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Abstract—It is significant for restoration and protection of nat-
ural resources and ecological services in coastal wetlands to map
different land cover types with satellite remote sensing data. Con-
sidering difficulties of wetland species classification, hyperspectral
images (HSIs) with high spectral resolution and multispectral im-
ages (MSI) with high spatial resolution are considered to achieve
complementary advantages of multisource data. An effective ap-
proach, named as multistream convolutional neural network, is
proposed to achieve fine classification of coastal wetlands. First,
regression processing is adopted to make chaotically scattered
coastal wetland data more compact and different. Second, through
appropriate feature extraction and feature fusion strategies, high-
level information of multisource data in regression domain is fused
to distinguish different land cover. Experiments on GF-5 HSIs and
Sentinel-2 MSIs are carried out in order to validate the classifica-
tion performance of the proposed approach in two coastal wetlands
of research value in China, i.e., Yellow River Estuary and Yancheng
coastal wetland. Experimental results demonstrate the effective-
ness of the proposed method compared with the state-of-the-art
methods in the field, especially when the number of sample size is
extremely small.

Index Terms—Coastal wetlands, convolutional neural network
(CNN), data fusion, hyperspectral imagery (HSI), least squares
regression (LSR), multispectral imagery (MSI).

I. INTRODUCTION

ETLANDS, distributed in all climate zones ranging

from the tropics to the tundra [1], are among the most
productive and valuable ecosystems in the world [2]. The total
value of services provided by global wetland ecosystems is
nearly half of the total value of services that global ecosys-
tems provide [3]. Unfortunately, global sea-level rise [4], [5]
and inappropriate anthropogenic activities lead to the dramatic
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degradation in the area of coverage, ecological value, and
biodiversity in the worldwide coastal wetlands over the past
decades. Thus, detailed information about wetland vegetation
types and their spatial distribution in relation to topographic and
hydrographic features need to be assessed [6]. Classification of
coastal wetlands is a challenging task, due to their complicated
composition and pattern [7]. High-quality remote sensing data
is an important tool for rapid wetland assessment and proactive
management [8], because of its unique characteristics in an
easy data acquisition, spatially continuous coverage, and short
revisiting periods [9]. In this case, multispectral remote sensing
images with high spatial resolution have the potential ability to
classify wetland types [2]. However, it is difficult to classify the
types of coastal wetlands with various spectral features similar
to vegetation. Hyperspectral images (HSIs) have a wide spectral
range and high spectral resolution [10], [11]. Therefore, they
can help separate coastal wetland species with similar spectral
features. However, most of coastal wetland plants are mixed and
marshy, and the spatial resolution of HSI is low; it is difficult
for HSI distinguish vegetation types [12]. Multispectral images
(MSIs) are collected with high spatial resolution to provide
more spatial contexture details [2], [13]. Therefore, the fusion
of HSI and MSI can integrate diverse information and improve
the performance of coastal wetlands mapping.

Divergences in spectral characteristics within HSI and MSI
can reflect different ground objects [14]. MSIs are the most
common images used in coastal wetlands [2], [15]. In previous
studies, Landsat MSS, Landsat TM, Landsat ETM+, SPOT,
and Sentinel-2 images have predominantly formed the basis of
remote sensing techniques used for coastal wetlands monitoring
and for land cover mapping, extraction, and classification [16]—
[19]. Supervised classifiers are usually employed to make the
pixel-based classification on spectral signatures, for example,
machine learning like support vector machine (SVM) [20] and
random forest (RF) [21]. Reschke and Httich combined mul-
titemporal Landsat imagery with high-resolution satellite data
and adopted the RF algorithm to extract subpixel information
of coastal wetland classes [22]. Pierre et al. investigated the
potential of optical remote sensing images for mapping the
primary vegetation groups in the Dabus Wetlands using the
nonparametric RF classifier [23].

