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PFST-LSTM: A SpatioTemporal LSTM Model With
Pseudoflow Prediction for Precipitation Nowcasting

Chuyao Luo, Xutao Li , and Yunming Ye

Abstract—Precipitation nowcasting is an important task, which
can serve numerous applications such as urban alert and trans-
portation. Previous studies leverage convolutional recurrent neural
networks (RNNs) to address the problem. However, they all suffer
from two inherent drawbacks of the convolutional RNN, namely,
the lack of a memory cell to preserve the fine-grained spatial
appearances and the position misalignment issue when combining
current observations with previous hidden states. In this article,
we aim to overcome the defects. Specifically, we propose a novel
pseudo flow spatiotemporal LSTM unit (PFST-LSTM), where a
spatial memory cell and a position alignment module are developed
and embedded in the structure of LSTM. Upon the PFST-LSTM
units, we develop a new sequence-to-sequence architecture for
precipitation nowcasting, which can effectively combine the spatial
appearances and motion information. Extensive empirical evalua-
tions are conducted on synthetic MovingMNIST++ and CIKM An-
alytiCup 2017 datasets. Our experimental results demonstrate the
superiority of the proposed PFST-LSTM over the state-of-the-art
competitors. To reproduce the results, we release the source code
at: https://github.com/luochuyao/PFST-LSTM.

Index Terms—Deep learning, image sequence prediction,
precipitation nowcasting.

I. INTRODUCTION

PRECIPITATION nowcasting aims to predict the kilometer-
wise rainfall intensity within next 6 h [1]. It is an important

and useful tool for weather forecasting [2], which can not only
help to prevent natural disasters caused by heavy rains but
also serve agriculture activity arrangements, transportation route
decisions, and people’s daily trip planning. However, due to
the inherent complexities of atmosphere and nonlinear cloud
dynamics, the problem is very challenging [3].

Traditionally, numerical weather prediction (NWP) meth-
ods [4] make use of a set of fluid dynamics and the thermo-
dynamics equations. The forecast solutions are derived with
numerical simulations from the given initial and boundary con-
ditions. However, NWP methods can only work at the moderate
scale and cannot make kilometer-wise predictions accurately.
Moreover, their computational costs are too high to be deployed
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in nowcasting applications [5], which need real-time updates
frequently. Another line of studies considers the problem as a
radar echo map extrapolation task [6], [7]. Optical flow [8]–
[10], and correlation analysis [11] are two classical methods,
which estimate the motion fields of precipitation particles for
extrapolation. However, the two methods make an estimation
based merely on current observations, ignoring a large volume
of historical records.

Recently, researchers have resorted to deep recurrent neural
networks (RNN) [12] to exploit huge records for radar echo
map extrapolation. For example, Shi et al. proposed two typ-
ical methods under the sequence-to-sequence framework [13],
[14], which are ConvLSTM [15] and ConvGRU [1]. These two
methods combine the strength of the convolution kernels in
image generation with the sequence prediction ability of RNN.
Shi et al. further improved the ConvGRU model and thus pro-
posed TrajGRU by developing adaptive kernel neighborhoods
for extrapolations [1]. Though the three models can offer better
performance than the conventional optical flow and correlation
analysis methods, the resulting explorations have blurry effects.
To address the drawback, Tran et al. revised the structure of
TrajGRU and integrated the mean square error (MSE), mean
absolute error, and structural similarity index (SSIM) [16] as
the loss function in [17]. Besides, Wang et al. introduced a spa-
tiotemporal memory cell and put forward a novel convolutional
LSTM unit to build a predictive RNN (PredRNN) network for
extrapolations [18].

The deep RNN models, albeit delivering state-of-the-art per-
formance, fail to accurately model the overall appearances and
trajectories of precipitation particles. This is because1 the mod-
els either lack a memory cell for preserving fine-grained spatial
appearances or inaccurately combine the previous hidden states
with current input in RNN, or both. The limitations come from
the inherent structures in the convolutional RNN units, such
as ConvLSTM and ConvGRU. On the one hand, though the
convolutional kernels are incorporated into LSTM and GRU to
extract spatial features, the units only maintain a memory cell for
capturing the temporal dynamics, where the spatial appearances
are not memorized. Besides, in ConvLSTM and ConvGRU, the
current input and hidden states of the previous time step are
combined without a position alignment. As the precipitation
particles are constantly moving, such position mismatches may
cause noises to trajectories prediction.

