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Manifold-Based Nonlocal Second-Order
Regularization for Hyperspectral Image Inpainting
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Abstract—The low-dimensional manifold of image patches has
been introduced as regularizer term, and shown effective in hy-
perspectral image inpainting. However, in this article, we find
that using only the low-dimensional property of manifold may not
always generate smooth results. In terms of this, we first present a
higher order term to the low-dimensional manifold model, namely
nonlocal second-order regularization (NSR), which provides better
approximation to the real data distribution and manifests both
the properties of low dimensionality and smoothness. Moreover, in
order to balance the known and unknown sets, we further propose
a weighted version of NSR, called WNSR. The generalized minimal
residual algorithm is adopted to solve this unsymmetrical model,
in which a semi-patch is applied for acceleration of the nearest
neighbor search. Finally, we conduct intensive numerical experi-
ments on five well-known datasets to verify the superiority of our
method. The inpainting results show that our proposed (W)NSR
significantly outperforms the state-of-the-art methods with respect
to both visual and numerical quality.

Index Terms—Hyperspectral image (HSI) inpainting, manifold
model, patch-based method, second-order regularization, weighted
nonlocal method.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are acquired with
imaging spectrometer under continuous and narrow spec-

tral bands, which results in rich details of object surface re-
flectance across quite a huge amount of bands ranging from
the visible wavelength to the sub-infrared one. Therefore, HSIs
have been widely studied and applied in the remote sensing
domain [1]–[3], including urban layout, military surveillance,
mineral exploration, and environmental monitoring, to just name
a few. Nevertheless, the practical potential is usually compro-
mised since the rich spectral information comes at the cost
of greatly restricting the spatial resolutions. Besides, some of
the pixels might be missing due to the malfunctions of the
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collecting devices or certain atmospherical occlusions, resulting
in incomplete observations of the target area [4]. Therefore,
an essential task in hyperspectral analysis is to recover the
original image from the incomplete observations. In this work,
we mainly focus on the missing pixel recovery, which is termed
as HSI inpainting and is typically an ill-posed inverse problem.
Generally speaking, there are two mainstream methods to solve
this problem, i.e., the data-driven scheme and the knowledge-
driven scheme. The former is dominated by the well-known
deep learning-based methods, which enjoy high popularity due
to their strong power on nonlinear learning capabilities. In
practice, several network architectures, such as convolutional
neural nets [5], [6] and generative adversarial nets [7], have
been successfully extended to the field of HSI reconstruction.
However, although excellent performance can be achieved, deep
learning-based methods suffer from two drawbacks that hinder
its usage in singleton inpainting problem, especially in non-
commercial home computers. On one hand, a large amount of
training time and training data are required for optimization of
massive network parameters. Correspondingly, the requirements
for hardware are comparatively high. On the other hand, in the
image inpainting field, the performance of most methods based
on deep learning are quite sensitive to different missing types and
missing rates. In this work, we focus on the knowledge-driven
scheme for inpainting single HSI without any auxiliary images
and pretrained models, where appropriate prior properties of the
latent HSI are necessitated to steer the recovery problem and
shrink the solution space.

Mathematically, a knowledge-based HSI restoration problem
can be considered as recovering the clean counterpart f from a
degraded image b based on the degradation operator Φ(f) = b
and certain prior knowledge h(f). Note that the equivalence in
the degradation process may not strictly hold, hence the general
framework of HSI inpainting is always relaxed as follows:

min λ ‖ b− Φ(f) ‖22 +h(f). (1)

The first term in (1) is the loss measuring the fidelity of the
reconstructed image to the input image with known samples,
whose contribution is controlled by the tradeoff parameter λ.
The prior information h(f), such as piecewise smoothness, shape
edges, textures, and repetitive patterns, makes regularization
method (1) quite effective to tackle real-world HSI analysis
problems.

Low-rank matrix approximation is one of the most popular
regularizers in HSI processing. For a clean HSI data, it is usually
assumed that each of its pixels can be linearly composed of a few
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endmembers. On that basis, the low-rank matrix factorization
[8]–[10] has been introduced to capture the core structure of the
HSI. However, the matricization techniques should preliminarily
vectorize all HSI bands, which inevitably loses the original
structural information to some extent. In order to better maintain
the spatial–spectral structure, different low-rank-based tensor
approximation frameworks are developed in recent years [11],
[12]. For instance, Lu et al. proposed a tensor robust principal
component analysis (TRPCA) [13] method and defined a new
tensor nuclear norm (TNN) [14] as the tightest convex surrogate
of tensor rank. However, while both TRPCA and TNN can
achieve appealing performance in image inpainting, they suffer
from the per-iteration computational cost due to the necessity
of singular value decomposition. To improve per-iteration effi-
ciency and avoid out-of-memory errors, several low-rank tensor
factorization schemes have been introduced to describe the HSI
low-rank property, including Tucker [15], [16], tensor train [17],
and tensor ring [10], [18], etc.