High spectral resolution (<10 nm) of HSI reflects greater
potentials in identifying different ground objects of coastal wet-
lands with subtle spectral divergence [24], [25]. In recent years,
HSI research has received extensive attention [26]-[29]. Some
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hyperspectral sensors have been utilized in mapping coastal
wetlands, e.g., Earth Observing-1 (EO-1) Hyperion, Hyper-
spectral InfraRed Image, Compact High Resolution Imaging
Spectrometer, and Hyperspectral Imager for the Coastal Ocean
[10], [30]-[34]. Zomer et al. [8] used prosted-1 airborne hyper-
spectral data (5-m resolution, 128 bands) and wetland spectrum
library to classify vegetation in Pacheco Creek wetland in Cal-
ifornia, demonstrating that advanced sensors have unparalleled
advantages in wetland vegetation classification and mapping.
Jiao et al. proposed a hierarchical classification framework that
implemented two levels of classification scheme to identify
different land cover types of coastal wetlands and verified that
GF-5 data are superior to Landsat-8 and Sentinel-2 multispectral
data in obtaining fine classification results of coastal wetlands
[12]. Deep learning methods incorporating both spectral and
spatial information have been improved classification accu-
racy. Contextual deep convolutional neural network (CD-CNN)
jointly exploited local spatial-spectral relationships of neigh-
boring pixel vectors within a square window to obtain contex-
tual interactions [35]. Besides, there are some latest spectral
image classification methods, such as collaborative learning,
ensemble learning, and graph convolutional networks, which
effectively improve the classification accuracy [36]-[38]. How-
ever, pixel-based classification performance is always limited
for complicated landscape with diverse land cover types and
their small patch sizes [39]. Moreover, spectral variations cause
different species to have similar spectral signatures [40]. Sin-
gle source of spectral information may not distinguish mixed
species composition of wetlands and often leads to low mapping
accuracies.

Fusion of multisource images can overcome the shortage of
single remote sensing image data source [41]. By taking into
account temporal, spectral, and spatial resolution of different
remote sensing images, advantages of multiple data sources can
be gathered to achieve better classification performance [42]—
[48]. Amani et al. [45] classified a wetland in Newfoundland,
Canada, by using four spectral indexes of different data types,
including RapidEye, Sentinel 2A, ASTER, and Landsat 8, and
made fully use of texture features and proportion features of each
data. Jahncke ef al. [46] used RADARSAT-2, polSAR, LiDAR,
and QuickBird multisource remote sensing data to divide a
wetland in Nova Scotia, Canada, into five types. Specifically, the
CNN algorithm has also been successfully used for multisource
remote sensing fusion classification in various applications. A
two-branch CNN adopted the feature fusion method to fuse
HSI and LiDAR or high-resolution visible-band image, which
effectively combined the advantages of images from different
sensors [47]. Zhao et al. used hierarchical random walk and deep
CNN architecture to jointly classify HSI and LiDAR data [48].
Nonetheless, fine-scale representation of wetland plant species
has proved to be challenging because of high level of spectral
confusion between species [49]-[52]. Additionally, wetlands
exhibit high spectral and spatial variability, which can also
complicate mapping of wetland vegetation [53], [54]. Existing
methods cannot specifically solve the problems in coastal wet-
lands, and the existing fusion strategies cannot increase mapping
reliability.

In view of the challenges mentioned above, a coastal wetland
joint classification method, multistream CNN, is proposed based
on multisource remote sensing data fusion. The first part is to
learn a more compact and discriminative regression transforma-
tion from the training dataset to solve the problems of small
spectral difference of wetland vegetation and different spectral
characteristics of the same ground object. Interclass sparsity-
based discriminative least squares regression (ICS_DLSR) [55]
is used to reduce the margin of intraclass and simultaneously
enlarge the margin of interclass for better classification perfor-
mance. The second part is regression data feature extraction
network. The spatial and spectral features of regression data are
extracted according to the characteristics of HSI and MSI. The
two-branch CNN is used to extract spatial and spectral informa-
tion in HSI, and a cascade network is utilized to process spatial
information in MSI. Finally, the above features are stacked for
joint classification. Meanwhile, the proposed method has good
universality. Satisfied classification has been verified in the HSI
and MST of Yellow River Estuary and Yancheng coastal wetland
taken by GF-5 satellite and Sentinel-2 in China.

The main contributions of this article are as follows.

1) Joint classification of multisource remote sensing im-
ages is designed for coastal wetland mapping. A spatial—
spectral two-stream CNN feature extractor is employed
to extract high-resolution spectral and spatial features
of HSI, and high-resolution spatial features of MSI are
extracted to make up for the shortage of HSI.

2) Aneffective regression method ICS_DLSR is employed to
remote sensing data of coastal wetlands. This is especially
important in practice where intraclass differences and
interclass similarities exist in optical remote sensing data
of coastal wetlands.