1The full account of our findings will be discussed in Section II.
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In this article, we aim to overcome the defects of the convolu-
tional RNN units and develop a novel RNN block [12], namely,
the pseudoflow spatial-temporal LSTM (PFST-LSTM). In the
block, a spatial memory cell is introduced, which can preserve
the spatial details level by level. Moreover, a pseudoflow module
is proposed, which aligns the current input and previous hidden
states with an estimated flow field. By doing so, the developed
RNN block can better model the appearances and trajectories of
the precipitation particles. Upon the block, we build up a new
sequence-to-sequence architecture to address the extrapolation
problem, where the appearance details in the spatial memory
cells are transferred along both spatial and temporal dimensions
in a zigzag way, and motion information is delivered only along
the time dimension. Extensive experimental results have been
conducted to demonstrate the effectiveness of the proposed
PFST-LSTM model.

For clarity, we summarize the main contributions of this article
as follows:

1) We propose a novel convolutional RNN block, which
overcomes the defects of ConvLSTM and ConvGRU by
introducing a spatial memory cell and a pseudoflow align-
ment module.

2) Upon the block, we construct a sequence-to-sequence
method PFST-LSTM for radar echo map extrapolation. In
the method, spatial appearances and motion information
are effectively combined, where the former is delivered
in a zigzag direction, while the latter one is conveyed
horizontally.

3) Extensive empirical evaluations on the MovingMNIST++
and CIKM AnalytiCup 2017 datasets are conducted. Our
experimental results show that the proposed PFST-LSTM
yields significantly better performance than the state-of-
the-art methods.

II. RELATED WORK

As the key of the precipitation nowcasting, the radar echo
extrapolation can be described as follows. Given a sequence of
past radar observationsX1:t (X1:t ∈Rt×K1×K2×K3 ), the extrap-
olation model aims to forecast the future maps Xt+1:T (Xt+1:T

∈R(T−t)×K1×K2×K3 ). Here, K1, K2, and K3 denote the width,
height, and channel of radar maps, respectively. In general, the
channel number K3 is one. The t and (T − t) are the lengths of
the input and output of the radar image sequences, respectively.
Then, we review the related models that can be applied in this
setting for extrapolation.

A. ConvLSTM

ConvLSTM was proposed in [15]. As the radar echo map
extrapolation aims to predict a sequence of images, which
have spatial structures, the ConvLSTM units replace the full
connections in LSTM with convolutions. Specifically, in the
ConvLSTM units the input modulation gate gt, input gate it,
forget gate ft, memory cell Ct, output gate ot, and hidden state
Ht are updated as follows:

gt = tanh(Wxg ∗Xt +Whg ∗Ht−1 + bg)

Fig. 1. Sequence-to-sequence extrapolation architecture based on ConvL-
STM.

it = σ(Wxi ∗Xt +Whi ∗Ht−1 + bi)

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ gt
ot = σ(Wxo ∗Xt +Who ∗Ht−1 + bo)

Ht = ot ◦ tanh(Ct) (1)

where σ represents sigmoid activation function, ∗ is the con-
volution operation, and ◦ is the Hadamard product. The W
denotes the convolution kernel matrix to be learned and we use
subscripts to differentiate various convolution matrices. Upon
the stacks of such units, a sequence-to-sequence architecture is
built for radar echo map extrapolation, shown as in Fig. 1. We
can see from the figure that the information in memory cell Ct is
delivered horizontally along the time dimension, capturing the
temporal dynamics. In the vertical dimension, however, only
hidden states are transferred. Hence, the ConvLSTM cannot
memorize the fine-grained spatial appearances. Moreover, we
can see from (1) that when calculating gt, it, ft and ot, the
current inputXt and hidden stateHt−1 are directly summed after
a convolution operation. As the precipitation particles constantly
have displacements, there is inevitably a position mismatch
between Xt and Ht−1. Such a simple combination may lead
to noises.

B. ConvGRU

ConvGRU was developed in [1], [19]. As a simplified version
of LSTM, GRU [20] contains fewer parameters and is often
easier to train. Hence, Shi et al. further develop ConvGRU units,
which change the full connections in GRU into convolutions for
precipitation nowcasting [1]. The update gate Zt, reset gate Rt

and hidden stateHt in ConvGRU units are computed as follows:

Zt = σ(Wxz ∗Xt +Whz ∗Ht−1 + bz)

Rt = σ(Wxr ∗Xt +Whr ∗Ht−1 + bi)

H ′
t = f(Wxh ∗Xt +Rt ◦ (Whh ∗Ht−1) + bh)

Ht = (1− Zt) ◦H ′
t + Zt ◦Ht−1.

(2)

Based on the ConvGRU units, a similar sequence-to-sequence
architecture is stacked for extrapolations. According to up-
date equations and the architecture, it is easy to see that the
ConvGRU units also lack the ability to carefully model the
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spatial appearances and to tackle the position misalignment
issue.