As presented in [19], only the low-rank property may be
not sufficient to cover the prior spatial information. Moreover,
aforementioned algorithms mainly aim to recover the global
structure, but neglect to capture the local or nonlocal information
of the observed image. Accordingly, in the past decades, patch-
based techniques, such as nonlocal means [20] and two-stage
low-rank approximation [21], have been successfully applied to
HSI inpainting or other image processing tasks. These methods
focus on using the information of internal and external patches,
with the truth that similarity between pixels can be measured
by l2 distance among their neighbors or the patches containing
them. The efficacy of the patch-based algorithm stems from the
nonlinear and self-similar structures in the spatial domain of HSI
patches, which can build highly data-adaptive representations.
Together with adaptive thresholding, these structures can be
closely connected to typical total variation approaches [22].
Recently, a variant of the patch-based algorithm, i.e., manifold
models, has attracted increased popularity due to its valuable
insight in the construction of new HSI processing model. It
hypothesizes that the patches are likely to concentrate around
low-dimensional nonlinear manifolds [23], [24]. From the view-
point of diffusion geometry [25], [26], the nonlocal mean filter
can also be interpreted as a diffusion process on the patch
manifold.

Based on the low-dimensional characteristic of patch mani-
fold, two new approaches named as low-dimensional manifold
model (LDMM) [27] and weighted nonlocal Laplacian (WNLL)
[28] are proposed with strong results. Both of these penalize a
direct regularization on the dimension of patch manifold and
present a variational argument for patch-based image process-
ing. Following this line, Zhu et al. [29] successfully extends
the LDMM model to HSI inpainting problem. Based on these
three works, this article is motivated by the wish to better exploit
the low-dimensional structure of the manifold. Specifically, we
find that only using the first-order LDMM regularizer does not
guarantee the smoothness of the reconstructed patch groups. For
instance, Fig. 1 shows two degraded interpolations in red circles.
One can observer that though the interpolated surface follows
a low-dimensional manifold, these two points clearly violate

Fig. 1. Degraded low-dimensional surface without using high-order regular-
ization.

the smooth interpolation. To remedy this issue, we attempt to
combine both the properties of low dimensionality and smooth-
ness together. Accordingly, a new method, namely nonlocal
second-order regularization (NSR) constrained HSI inpainting,
is proposed. Note that the scheme of introducing higher-order
regularization terms has already been proposed in the image
analysis [30]. However, as far as we know, this is the first to
penalize second-order constraint into HSI inpainting. Moreover,
motivated by the WNLL scheme, we further present a weighted
nonlocal second-order regularization (WNSR), which can sig-
nificantly improve the recovery performance of the nonweighted
counterpart. Concretely, our contributions are threefold.

1) We add a second-order constraint based on the low-
dimensional manifold to ensure the smoothness of the
reconstructed HSIs and make the interpolation more rea-
sonable. Moreover, we develop the proposed second-order
regularization in the weighted nonlocal mode for reliev-
ing the interpolation fluctuations when the proportion of
known pixels to unknown pixels is extremely low.

2) Generally, huge memory storage is required to apply
(W)NSR regularizer in high-dimensional data. Due to the
fact that HSI is a collection of many 2-D images with the
same spatial location, we treat all spectral bands separately
to reduce the computational cost. Moreover, the semi-local
patch operation can be optionally introduced into our
model, which speeds up the nearest neighbor search and
improves the running efficiency.

3) We successfully apply the manifold-based nonlocal
second-order regularization to HSI inpainting. The ex-
perimental results in various situations demonstrate that,
compared with other algorithms, our method can achieve
excellent performance with comparable runtime. It is
worth mentioning that WNSR can still generate desirable
visual quality under very severe missing rates, such as
95%.

The remainder of this article is outlined as follows. A review of
the low-dimensional manifold model is introduced in Section II.
Section III illustrates the proposed (W)NSR method and the
corresponding optimization algorithm. Different experiments
and results are shown in Section IV. The final section concludes
this article.
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II. PATCH-BASED LOW-DIMENSIONAL

MANIFOLD REGULARIZATION

To harvest the manifold property of HSI data, the work in
[29] directly adopts LDMM as a constraint, which utilizes the
dimension of patch manifold as the regularization to recover the
incomplete images. In this section, we will briefly introduce the
basic idea of LDMM for self-containedness.

A. Patch Manifold

Assume f ∈ Rm×n×B be a given HSI, where m, n, B
denote the width, height, and spectral length, respectively.
For any spatial coordinate x ∈ H̄ := [m]× [n] , where [m] =
{1, 2, . . . ,m}, we can define a patch Pf(x) as a 3-D cubic of
size s1 × s2 × s3 from the original data f, and x be the pixel
in the top-left of the s1 × s2-sized patch. The overall patch set
P(f) can then be defined as the assembly of all patches

P(f) = {Pf(x) : x ∈ H̄} ∈ Rd, d = s1 × s2 × s3. (2)

The point cloud set P(f) is usually related to a stack of
low-dimensional manifold embedded in Rd [27], which is called
patch manifold in accordance with f and denoted as M(f).
According to [29], the underlying manifold M(f) can be
approximated by a 3K dimensional manifold, where K is the
endmember number that can generate the entire HSI. Typically,
K is much smaller than d.

One point deserves to remark is that the choice of the patch
size s1 × s2 × s3 shall be varied in practice. Normally s1 and
s2 are chosen corresponding to the spatial resolution of the HSI,
s3 in this article is fixed as B, which is the spectral number
of the HSI. Of course, sometimes it can be smaller according
to the in-hand problems. In the sequel, we denote P as a
projection operator: Rm×n×B→Rd×|m×n|, which maps any HSI
f �Rm×n×B to the patch set P(f) ∈ Rd×|m×n|.

