just the optimal parameters. The accuracy and operability of
RFR and GRNN make them powerful tools for estimating SM
using SAR and optical data. Table IV shows the advantages



LIU et al.: COMBINED SENTINEL-1A WITH SENTINEL-2A TO ESTIMATE SOIL MOISTURE IN FARMLAND 1307

and disadvantages of SM estimation methods used in this arti-
cle. Nowadays, optical remote sensing satellites are developing
in the direction of hyper-spectrum, high temporal resolution,
and high spatial resolution. Radar remote sensing satellites are
developing towards multipolarization, multi-incidence angle,
and multimode. There are also more and more ground stations
that can measure various surface parameters. Remote sensing
satellites and measured stations play different roles and tasks.
Machine learning algorithms can effectively excavate the close
relationships between abundant satellite remote sensing data
and land surface parameters [137]–[139]. Combined optical and
SAR satellite data through machine learning regression has great
potential in precisely monitoring SM in farmland, which can
provide decision bases and strong guarantees for agricultural
crop production and development status.

VI. CONCLUSION

The influence of different filtering algorithms for the
backscattering coefficients on estimating SM was compared
in this article. We find that the dual-polarized Sentinel-1A
backscattering (VV and VH) after the Lee sigma filter have
the highest correlation with the measured SM under different
land cover types. Therefore, the Lee sigma filter can be used
as the best filtering method for backscattering coefficients to
estimate SM at the pixel scale. Dual-polarized backscattering
coefficients and combined roughness (Rs = s3/l2) were used
to jointly estimate SM in bare soil areas (FVC ≤ 0.30). The
estimation accuracy was slightly lower than the results obtained
by the optical index (MSMMI from the SWIR1–SWIR2 feature
space of Sentinel-2A). After removing influences of vegetation
cover on the backscattering by using WCM introduced into LAI,
the estimated accuracy of SM by VH polarization is higher than
that by VV polarization. But in high vegetation cover areas
(FVC > 0.60), the conclusion is the opposite. The estimation
accuracy of SM in vegetation-covered areas by Sentinel-1A
is higher than that of Sentinel-2A. On the whole, optical and
SAR images have their respective advantages in estimating SM
under different cover types. Optical remote sensing has slightly
higher accuracy in estimating SM in bare soil areas, while SAR
has conspicuously higher accuracy in vegetation cover areas.
The estimation accuracy of SM by combining Sentinel-1 with
Sentinel-2 is significantly better than that by the optical data
alone. The RMSE between the estimated SM and the measured
SM is 0.0391 cm3/cm3. Finally, four machine learning regres-
sion algorithms were used to estimate SM in the study area.
The results show that the estimation accuracies by regression
algorithms were much higher than those of the semiempirical
SAR and optical models. Among traditional machine learning
algorithms, the estimation accuracy of RFR and GRNN is the
same, which is better than SVR. The accuracy in estimating SM
by RFR combining SAR and traditional spectral information
(blue, green, red, NIR, and corresponding vegetation indices)
is the highest, with an RMSE of 0.0284 cm3/cm3. The esti-
mation accuracy of SM by SAR and optical data by DNN is
up to 0.0045 cm3/cm3. There are great potentials to combine
Sentinel-1 with Sentinel-2 data to precisely estimate SM in
farmland by machine learning regression algorithms.
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