C. Trajgru

TrajGRU was first established in [1]. Because the con-
volutional filters in ConvLSTM and ConvGRU are location-
invariant, not suitable to model the trajectories patterns, Tra-
jGRU learns and adopts dynamic recurrent connections for
convolution GRU. Specifically, its main formulas are given as
follows:

Ut, Vt = γ(Xt, Ht−1)

Zt = σ

(
Wxz ∗Xt +

L∑
l=1

W l
hz ∗ warp(Ht−1, Ut,l, Vt,l)

)

Rt = σ

(
Wxr ∗Xt +

L∑
l=1

W l
hr ∗ warp(Ht−1, Ut,l, Vt,l)

)

H ′
t = f

(
Wxh ∗Xt +Rt

◦
(

L∑
l=1

W l
hh ∗ warp(Ht−1, Ut,l, V t, l)

))

Ht = (1− Zt) ◦H ′
t + Zt ◦Ht−1 (3)

where L is the total number of allowed links, Ut and Vt are the
flow fields, which store the dynamic connection generated by a
two-layer network γ, and the warp function selects the dynamic
connections via the bilinear sampling kernels [21], [22]. We can
see that TrajGRU does not have a special design for preserving
spatial appearance details. Though it tries to address the position
mismatch problem, its warp operator takes only Xt and Ht−1

as input, which may not be sufficient.

D. PredRNN

PredRNN was developed in [18]. To better model the spatial
correlation and temporal dynamics, a spatiotemporal LSTM unit
(ST-LSTM) is designed in PredRNN. ST-LSTM incorporates
a spatial memory cell. In addition to the conventional LSTM
operations on temporal dimension, the main formulae related to
the spatial memory cell are defined as follows:

gt = tanh(Wxg ∗XtI{l=1} +Whg ∗H l−1
t + bg)

it = σ(Wxi ∗XtI{l=1} +Whi ∗H l−1
t +Wmi ◦M l−1

t + bi)

ft = σ(Wxf ∗XtI{l=1}+Whf ∗H l−1
t +Wmf ◦M l−1+bf )

M l
t = ft ◦M l−1

t + it ◦ gt
ot = σ(Wxo ∗XtI{l=1} +Who ∗H l−1

t +Wmo ◦M l
t + bo)

H l
t = ot ◦ tanh(M l

t) (4)

where H l
t and M l

t are the hidden state and spatial memory state
of the lth level at time t, respectively, and I denotes the indicate
function. Different from LSTM, the input modulation gate, input

gate, forget gate, and output gate is updated by the hidden state
of the previous layer at the current time rather than that at the
previous time step. In other words, the unit aims to memorize the
spatial information layer by layer. Hence, it can better model the
spatial appearances. Then, to enhance the modeling capability
for short-term sequence dynamics, Wang et al. further improved
LSTM and proposed Causal LSTM [23] unit, which integrates a
temporal memory into the spatial memory. In addition, a gradient
highway unit was also developed to tackle the gradient issue for
long-term prediction. Upon the two special designs, an enhanced
version (named PredRNN++) was built and more promising
results were delivered.

In [24], an E3D-LSTM model was put forward by replacing
2-D into 3-D convolution with attention mechanism. Instead
of stacking the spatiotemporal LSTM units into a sequence-
to-sequence predictor, all these models adopt a conventional
sequence prediction scheme and forecasts only one image at
each time. To generate a sequence prediction, the forecast result
is recursively treated as input. Despite the introduction of an
extra memory cell to capture the spatial appearance details, since
the temporal dimension is still updated as conventional LSTM,
the position misalignment problem remains.

E. Other Related Models

Our work is also related to video prediction studies. For exam-
ple, Finn et al. [25] proposed an action-conditional prediction
method, which models the pixel motion explicitly with a motion
distribution. Bert et al. [26] introduced to dynamically adapt
the weights of convolutions upon the given input for video
prediction, instead of keeping them fixed as conventional convo-
lution operation. Wang et al. proposed the memory in memory
(MIM) neural network [27] to model the nonstationary and
approximately stationary spatiotemporal features for prediction.
In addition, in [28] a convolution network was proposed by
nicely leveraging the context features to enhance the video pre-
diction performance. Reda et al. developed a spatially displaced
convolution in [29]. Adversarial learning networks [30], [31]
and partial differential equation networks [32], [33] were also
put forward for video prediction.

In this article, we aim to overcome the deficiency of the
existing methods by developing a novel LSTM unit, which can
not only preserve the fine-grained spatial appearances but also
address the position mismatch problem. The performance of
our model also can be shown by comparing the above models in
Section IV.

III. PROPOSED MODEL

A. Pseudoflow Spatiotemproal LSTM Units

As noted in related work, due to the lack of a spatial memory
cell, the previous convolutional RNN models cannot produce
promising appearances for radar echo map extrapolation. The
remedy to this issue is simple and easy. We follow [18] and
embed a spatial memory cell into the structure of LSTM.