B. Low-Dimensional Manifold Regularization

Based on the definition in Section II-A, the dimension of the
patch manifold can be used as a regularization in HSI image
processing. SupposeC = {c1, c2, . . . , cn} is the complete set of
points in Rd, and V = {v1, v2, . . . , vn} is the observed subset
of C, i.e., V �C. Let g defined as an indicator function on subset
V, the inpainting problem is to extend b to C by finding a smooth
function u on manifoldM that are consistent with g when the
index lies in subset V. In the implementation, LDMM adopts a
Dirichlet energy to regularize the dimension ofM, that is

LDMM(u) =
1

2
‖ ∇Mu ‖22 (3)

where ∇Mu denotes the gradient of u on manifoldM, ‖ ·‖2 is
the l2 norm. In [27], Osher et al. rewrite the Dirichlet regularizer
in a geometric manner and give a simple and explicit formula to
calculate the dimension of smooth manifold as follows:

dim(M) =

d∑
l=1

|∇Mαl(p)|2 (4)

where αl, l = (1, …, d) are the coordinate functions onM, i.e.,
αl = ul, ∀u = (p1, . . . , pd) ∈M.

The regularizer in (4) is actually the l1 norm of local dimension
over the patch manifold. This is beneficial for the hyperspectral
reconstruction problem. First, patch manifoldM is not all glob-
ally smooth so that taking the summation of all local dimensions
ofM can address the piecewise smooth situation. Second, there
may be some unmixed materials in the HSI, which meansM has
zero local dimension in these elements, which implies adopting
the l1 norm can promote sparsity and correctly adhere to this
prior knowledge. With constraint u(v) = g(v), ∀v ∈ V , one can
recover the missing part from minimizing the Dirichlet energy.
Recall that g denotes the observed part of u, and V ∈ C denotes
the labeled pixels.

III. NONLOCAL SECOND-ORDER REGULARIZER FOR

HSI INPAINTING

A. Nonlocal Second-Order Regularizer

As stated in the Introduction section, we attempt to explore a
better interpolation by assuming not only the low dimensional
manifold but also the smoothness. For this purpose, in addition to
the LDMM regularizer, a nonlocal second-order regularization
is also considered. The NSR term reads as follows:

NSR(u) := LDMM(u) +
β

2

∫
M

(ΔMu)2. (5)

Note that the first term in (5) can be simplified as (4). However,
this would result in an asymmetrical formulation in the optimiza-
tion step, which further slows the convergence of the algorithm.
Following the second approach in [29], one can approximate the
energy ∇Mu in the discrete setting using a nonlocal gradient

∇Mu(p, q) ≈
√
w(p, q)(u(q)− u(p)) := ∇Cu(p, q)

p, q ∈ C ⊂M (6)

where p, q is a set of point cloud on the patch manifold M,
w(p, q) is a weight function which usually obtained asw(p, q) =

exp(−‖p−q‖2σ2 ) with σ being a normalizing parameter. Then, the
first term in (5) can be formulated as follows:

LDMM(u) ≈ 1

2

∑
p,q∈C

w(p, q)(u(p)− u(q))2 =‖ ∇Cu ‖22 .

(7)

The negative of the first variation of (7) reads as follows:

−∂u(‖ ∇Cu ‖22 ) =
∑
q∈C

w(p, q)(u(p)− u(q)). (8)

Such transformation is the nonlocal Laplacian method that
has been widely used in image processing [31], [32], which
can also be called graph Laplacian and behaves as the discrete
approximation to the second term in (5). We denote it as GL to
simplify the notation

GL(u) =
∑
q∈C

w(p, q)(u(p)− u(q)). (9)
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Taking (9) together with (7) leads to the specific NSR regu-
larization in the discrete setting

NSR(u) : = min
u
‖ ∇Cu ‖22 +

β

2
‖ GL(u) ‖22 . (10)

In [28], the technique of WNLL is proposed to balance the
known and unknown pixels and meanwhile hold the symmetry
of the subsequent formulations. The WNLL operation can be
simply written as follows:

WNLL : =‖ ∇Mu|C\V ‖22 +
|C|
|V | ‖ ∇Mu|V ‖22 (11)

where

‖ ∇Mu|V ‖22=
1

2

∑
p∈V,q∈C

w(p, q)(u(p)− u(q))2. (12)

We omit the description of the second term ‖ ∇Mu|C\V ‖22
due to its similarity to the first term.

Using WNLL, the proposed NSR regularization can also be
rewritten in a discrete setting. We term it as the WNSR

WNSR(u) : = min
u

β
2

[
‖ (GLu)|C\V ‖22 + |C||V | ‖ (GLu)|V ‖22

]
+WNLL(u)

(13)

where

‖ (GLu)|V ‖22=
∑
p∈V

⎛
⎝∑

q∈C
w(p, q)(u(p)− u(q))

⎞
⎠

2

(14)

and ‖ (GLu)|C\V ‖22 follows a similar operation.