3) An appropriate feature extraction strategy and a fusion
strategy are developed to fuse high-level features from
spatial information of MSI and spectral and spatial in-
formation of HSI, which can significantly improve the
accuracy of coastal wetlands classification.

The rest of this article is organized as follows. Section II
reviews the ISC_DLSR and the two-branch CNN. Section III
introduces the proposed method. Section IV demonstrates the
experiment results in two experimental areas. Section V con-
cludes this article.

II. RELATED WORKS

A. ICS_DLSR

Compared with conventional subspace learning methods, the
least squares regression (LSR) method is more favorable since
it is flexible to introduce various meaningful regularizations to
improve their interpretability and performances [56].

Let X = [x1, X2, ..., Xx,] € R ™ " be the training set with n
training samples from c classes, where m is the feature dimension
of each sample. Let a zero—one matrix ¥ = [y1, Y2, ..., ¥l €
R*™ represent the label matrix corresponding to the training
set X. Standard LR (StLR) aims at jointly learning a projection
that can well transform the given training samples into their
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respective class labels as follows:

min| ¥ — OX|[7. + 2 Q]| M
where @ € R is the transformation matrix and A is the
regularization parameter with a small positive value. However,
it only focuses on fitting the input features to the corresponding
output labels while ignoring the correlations among samples.
Moreover, the used label matrix, i.e., zero—one label matrix, is
inappropriate for classification.

ICS_DLSR [55] does not focus on preserving the structure
of data, but intends to make the transformed samples of the
same class to have a common sparsity structure. For this goal, an
interclass sparsity constraint is introduced to the StLR regression
model such that the margins of samples from the same class can
be greatly reduced, while those of samples from different classes
can be enlarged. In addition, an error term with a row-sparsity
constraint is introduced to relax the strict zero—one label matrix,
which allows the method to be more flexible in learning the
discriminative transformation matrix. The regression model of
ICS_DLSR is formulated as follows:

1 A
win 21+ £ X2+ 2L o]

[
22 D [1OXG5 4 + s |E]|
i=1

@)

where E denotes the errors and A1, Ao, and A3 are regularization
parameters. Different from the StLR, %1 HQH 7 1s a novel class
sparsity constraint, which was introduced into the StLR to make
the transformed samples of the same class have the common
sparsity structure. Considering that the zero—one label matrix Y
is too strict and inappropriate for classification, we introduce a
sparsity error term Ag HE ‘ ] 5 1 torelax it. The alternating direction
method is adopted to solve this optimization equation [55], [57],
[58]. It has been shown that ICS_DLSR performs better than
other methods for multiclass classification.

B. Two-Branch CNN

CNN-based spectral—spatial feature extraction and classifi-
cation can be generally divided into two categories. The first
category extracts joint spectral-spatial features using 3-D filter-
ing [59], [60]. The second category extracts spectral and spatial
features separately and fuses them subsequently [47], [48], [61].
3-D CNN feature extraction and classification methods often
exploit shallow networks to avoid overfitting due to an additional
filter in the spectral dimension compared to the 2-D CNN [60].
This limits their ability in exploiting the available spectral—
spatial information, and the resulting classification maps tend
to be oversmoothed.

The two-branch CNN model [47] contains two different
branches, which focus on combining features extracted from
HSI and other source data, such as LiDAR or visual images
(VIS). For the HSI branch, a dual-tunnel CNN is used for
the spectral-spatial feature extraction on the local HSI patch.
More specifically, a pure 2-D CNN is utilized to focus spatial

information in the local patch windows, and a 1-D CNN is
employed for spectral feature of the center pixel.

The spectral tunnel concentrates on the center pixel ij;-ec
at the location p; ;, which only makes up of simple operations,
including 1-D convolution layer, activation, max-pooling, and
batch normalization [62], and the output spectral features F;"™
are then flatten. The spatial tunnel takes a patch centered at
the pixel p; ; with a radius r as input data. The raw data patch
HPM € RFsizexksize(fsize = 2 x r+ 1) is fed into the 2-D
CNN tunnel with the same architecture as the spectral tunnel.
The 2-D convolution and batch normalization carry out the
spatial features F”;dt from the center target p, ; surrounding do-
main. The spatial-spectral features are then subsequently fused
in the fully connected layer through concatenation or stacking
and the output of the full connection layer can be expressed as
f(W % ( spcc”Fspat + b)) (3)

Fjp;cc@spat
where W and b are the weights and bias of the full connection
layer, respectively.