Our solution of the position misalignment is more sophisti-
cated. To better understand how the problem appears, we give
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Fig. 2. Illustration of the mismatch problem and our solution. The left column shows the cause of mismatch problems. The right column presents our notion of
the solution. The blue block and orange block denote the feature map of input and hidden state, respectively. In input feature maps, we leverage a black square to
denote the same moving object at different timestamps. In the hidden state, the red square indicates the actual position that we perform convolution. We can see
there is a mismatch between red and black square in existing RNN while the issue will be addressed by a hidden flow (shows as green blocks) in our solution. (a)
An illustration example of the position misalignment problem in existing convolutional RNNs. (b) The notion of our solution.

in Fig. 2(a) an illustrative example. In the example, a square
moves from the upper left corner at time step t− 1 to the bottom
right one at time step t, which is a rapid movement. If we apply
ConvLSTM or ConvGRU to the case, the hidden state Ht−1

will reside the square features in the upper left part. As a result,
Ht−1 and Xt can be hardly aligned, even after convolutional
operations. Thus, the direct summation of previous hidden state
and current observation may result in noises. We note that the
rapid movement in two adjacent time steps is not a hypothesis for
radar echo map extrapolation. There are two reasons: 1) the echo
map interval is often around several minutes, e.g., six minutes
in our experiments, because radars need to scan in many angles
to form an image; 2) the precipitation particles move fast and
vary simultaneously, thanks to the complexity of atmosphere.

Inspired by the optical flow methods, we approach the prob-
lem by adding a pseudoflow generation operator, which can
estimate the displacement for each position. Calibrating the
hidden state at the previous time step with the estimated dis-
placements, the positions are expected to be aligned with current
observations. For clarity, the notion of our approach is depicted
in Fig. 2(b).

We utilize a combination of multiple one-layer convolutional
signals and a bilinear sampling warp function to realize the
notion. The convolutional signal combination accounts for dis-
placement estimation and the warp function makes the calibra-
tion. In particular, we model the displacement D as

Dt = Xt−1 ∗Wx′d +Xt ∗Wxd +Ht−1 ∗Whd

+Mt ∗Wmd + bd (5)

Here, Dt is a K1-by-K2-by-2 tensor, K1 and K2 denote the
height and width of input X , and the third dimension denotes
the displacements along with vertical and horizontal directions.
We can see thatDt depends on the inputs of previous and current
time steps Xt and Xt−1, hidden state of previous time step Ht−1

and spatial memory at current timeMt. TheDt models some mo-
tion field which has some key differences from the conventional
optical flow. One key difference is that conventional optical flow
methods learn the motion filed by setting up an objective function
with the assumption that the brightness of pixels is invariant.
Instead, in our approach, the motion field Dt is generated by
some convolutions and fusions on various feature maps (e.g.,
Xt, Xt−1, Ht−1, and Mt). The motion field mimics the optical
flow but does not have the assumption on pixel brightness.
Thus, we mention it as the pseudoflow. After the displace-
ment estimation, we adopt the bilinear sampling kernels [21],
[22] as our warp function to calibrate the positions in Ht−1

and Ct−1

H ′
i,j,c =

K1∑
k1=1

K2∑
k2=1

Hk1,k2,c

max(0, 1− |i+Di,j,0 − k1|)max(0, 1− |j +Di,j,1 − k2|)

C ′
i,j,c =

K1∑
k1=1

K2∑
k2=1

Ck1,k2,c

max(0, 1− |i+Di,j,0 − k1|)max(0, 1− |j +Di,j,1 − k2|).
(6)
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Fig. 3. Comparison of three different LSTM units. (a) Conventional LSTM. (b) ST-LSTM. (c) PFST-LSTM.

Here, i and j are the indices of positions and c is the index for
channels. H ′ and C ′ denote the calibrated results of H and C
with our pseudoflow. For brevity, we omit the subscript t for
timestaps. The warp operator utilizes a weighted summation
of hidden or memory state at the previous time step to calculate
aligned state, where the weights are determined according to the
vertical and horizontal distances after the position calibration.
We note that as the spatial memory state Mt models the appear-
ances at the current time step, which does not need an alignment
operation.

Embedding the spatial memory cell and the position align-
ment module into LSTM, we obtain our pseudo flow spa-
tiotemporal LSTM unit (PFST-LSTM). As for a comparison
with ConvLSTM and ST-LSTM, we depict their structures as
ours in Fig. 3. We observe that compared to LSTM, ST-LSTM
introduces an extra spatial memory cell, shown as the orange
parts in Fig. 3(b). Our PFST-LSTM is more advanced, and not
only embeds the spatial memory cell (orange parts), but also
develops a position alignment module (blue parts). The two
special designs are able to remedy the drawbacks of existing
convolutional RNNs. Specifically, the computation of the unit is
formulated as follows:

gt = tanh(Wxg ∗X l
t +Whg ∗H ′l

t−1 + bg)

it = σ(Wxi ∗X l
t +Whi ∗H ′l

t−1 + bi)

ft = σ(Wxf ∗X l
t +Whf ∗H ′l

t−1 + bf )