B. Semi-Local Patches

The previous work [28] has shown that adding local co-
ordinates to the nonlocal patches can reduce the number of
optimization iterations. This scheme is called semi-local patch
and has been successfully applied to many image processing
issues [33]. Following this operation, we replace the semi-local
patch instead of the nonlocal patch by adding spatial information
with a weight γ, i.e.

P′ (f) = {Pf(x), γx} ∈ Rd+2, d = s1 × s2 ×B

where x ∈ H̄ := {1, 2, . . . ,m} × {1, 2, . . . , n} is the index of
this pixel. From the geometrical perspective, if γ tends to �,
this parameterization is determined by local 2-D coordinate and
typically bias to high curvature. In other words, the dimension of
patch manifold must be very low. Conversely, if γ tends to 0, the
latent patch manifold may own a higher dimension. However, the
manifold may become smoother. The main effort lies in finding
a proper compromise between the manifold dimension and the
effect of the regularization. The detailed experiment about the
choice of γ is presented in Section IV.

C. (W)NSR for Hyperspectral Inpainting

As for the HSI inpainting problems, the main objective is
to recover the unknown HSI f from the incomplete data b ∈
Rm×n×B , b is only known on a random subset Ht ∈ H̄t =

[m]× [n], where t refers to some band number. In the sequel,
we directly discuss the model details for WNSR. NSR can be
easily obtained since it is a special case of WNSR by setting all
weights to 1. Recall that the point cloud Pf(x) and the initial
cost function of WNSR, when used in HSI inpainting, can be
formulated as follows:

min
f

WNLL(P(f)) + β
2 ‖
√
D ·GL(P(f)) ‖22

s.t. f(x) = b(x)
(15)

where β is the regularization parameter, D = diag{d1, d2,
. . . d|H̄|} with dj = 1 for xj ∈ H̄t\Ht and dj =

|H̄t|
|Ht| for xj ∈

Ht. GL is the |C| × |C| Laplacian matrix defined in (14). To
specify the optimization procedure of WNSR, we further rewrite
(15) as follows:

min
f

ds∑
i=1

B∑
t=1

[ ∑
x∈H̄t\Ht

i

∑
y∈H̄t

w(x, y)(Pt
if(x)− Pt

if(y))
2

+
|H̄t|
|Ht|

∑
x∈Ht

i

∑
y∈H̄t

w(x, y)(Pt
if(x)− Pt

if(y))
2

]

+ λ
B∑
t=1
‖ f t − bt ‖22 +

∑
i,t

β
2 ‖
√
D ·GL(Pt

if) ‖22
(16)

where ds = s1 × s2 is the spatial size of the patches, Pt
if(x)

is the ith spatial element of patch Ptf(x) in band t. |H̄
t|

|Ht| is the

inverse ratio of the sampling rate, x, y are the points in H̄ or Ht
i ,

operator Pi satisfies Pt
if(x) = Pif

t(x). Note that (16) can be
decoupled with regard to the spectral number t for any given
t ∈ [B], it follows that

min
ft

ds∑
i=1

[ ∑
x∈H̄\Ht

i

∑
y∈H̄

w(x, y)(Pif
t(x)− Pif

t(y))
2

+ r
∑

x∈Ht
i

∑
y∈H̄

w(x, y)(Pif
t(x)− Pif

t(y))
2

]

+ λ ‖ f t − bt ‖22 +β
2

ds∑
i=1

‖ √D ·GL(Pif
t) ‖22,

t ∈ {1, 2, . . . , B}
(17)

where r = |H̄t|
|Ht| , λ is the penalty parameter. Through a standard

variational deduction, we can obtain a Euler–Lagrange-like
equation from (17), i.e.

μ
ds∑
i=1

P∗i IHt
i
F t

i (x) +
ds∑
i=1

P∗i Gti (x) + βP∗iGLT ·D ·GL(x)

+ λIHt(f t − bt)(x) = 0, ∀x ∈ H̄

(18)

where we denote μ = r − 1 for simplicity, P∗i is the adjoint
operator of Pi, IHt is the projection operator mapping f t(x)
to 0 when x /∈ Ht, that is

IHtf t(x) =

{
f t(x) x ∈ Ht

0 x /∈ Ht
(19)
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and⎧⎨
⎩

GL = F t
i (x) =

∑
y∈H̄ w(x, y) (Pif

t(x)− Pif
t(y))

Gti (x) =
∑

y∈H̄ 2w(x, y) (Pif
t(x)− Pif

t(y))

+μ
∑

y∈Ht
i
w(x, y) (Pif

t(x)− Pif
t(y)) . (20)

The symbol xî is used to denote the ith spatial pixel after x in
the same patch. The trick of periodic padding would be used in
the case that when the index exceeds the boundary of the spatial
domain. With all these settings, we can easily obtain{Pif

t(x) = f t(x̂
i−1)

Pi
∗f t(x) = f t(x̂

1−i).
(21)

Using notation (21), we then have

P∗i IHt
i
F t

i (x) =
[
IHt

i
F t

i

]
(x̂

1−i)

= IHt

[
F t

i (x̂1−i)
]

= IHt

[ ∑
y∈H̄

w(x̂
1−i, ŷ1−i)

(
Pif

t(x̂
1−i)− Pif

t(ŷ
1−i)