Cl
t = ft ◦ C ′l

t−1 + it ◦ gt
g′t = tanh(W ′

xg ∗X l
t +Wmg ∗M l−1

t + b′g)

i′t = σ(W ′
xi ∗X l

t +Wmi ∗M l−1
t + b′i)

f ′
t = σ(W ′

xf ∗ Cl
t +Wmf ∗M l−1

t + b′f )

M l
t = f ′

t ◦M l−1
t + i′t ◦ g′t

ot = σ(Wxo ∗X l
t +Who ∗H ′l

t−1 +Wco ◦ Cl
t

+Wmo ∗M l
t + bo)

H l
t = ot ◦ tanh(W1×1 ∗ [Cl

t,M
l
t ]). (7)

As the spatial memory state Mt and hidden state Ht will also
be delivered along the spatial dimension, we utilize a superscript
l to denote the lth layer in the spatial dimension. We can see that
the input module gate gt, input gate it, forget gate ft and memory
state Cl

t related to the temporal cell are updated with calibrated
hidden and memory states H ′l−1

t and M ′l−1
t . The corresponding

gates and states on the spatial cell are renewed layer by layer,
whose input and memory information are X l

t and M l−1
t . Next,

we discuss how to utilize the PFST-LSTM units for echo map
extrapolation.
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Fig. 4. Three-layer sequence-to-sequence encode-decode architecture based on PFST-LSTM units.

Notably, the design of the PFST-LSTM unit is not a direct
combination of the TrajGRU and ST-LSTM. Compared with
TrajGRU, the main difference is that the flow is generated with
the contextual input xt−1 and xt in our model, which produces
the pseudo optical flow D. Besides, the spatial representation in
spatial memory and hidden state also enriches the form of D.
The ablation experiment in Section IV-B.4 will also demonstrate
the superiority of our method.

B. PFST-LSTM Architecture

We stack the PFST-LSTM units into a sequence-to-sequence
predictor, shown as in Fig. 4. The predictor comprises two parts.
One is the encoder to extract spatial appearances features and
temporal dynamics from a sequence of echo maps observed,
and the other is the encoder, which leverages extraction results
for predicting the further echo map sequence. Both the encoder
and decoder have a three-layer PFST-LSTM structure, where
downsample and upsample convolutional kernels are inserted in
between two PFST-LSTM layers. As the PFST-LSTM unit main-
tains both temporal and spatial memory cells, we can see that
their states Cl

t and M l
t are, respectively, delivered horizontally

and vertically along with H l
t . By doing so, the motion patterns

can be modeled time by time and the spatial appearances be
preserved layer by layer. Furthermore, we expect the preserved
spatial appearances also to be effectively combined with the
temporal motion features. To this end, a special three-layer
deconvolution subnetwork is developed for the encoder, shown
as a green trapezoid in Fig. 4. The subnetwork enlarges the
most abstract memory state M l=3

t−1 at the previous time step into
appropriate size and combines it with H l=1

t−1 and Cl=1
t−1 as input

at the current step, shown as an orange arrow in the encoder.
Symmetrically, a convolution subnetwork is also developed for
the decoder. The scheme makes the spatial appearances are
conveyed in a zigzag manner, which effectively integrates them
with motion patterns.

IV. EXPERIMENTS

A. Experiment on MovingMNIST++

1) Dataset and Parameter Setting: Following [1], we gener-
ate synthetic image sequences by randomly selecting three digits
and gradually applying the movement, rotation, and illumination
on them to make motion patterns. The synthetic data set contains
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Fig. 5. Prediction results of all methods on an example from MovingMNIST++. The first five images in the first row are the input, and the remainders denote the
ground-truth output.

TABLE I
PARAMETER SETTINGS TO GENERATE THE MOVINGMNIST++

TABLE II
RESULTS ON THE THREE TEST SETS (UNIT: MSE ×10−2)

8000 training samples and 2000 validation samples. As for the
test set, we generate 4000 samples with different parameter
settings, shown as in Table I. The prediction is performed with a
sequence of five images as input and a corresponding sequence
of ten images as output. In this experiment, we normalize all
images into [−1.0, 1.0] and leverage a batch size of 16. All
models adopt the early stopping strategy and are trained with
a learning rate of 0.0004. The max epoch is set to 800.

2) Results and Analysis: Following [17], MSE is adopted
as the evaluation metric. Table II shows the results of all the
methods. We note that method PredRNN and ST-LSTM are
the variants of PFST-LSTM and PFPredRNN without position

alignment module, respectively. The difference of the models
include PredRNN and PFPredRNN is that ST-LSTM and PFST-
LSTM adopt the developed sequence-to-sequence architecture
while PredRNN and PFPredRNN leverage the conventional
sequence prediction scheme (as introduced in Section II). We
observe from the table that the proposed PFST-LSTM consis-
tently outperforms the state-of-the-art baselines on three differ-
ent test sets. PFST-LSTM shows an obvious improvement in
ST-LSTM, which is attributed to its position alignment mod-
ule. The same conclusion also can be obtained by comparing
PredRNN and PFPredRNN. Moreover, we find that ST-LSTM
and PFST-LSTM deliver better results than PredRNN and
PFST-PredRNN, respectively, which implies the effectiveness
of the developed sequence-to-sequence architecture. Among
all the baseline methods, TrajGRU performs the best, because
it considers the position mismatch problem. The fact further
verifies our motivation to position calibration. For a visual
comparison, we show in Fig. 5, the prediction sequences on
an example of all methods. We observe that predictions by
ConvLSTM, ConvGRU, and PredRNN are the worst, which tend
to become blurry rapidly. This is because they all neglect the
position mismatch problem. However, PFST-LSTM, TrajGRU,
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TABLE III
COMPARISON RESULTS ON THE CIKM ANALYTICUP 2017 COMPETITION DATASET IN TERMS OF HSS, CSI, AND MSE

and PFPredRNN, which both carefully address the problem,
yield very promising results. In terms of position accuracy and
spatial appearances, PFPredRNN and PFST-LSTM are better
than TrajGRU, owing to its extra spatial memory cell. With the
ablation of the position alignment module, the performance of
PredRNN and ST-LSTM degenerates, which again validates the
effectiveness of the position calibration scheme in PFST-LSTM.
In terms of the architecture of models, PFST-LSTM is better than
PFPredRNN due to the downsample operation between different
layers, which makes the shallow layer also obtain a larger field
of view.

B. Experiment on Radar Data

1) Dataset: The radar echo map dataset is from the CIKM
AnalytiCup 2017 competition, which covers 101 × 101 km area
in Shenzhen. Each radar echo map contains 101 × 101 pixels,
and each pixel denotes a square of 1 × 1 km. The dataset was
originally divided into a training set with 10 000 sequences and
two test sets with 2000 sequences. We randomly select 2000
sequences from the training set as a validation set and select
1023 sequences, which contain the high echo area (at least one
pixel with the reflectivity > 40dBZ) from the two test sets as
a test set. Each sequence covers 90 min with an interval of 6
min. Hence, it contains 15 echo maps. Our objective is utilizing
the first five echo maps as input and predicting the next ten
ones.

2) Parameter Setting and Evaluation Metrics: The detailed
parameters of the proposed PFST-LSTM are shown in Fig. 4.
Moreover, we set the number of channels for all the spatial
memory state to be 16. The parameter settings of all the baseline
methods follow [17] and [18]. All the methods are trained with
a learning rate of 0.0004 and the early stopping strategy, and
Adam optimizer is adopted. We normalize all the echo maps
into [−1.0, 1.0] for learning, and batch size is set to four among
all models.

Following [15], we evaluate the results according to the Heidk
Skill Score (HSS) [34] and Critical Success Index (CSI) [1]. To
this end, we apply the following transformation to convert the
pixel value p in ground-truth and the predicted echo maps into
the reflectivity dBZ

dBZ = p× 95/255− 10. (8)

Then, we change the ground echo maps into binary matrices
according to a threshold τ . If the reflectivity is larger than the

Fig. 6. Performance changes against different nowcast lead time in terms of
MSE. (Best view in color).

threshold, it is set to 1, otherwise, it is set to 0. By comparing
the binary matrices of ground truth and prediction, we obtain
TP , FP , TN, and FN , which denote the numbers of the true
positive, false positive, true negative, false negative elements.
The HSS and CSI are computed as follows:

HSS =
2 ∗ (FN ∗ TN − FN ∗ FP)

(TP + FN) ∗ (FP + FN) + (TP + FP) ∗ (FP + TN)
(9)

CSI =
TP

TP + FP + FN
(10)

Specifically, we select 5, 20, and 40 dBZ as the threshold,
respectively. The HSS and CSI are integrated metrics that take
both probabilities of detection and false alarm rate into account
and can directly reflect the goodness of a model. The larger the
HSS and CSI are, the better the performance is. Besides, we also
utilize MSE to evaluate the performance.