)]

= IHt

[ ∑
y∈H̄

w(x̂
1−i, ŷ1−i) (f

t(x)− f t(y))

]

(22)

and

P∗i Gti (x) = Gti (x̂1−i)

=
∑
y∈H̄

2w(x̂
1−i, ŷ1−i)

(
Pif

t(x̂
1−i)− Pif

t(ŷ
1−i)

)
+μ

∑
y∈Ht

2w(x̂
1−i, ŷ1−i)

(
Pif

t(x̂
1−i)− Pif

t(ŷ
1−i)

)
=

∑
y∈H̄

2w(x̂
1−i, ŷ1−i) (f

t(x)− f t(y))

+μ
∑

y∈Ht

w(x̂
1−i, ŷ1−i) (f

t(x)− f t(y))

(23)

and

P∗iGLT ·D ·GL(x) =
[
GLT ·D ·GL

]
(x̂

1−i)

=
∑
y∈H̄

di · w2(x̂
1−i, ŷ1−i)

(
Pif

t(x̂
1−i)− Pif

t(ŷ
1−i)

)
=

∑
y∈H̄

di · w2(x̂
1−i, ŷ1−i) (f

t(x)− f t(y))

= GLT ·D ·GLf t. (24)

By assembling weight matrices w(x̂
1−i, ŷ1−i) into

w̄(x, y) =

ds∑
i=1

w(x̂
1−i, ŷ1−i). (25)

Then, (18) would be equivalent to the following:∑
y∈H̄

2w̄(x, y) (f t(x)− f t(y))

+μ
∑

y∈Ht

w̄(x, y) (f t(x)− f t(y))

+μIHt

[∑
y∈H̄

w̄(x, y) (f t(x)− f t(y))

]
+ βGLT ·D ·GLf t

+ λIHt(f t − bt) = 0, ∀x ∈ H̄.

(26)

Equation (26) is a sparse and linear system, where the third
term is symmetric. However, the whole equation is asymmetric
due to the projection operator IHt . Thus, we choose the gener-
alized minimal residual method (GMRES) to solve the system
[34]. The optimization procedures for solving WNSR under the
WNLL discretization framework is presented in Algorithm 1.
For the nonweighted NSR model, we only need to replace the
matrix D by the identity matrix I |C|×|C|.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Experimental Settings: To evaluate our proposed WNSR
method on HSI inpainting, in this section, we conduct extensive
experiments using five well-known datasets, i.e., Pavia City
Center, Washington DC Mall, Pavia University, RemoteImage,
and Simu_Indian. In all experiments, four most recently pro-
posed approaches are adopted as the competitors, including
WNLL [28], TNN [14], total variation into low-rank tensor
completion (LRTC-TV-II) [35], tensor train weighted optimiza-
tion (TT-WOPT) [36]. WNLL is a patch-based method without
considering second-order regularization. TNN takes the HSIs
as tensor data and exploits low-rank property using a tubal
rank. LRTC-TV-II introduces total variation (TV) term based on
the low-rank constraint to strengthen the smoothness of spatial
structure. TT-WOPT adopts an efficient tensor-train weighted
decomposition to find the latent core tensors of the tensor data.
All the experiments are conducted on the program platform with
Intel Core i5-8250U 1.60 GHz and 8G RAM. The source code of
our method has been uploaded online for evaluation. The website
is https://github.com/ZhengJianwei2. Note that the main code of
our algorithm is provided in an encrypted format, which will be
decrypted after the review phase.

For all the competing methods, we follow the authors’ sugges-
tions to finetune the parameters guaranteeing the optimal results
in all experiments. Unless otherwise specified, for WNSR, we
limit the spatial patch size to 2× 2 since the spatial resolution of
the HSIs is often much lower than the natural RGB images. For
each patch, the approximate nearest neighbor search algorithm
and a k–d tree method are jointly used to efficiently obtain the
nearest neighbors. The trade-off parameters λ and β are set as
1e8 and 0.05, respectively. The weight γ of semi-patch is set as
0.2. A more detailed discussion of settings would be shown in
Section IV-B. Since that using a reasonable initialization would
make WNSR easier to converge, we adopt the result of certain
efficient algorithms, such as APG [37], as an initialization in our
implementation.

Data Normalization: Let b ∈ Rm×n×B denote the degraded
hyperspectral data with B spectral bands and spatial size m× n.
We simply consider b as a collection of B 2-D images (or bands)
with width m and height n. In our experiments, each band of the
target HSI is normalized to the range of [0, 1] by the following
formula:

b̄h =
bh −min(bh)

max(bh)−min(bh)
, h = 1, 2, . . . , B (27)

where bh is the hth spectral band of b, min(bh) and max(bh)
respectively represent the minimum and maximum values of

https://github.com/ZhengJianwei2
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Algorithm 1: (W)NSR for HSI Reconstruction.
Requirement: An incomplete observation HSI data b of an
unknown HSI data f�Rm×n×B . For every t ∈ [B], f is
partially observed on the subset Ht of H̄ ∈ [m]× [n]. γ=

0.2, β = 0.05, λ = 1e8, μ = |H̄t|
|Ht|−1.

Output: A recovered HSI f
Initialize f (t), t = 0, as an m× n matrix by holding the
known parts of f tand filling the unknown parts randomly.
For easier convergence, f (t) can also be initialized by
other fast implementation such as the APG algorithm [37].

while not converge do
1. Generate the patch set Pf (k) and get corresponding

known set Ht.
2. Get the matrix D = diag{d1, d2, . . . , d|H̄|} with

dj = 1 for xj ∈ H̄t\Ht and dj =
|H̄t|
|Ht| for xj ∈ Ht.

3. Compute the weight matrix on the spatial domain:
w(x, y) = w(Pf (k)(x),Pf (k)(y)), x, y ∈ H̄ .

4. Get the new assembled weight matrix and the graph

Laplacian GL:w̄(x, y) =
ds∑
i=1

w(x̂
1−i, ŷ1−i).

5. For every band t, get (f t)(k+1) by using GMRES to
solve (26).

6. k←k+1.
end while
f = f (k) .

the pixels in bh. After restoration, the images with their original
scale can be simply obtained as follows:

f̄h = fh ∗ (max(bh)−min(bh)) + min(bh) (28)

where fh is the learned image. Note that it has been reported in
[6] that normalization and its inverse operation may cause some
distortions. To investigate this phenomenon, we first randomly
sample 5% pixels from Washington DC Mall, and then compare
the recovered spectral signature to the original one using WNSR
with and without normalization step. The results are shown in
Fig. 2, where (30,180) is the selected missing point and mean
DN denotes the average value of all pixel points. Moreover, the
PSNR results of our method with or without normalization step
are 41.78 and 42.77, respectively.

In Fig. 2(a) and (b), although partial pixel values of two
recovered curves slightly deviate from the original ones, the
mean DNs of the two recovered curves stick completely to
the original spectral signature. In Fig. 2(c) and (d), both the
results generated from WNSR with or without normalization
step hold clear texture details. These observations demonstrate
that normalization only leads to trivial influence on our method
when applied in HSI inpainting problems. The practical reason
for our adoption of this step is attributed to the fact that most
algorithms [14], [35] report their results using numerical range
[0, 1]. We try to present the results in similar circumstance and
provide a fair comparison.

Fig. 2. Spectral signature and visual results (band 60) on Washington DC
Mall under 95% random missing rate. (a) Pixel point (30,180), (b) Mean DN,
(c) normalized and, (d) un-normalized.

A. WNSR for HSI Inpainting

To simulate the incomplete data, we randomly add missing
pixels, Gaussian noise, and stripes to all the bands of five HSI
datasets. Three kinds of cases are considered to investigate
the performance of all competing methods, both visually and
quantitatively. Detailed cases are listed as follows.

Case 1: Five different missing rates (MRs), i.e., 75%, 80%,
85%, 90%, 95%, are applied to each noisy-free HSI
band independently.

Case 2: Based on 85% Gaussion missing rate, 20 row and
column stripes with width 1 are further randomly
distributed in each noisy-free HSI band. Moreover,
certain thick deadlines with width 20 or 10 are added
to bands 30–50 (case 2.1) or all bands (case 2.2).

Case 3: The Gaussian noise with variance 0.02 and random
missing ratio 95% are imposed. In addition, 20 col-
umn stripes with width 1 are added to all bands.

1) Visual Quality Comparison: Following [29], we take the
Simu_Indian data to show the results of case 1. This data contains
224 spectral bands with 145 × 145 spatial pixels in each band.
By conducting case 1 with Simu_Indian, we illustrate the visual
results of all competitors in Fig. 3 using different bands, where
we mark certain region by a green box and enlarge it in red box
for more detail’s exhibition. From Fig. 3, several observations
can be easily derived. First, most of the competing methods
work effectively for HSI recovery from slight pixels missing.
Second, TNN, LRTC-TV-II, and TTWOPT fail to deliver good
results under high MRs, especially when the missing rate is
at 90% or 95%. The reason may be partially attributed to the
impact of Gaussian distribution of missing pixels, which poses
difficulties in accurately estimating the intrinsic rank. Moreover,
the results from LRTC-TV-II are over smooth because of the
TV regularization that reduces the edge sharpness and texture
details. Third, our WNSR performs best among all the compet-
ing approaches. Evidently, it can fill in the missing pixels more
effectively, while preserving clearly the structure of the original
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Fig. 3. Restoration results of Simu_Indian data with different missing rates (75% to 95%).

HSI data. Although WNLL also achieves high visual quality,
especially when the MRs are lower than 85%, its recovery results
are evidently blurrier than ours. For instance, in the case with
missing rate 75%, our WNSR method clearly preserves sharper
edges and smoother patches than WNLL.

As introduced in [38], for most real situations, HSIs are
corrupted by stripes and deadlines. In order to present direct
comparison under these scenarios, we also add some random
stripes and Gaussian noise to the original HSIs in case 2 and
case 3. Figs. 4, 5, and 6 give the restoration results of case
2 and case 3 in Pavia city center (band 45), Simu_indian
(band 10) and Pavia University (band 60), respectively. Note
in Figs. 4 and 5, we do not illustrate the Gaussian missing pixels
for the purpose of highlighting the distribution of stripes and
deadlines.