3) Results and Analysis: Table III shows the results. We can
see that PFST-LSTM outperforms all methods under different
dBZ thresholds especially in the highest thresholds. In terms of
HSS, the prediction of our method is only 0.07% and 0.96%
higher than the second one as the threshold is 5 and 20 re-
spectively. However, when the threshold is 40, it is improved
to 16.36%. A similar phenomenon also can be seen for CSI. It
implies that our model can more accurately predict the region of
high rainfall. For the MIM model, although its performance is
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Fig. 7. Performance changes against different nowcast lead time in terms of HSS and CSI scores. (Best view in color). (a) HSS τ = 5. (b) CSI τ = 5. (c) HSS τ
= 20. (d) CSI τ = 20. (e) HSS τ = 40. (f) CSI τ = 40.

better than other baselines, it is inferior to the proposed PFST-
LSTM model. Among all the methods, ConvLSTM, ConvGRU,
CDNA, and DFN perform the worst, as these approaches neither
address the mismatch problem nor carefully model the spatial
appearance.

To present the performance at different nowcasting lead time,
we plot the frame-wise scores of the MSE in Fig. 6. We can see

that as the lead time increases all the models’ predictions become
worse. However, our model PFST-LSTM in general delivers the
best performance. As for E3DLSTM, it yields the best prediction
in the first 6 min. Nevertheless, its performance is getting worse
gradually and becomes the worst among all the models at the
10th prediction. Moreover, we also depict in Fig. 7, the HSS
and CSI curves w.r.t. different lead time under thresholds 5,
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TABLE IV
COMPARISON RESULTS OF ABLATION STUDY ON THE CIKM ANALYTICUP 2017 COMPETITION DATASET IN TERMS OF HSS, CSI, AND MSE

Fig. 8. Color code of the rada echo color map.

20, 40 dBZ, respectively. We can see that E3DLSTM and MIM
deliver the best performance at the beginning but their perfor-
mance becomes worse as the lead time increases. The proposed
PFST-LSTM delivers promising performance at the beginning
and produces the best overall performance in all the models.

Similar to MovingMNIST++, we visualize the prediction
results in Fig. 9, where the mapping between reflectivity value
and color is shown in Fig. 8. In Fig. 9, the first line denotes the
ground truth and the other lines denote the prediction results
by different models. We observe from the last few ground truth
images that the shape of the region with high rainfall intensity
is horizontal and continuous. However, the prediction results of
all the models except for PFST-LSTM upward tilt or some of
them are discontinuous. For instance, we mark the high echo
value regions with black lines in the last ground-truth image,
which forms a template. Accordingly, we put the template into
the last column of predictions and find that the PFST-LSTM
matches with it best, which is because of its special designs on
position calibrations and spatial appearances preserver. Besides,
only PredRNN and MIM model can generate the red part at the
last prediction. However, their appearances and position for high
echo value regions have a huge gap compared with ground truth.
Moreover, we also observe that the CDNA and E3DLSTM tend
to underestimate the high echo value regions (deep yellow or
red parts in ground-truth), which are critical for precipitation
nowcasting. It also explains why the metrics HSS and CSI are
much smaller than other models while the threshold is 40.

4) Ablation Study: To investigate the effectiveness of our
proposed mechanisms, we conduct the ablation studies and
summarize the results in Table IV. Before analyzing the results,
we first explain the name of the ablation models. In the table,
Conv-LSTM denotes the architecture (in Section III-B) built

with the ConvLSTM unit. Traj-LSTM is the TrajGRU variant
by replacing GRU with LSTM. Again, ST-Traj-LSTM indicates
the TrajLSTM model with an embedded spatial memory in each
building unit. ST-LSTM and PF-LSTM represent the degenera-
tion models of our PFST-LSTM by removing the spatial mem-
ory and pseudoflow subcomponent, respectively. We observe
that PFST-LSTM outperforms all the models under different
dBZ thresholds. Among all the models, the PF-LSTM achieves
competitive MSE with PFST-LSTM but worse HSS and CSI,
especially in the higher dBZ threshold. Besides, the ST-LSTM
also yields much worse results than PFST-LSTM. The result
validates the effectiveness of spatial memory and pseudo optical
flow subcomponents. As for Traj-LSTM, which also leverages
the spatial transformer to address the spatial nonalignment issue,
its performance is also inferior to our PFST-LSTM because
it does not have the special designs to preserve the spatial
details. The model ST-Traj-LSTM, which consists of the spatial
transformer and spatial memory mechanism, delivers even worse
performance than Traj-LSTM. The reason may be that the spatial
transformer and the spatial memory cannot be simultaneously
well-trained. Conv-LSTM, which has neither preserves the spa-
tial details nor tackles the misalignment issue, performs the
worst.

Similarly, we also depict the performance of the different
models w.r.t. the nowcasting lead time in Figs. 10 and 12. It can
be seen that the proposed PFST-LSTM always performs the best.
As for PF-LSTM, which excludes the spatial memory subcom-
ponent, delivers competitive performance at 5 dBZ threshold but
much worse prediction at 40 dBZ threshold than PFST-LSTM.
Similar observations can be made for ST-LSTM. Again, we find
that Traj-LSTM, ST-Traj-LSTM, and Conv-LSTM yield worse
performance than our PFST-LSTM at different nowcasting lead
times.