Figs. 4 and 5 respectively show the recovered images with
regarding to case 2.1 and case 2.2. In Fig. 4, LRTC-TV-II
fails in inpainting the thick deadlines. This is attributed to
the TV constraint that considers inner line pixels as positive
property with local continuity. The remaining methods, i.e.,

TNN, WNLL, TTWOPT, and WNSR, all roughly recover the
complete images. Comparatively, the recovered image from
WNSR is much closer to the original one. From Fig. 5, our
first observation is that most pinstripes can be well recovered
by all competing methods. However, all methods fail in filling
precise values into the pixels for thick deadline. Note this is the
extreme case since our inpainting task is conducted in singleton
scenarios, little information can be drawn due to the missing
pixels from all bands. Among all the selected competitors, by
comparatively looking into the details on the lower right corner,
we can still find that the results from WNSR are smoother than
those from others. The PSNR values also confirm the visual
results. Similarly, in Fig. 6, the restored images from the com-
peting methods, i.e., TNN, WNLL, LRTV-TV-II, and TTWOPT,
again are much noisy and blurry. Benefiting from the advantage
of second-order regularizer, the recovered image of our WNSR
method is relatively smoother than others. Unfortunately, for the
same reason of seeking smooth results, certain sharp edges of
images generated from WNSR are compromised. Specifically,
one can see that in the top right corner of Fig. 6, a bright pixel
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Fig. 4. Restoration results of Case 2.1 (with two thick deadlines in bands 30–50) on Pavia City Center data.

Fig. 5. Restoration results of Case 2.2 (with a thick deadline in all bands) on Simu_Indian data.

is mistakenly removed by WNSR. Nonetheless, we believe that
this imperfection is acceptable since WNSR behaves desirably
in most cases. From another point of view, this characteristic
also holds the potential for some other applications, such as
anomaly detection [39]. Overall, from all these three figures, we
can observe that WNSR restores images with high fidelity of
visual quality in different inpainting scenarios, which preserves
much delicate details of the original images.

2) Quantitative Comparison: In this part, three well-known
numerical indicators are adopted to give a quantitative assess-
ment, including mean peak signal-to-noise ratio (MPSNR) and
structural similarity (MSSIM). In order to objectively evaluate
the spectral fidelity of the recovered results, the mean spectral
angle (MSA) [40] is also used. Table I lists the results by
applying different methods in Washington DC Mall, where the

best numerical values are shown in bold face. Again, it is evident
that the proposed WNSR algorithm performs best on average in
all three cases. Although TNN performs slightly better than our
method under 75% missing rate, its performance in other cases
is poorer than ours. For all the three cases of the Washington DC
Mall image, the average improvement of WNSR over TNN is
1.27, 0.023, and 0.84 in terms of MPSNR, MSSIM, and MSA,
respectively. Note that case 3 is undoubtedly the most difficult
scenario. Encouragingly, we can observe that our proposed
WNSR enjoys a definitely superior performance over the other
competitors.

In addition, Fig. 7 shows the curves of MPSNR, MSSIM,
and MSA values against five missing rates in Case 1. Our first
observation is that the curves of MPSNR and MSSIM maintain
a downward trend, while the results of MSA keep increasing
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Fig. 6. Restoration results of Case 3 on Pavia University data.

Fig. 7. MPSNR, MSSIM, and MSA values of Pavia city center (a)–(c) and Washington DC Mall (d)–(f) under case1 generated by TNN, WNLL, LRTC-TV-II,
TTWOPT, and WNSR, respectively.

Fig. 8. Detailed quantitative evaluation of competing approaches for each band on RemoteImage. (a), (b) Case 1, (c), (d) Case 2.1, (e), and (f) Case 3.

along with the higher MR values. This is reasonable since a
higher sampling rate always means more useful information
would be available. We can also see that our WNSR achieves the
best numerical values compared to others when MR is equal or
higher than 80%. Note that when missing rate equals 75%, most
of the algorithms work quite effectively, and the difference of
their best numerical values are insignificant. To better illustrate
the stability of different algorithms, Fig. 8 shows the PSNR
and SSIM values of each band on RemoteImage, where the
horizontal axis in the figure represents the band number, and
the vertical axis represents the PSNR or SSIM result in that
band. In this figure, WNSR again achieves the best performance
almost in all the bands. Fig. 9 further shows the behavior of

spectral consistency on representative pixels. It is evident that
the profiles generated from TNN, LRTC-TV-II, and TTWOPT
deviate far from the original ones. WNLL and WNSR both can
capture the main spectral consistency. From a deeper insight, the
curves of our method are more natural and much closer to the
original one, which again demonstrates the superiority of our
second-order constraint.

3) Running Time Comparison: Taking case 1 as an example,
Table II lists the runtime of all methods on RemoteImage data.

Similarly, Fig. 10 illustrates the execution time of all the
competing methods on Simu_Indian data. In both Fig. 10 and
Table II, the efficiency of our method is very competitive com-
pared to others. Note that the performance of WNSR ranks first
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TABLE I
COMPARISON RESULTS OF DIFFERENT METHODS IN CASES 1–3 ON WASHINGTON DC MALL

Fig. 9. Spectrum of pixel (75,75) in Simu_Indian center (top row) and pixel (150,150) in Pavia city (bottom row) under 95% random missing rate.

in almost all the aforementioned experimental results. WNLL is
the most efficient approach among all the five algorithms due to
its usage of simpler constraint. Accordingly, its performance
is inferior to WNSR both quantitatively and visually. TNN,
LRTC-TV-II, and TTWOPT are tensor decomposition-based
methods, which is time-consuming at finding the latent core
tensor rank. For LRTC-TV-II, a step for computing the inverse

of a matrix is unavoidably required in each iteration, which
further increases the running time. The reasonable efficiency
of WNSR while holding the best visual quality stems from
the weight assembly step, which combines s1 × s2 equations
in the spatial domain into only one equation. Furthermore,
adopting the semi-patch technique can also slightly improve the
efficiency of WNSR with the sacrifice of recovery performance
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TABLE II
RUNTIME OF ALL THE FIVE METHODS ON REMOTE IMAGE WITH

MRS FROM 75% TO 95% IN CASE1

Fig. 10. Execution time of all competing methods under MRs 75%–95% on
Simu_Indian data.

Fig. 11. Sensitivity analysis of patch size ps in Simu_Indian. (a) MPSNR.
(b) MSSIM.

in an acceptable range. More details can be found in the next
section.

4) Parameters Discussion: In this section, sensitivity analy-
sis of two essential parameters, i.e., patch size ps and the weight
parametersγ, are undertaken on the noisy-free Simu_Indian data
in case 1 with missing rate 90%. All the results are averaged from
ten trials.

1) Patch size ps: By varying ps from 1 to 6, the inpainting
results in terms of MPSNR and MSSIM are shown in
Fig. 11. We can observe that WNSR gets the best numer-
ical performance. when ps is set as 2. These results are
reasonable since the spatial resolution of HSI is relatively
small. A larger patch size would lead to a loose capture of
detailed structure information.

On the contrary, directly using a single-pixel as the patch unit
cannot utilize any spatial information. Therefore, patch size 2 is
a suggested setting in practical usage of our method.

TABLE III
MPSNR VALUES OF DIFFERENT METHODS IN FIVE DATASETS WITH

MRS 95%, 90%, 85%, RESPECTIVELY

2) Weight parameter γ of semi-patch: Parameter γ is used
to restrict the weight of local coordinate information.
As shown in Fig. 12, with the increase of weight γ, the
runtime of our method is gradually reduced. Meanwhile,
the MPSNR and MSSIM results are relatively stable when
γ is smaller than 0.4. However, they turn into a decreasing
trend when the parameter is larger than 0.4. These results
together lead to a conclusion that with a proper selection
of γ, the efficiency of WNSR would be improved with a
little sacrifice of the recovery performance.

B. Component Analysis for WNSR

Under the assumption that the image patches lie on a low
dimension and smooth manifold, in this experiment, we directly
compare the performance difference among several variants of
WNSR, including GL, WNLL and NSR. Among them, WNLL
and GL only adopt the first-order and second-order regulariza-
tion, respectively. NSR is the nonweighted version of WNSR.

All these methods aim to reconstruct HSI images using the
low-dimensional property. The conjugate gradient method is
used to solve the linear system in weighted nonlocal Laplacian
and graph Laplacian. All the experiment settings of WNSR are
as same as in previous experiments.

The numerical results are shown in Tables III and IV, where
the best and second best results are highlighted in bold face and
with underline, respectively. It is clear from these tables that our
WNSR algorithm significantly improves the recovery accuracy
in all datasets. We can observe that WNLL performs worse than
NSR when MR is lower than 90% and performs better when
MR reaches 95%. It is reasonable because when the MR is high,
WNLL can provide more balanced prior information than NSR.
On the contrary, when there are enough known pixels, NSR can
make more use of the intrinsic smoothness characteristics of the
image. Considering the loss rate of real-life HSIs, we believe
that NSR is more suitable for practical situations than WNLL.
Fig. 13 provides a visual illustration of these results. What is
easy to find from the error map is that our WNSR keeps both the
smoothness and the edge information better than the compared
method.
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Fig. 12. MPSNR, MSSIM, and runtime results of Simu_Indian data under increasing γ. (a) MPSNR. (b) MSSIM. (c) Runtime(s).

Fig. 13. Reconstruction of the Simu_Indian dataset from 95% pixels missing. The error is presented with a scale of 1/20 to highlight the difference.

TABLE IV
MPSSIM VALUES OF DIFFERENT METHODS IN FIVE DATASETS WITH

MRS 95%, 90%, 85%, RESPECTIVELY

V. CONCLUSION

In this article, we use both the low dimensionality and the
smoothness of the patch manifold as the regularization terms
for missing pixels recovery of the HSIs. Specifically, to better
keep the smoothness, we introduce a nonlocal second-order
regularization and a weighted version based on the typical
LDMM constraint. In contrast to only using the property of
low dimensionality alone, the joint consideration of both low
dimensionality and smoothness can optimistically approximate
the real manifold. The model is solved by a GMRES algorithm.
Moreover, a semi-local patch technique is used to speed up
the efficiency of our model. Various comparison experiments

with several most recently published algorithms demonstrate the
superiority of our proposed constraint. In the near future, we are
interested in extending our method to the subspace coefficients
of HSI, which would further enhance the efficiency for better
practicability.
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