In Fig. 13, we also show an example to visually compare
the models. We find that Conv-LSTM underestimates the area
and strength of high echo value parts (red parts ground-truth
image). Traj-LSTM better predicts the high echo values but
the positions are not accurate. ST-TrajLSTM delivers better
position prediction but the high echo values are underestimated.
ST-LSTM produces a better high echo value region area (yellow
parts), but the specific values are still underestimated (supposed
to be red, instead of yellow). PF-LSTM shows the promising
prediction, but the area of yellow part is overestimated and
the dark yellow part is smaller than the ground truth. Overall,
PFST-LSTM produces the best results, in terms of position and
value accuracies. However, we find that it also cannot accurately
predict the red part in the 10th prediction, namely the high value
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Fig. 9. Prediction results of all methods on an example from the CIKM AnalytiCup 2017 competition. The first five images in the first row are the input, and the
remainders denote the ground-truth output (Best view in color).

Fig. 10. Performance changes against different nowcast lead time in ablation
study in terms of MSE. (Best view in color).

part is still underestimated, which could be an interesting issue
to study in the future.

5) Visualization and Understanding of Pseudoflow: One of
the main contributions of our model is the introduction of

Fig. 11. Generation process of synthetic flow Ds.

pseudoflow to address the position misalignment issue. To in-
vestigate and understand the effectiveness of the component, we
show and compare in Fig. 14, the pseudoflow and optical flow
computed by our methods and predicted image sequence. The
second line denotes the ground-truth optical flow computed from
the predicted images [10]. As there are three layers utilized the
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Fig. 12. Performance changes against different nowcast lead time in ablation study in terms of HSS and CSI scores. (Best view in color). (a) HSS τ = 5. (b) CSI
τ = 5. (c) HSS τ = 20. (d) CSI τ = 20. (e) HSS τ = 40. (f) CSI τ = 40.

pseudo flows, we depict them, respectively, in the third, fourth,
and fifth lines of the figure, which are denoted as {Dl}3l=1,
respectively. In the last line, we utilize the {Dl}3l=1 to synthesize
a total flow Ds. Specifically, the Ds is computed as Fig. 11.
Given input Xt at the current time, we utilize the flow Dl

t to
calculate the next image X ′l

t+1 from a different layer. Then, the
three images from the layers are added together to obtain the final
output X ′

t+1. Finally, we compute Ds based on Xt and X ′
t+1.

From the figure, we make three interesting observations. (1) The
{Dl}3l=1 in the layers are not equal to the ground-truth optical
flow, but mimic it. Hence, we name {Dl}3l=1 as pseudoflow.
(2) In {Dl}3l=1, the high reflectivity region is more clear in
pseudoflow than that in the optical flow, especially for D2 and
D3, which indicates that the movement of the high reflectivity
region is carefully modeled. (3) We can see that the synthesized
total flow Ds is quite similar to the ground truth optical flow,
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Fig. 13. Ablation results of on an example from the CIKM AnalytiCup 2017 competition. The first five images in the first row are the input, and the remainders
denote the ground-truth output (Best view in color).

Fig. 14. Visualization of optical flow and pseudo flow from different times on an example from the CIKM AnalytiCup 2017 competition. The first line is the input
and the output of our model. The second line denotes the optical flow of the first line. The third line to the fifth line is pseudo flows of different layers, respectively.
The last line presents the synthetic flow Ds. (Best view in color).

which validates that pseudo flow indeed models the motion
fields.

Finally, to demonstrate that the pseudoflow {Dl}3l=1 exactly
calibrates the position of the hidden state at different kinds of
the control gate, we compare the L1 norm and L2 norm between
the input Xt ∗W and hidden state Ht−1 ∗W with and without
the pseudoflow. Table V shows the result. We can see that the
value of L1 and L2 with pseudoflow calibration is smaller than
that without the calibration in general. The results imply that the

pseudoflow can align the hidden state toward the input, indicat-
ing its effectiveness in tackling the position mismatch issue.

V. CONCLUSION

In this article, we propose a novel convolutional LSTM unit
for precipitation nowcasting, namely PFST-LSTM, which ad-
dresses the position mismatch issue and the lack of a spatial
appearance preserver. A new sequence-to-sequence prediction
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TABLE V
COMPARISON OF THE DIFFERENCE BETWEEN THE HIDDEN STATE AND INPUT AFTER CONVOLUTION WITH AND WITHOUT THE PSEUDOFLOW IN

TERMS OF L1 NORM AND L2 NORM

architecture is also developed. Extensive experimental results
have been reported, which demonstrate the superiority of the
proposed model over the state-of-the-art approaches. Experi-
mental results have validated its effectiveness. In the future, we
would like to address the underestimation issue of high echo
value regions.
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