For the other branch, a cascade network [63], which passes
multiscale features to output, is adopted to exploit spatial infor-
mation. The cascade block is defined as

m = gm(“’h {Wl}) +w (4)
v =g (us, {W;}) +us )

where 1 and v are the input and output vectors of the cascade
block,and g, (u1, {W;})and g, (us, {W;}) represent the func-
tion mapping operation between two corresponding shortcut
paths. Inherited from the ResNet strategy, the cascade network is
designed to combine different level features from unequal layers
for feature reuse and propagation. Traditional residual building
block does not fully utilize the middle layer information, but
the cascade block catches multiple scales’” information for more
complete features.

III. PROPOSED JOINT CLASSIFICATION METHOD

A. Overall Architecture and Analysis

A method called multistream CNN based on ICS_DLSR and
two-branch CNN is proposed. The main procedure of the pro-
posed classification framework is shown in Fig. 1. ICS_DLSR
regression transformation of coastal wetland data can effectively
reduce the intraclass variations and alleviate interclass similarity
in wetland species [64]. The spectral and spatial information
fusion can effectively make up for the shortage of single source
data [42], [43], [49], solving the problems of coastal wetlands
categories complexity and sample imbalance for improved map-
ping accuracy.

Specifically, HSIs and MSIs are first transformed by
ICS_DLSR, which maps the raw original domain data to more
compact and discriminative domain. Because such a transform
is only the mapping of the original data, spectral and spatial
details of HSI in the regression domain are still retained. Then,
the two-branch CNN, which has excellent performance in spatial
and spectral information extraction, is employed. Two-branch
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Fig. 1.

Overall architecture of the proposed multistream CNN method. Part I denotes a standard LSR introduced an interclass sparsity constraint. Part II denotes a

two-stream CNN for regression domain HSI spatial—spectral feature extractor. Part IIT denotes a CascadeNet for the regression domain MSI spatial feature extractor.
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Normalized spectrogram of GF-5 datasets. (a) and (b) display the spectrogram of each classes of Yellow River Estuary and Yancheng coastal wetland, (c)

displays the spectrogram of the first class (aquaculture) of Yellow River Estuary samples, and (d) displays the spectrogram of the fifth class (marsh) of Yancheng
coastal wetland samples. In order to study the spectral differences among different classes, we selected the mode of the sample spectrum of each class as the
representative shown in (a) and (b). Single-class spectrograms are shown in (c) and (d) drawn from all samples spectra to study the intraclass spectral difference.

CNN-extracted features after HSI and MSI in regression domain
are divided into blocks. Then, the high-level features are cas-
caded and fused. Compared with the simple data fusion method,
this method can eliminate the redundant information caused
by the correlation of multisource data in regression domain
and obtain more discriminative information. Finally, the fused
feature vectors are sent to a classifier that consists of fully con-
nected layers with softmax loss to generate the fine classification
results.

B. ICS_DLSR for Multisource Remote Sensing Data

First, visualization analysis is carried out for the necessity and
effect of regression. After the spectral analysis of the two coastal
wetlands datasets (to be introduced in Section IV-A), there are
indeed small differences between classes and large differences
within categories. The data normalized sample spectrograms
of GF-5 data are shown in Fig. 2. It can be seen from the
spectrogram of all categories [see Fig. 2(a) and (b)] that some
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Fig. 3. Detailed structure of the regression domain feature extractor. The input data are a local patch around its center pixel. BN refers to batch normalization

layer. Conv2D refers to the 2-D convolution layer.

spectral curves of different categories are highly coincident,
and it is difficult to distinguish the network. For example, in
Yellow River estuary wetland, the spectra of Aquaculture, River,
Shallow sea, Deep sea, Emergent vegetation, and Pond are very
similar. By carefully observing the Sentinel-2 image with high
spatial resolution and Google Earth map details in the same
location, it is found that aquaculture and emergent vegetation
are highly mixed with sea area and water area, resulting in the
phenomenon of same spectrum foreign matter in surface cover.
However, River, Shallow sea, Deep sea, and Pond are all water
sources, which are difficult to distinguish using HSI. Because
of geographic information and hydrological conditions, they
are divided into different categories. They can be distinguished
with the assistance of spatial information. The same problems
also exist in Yancheng coastal wetland data. In addition, there
are obvious differences in the spectral curves of the same kind
of samples in many categories, as shown in Fig. 2(c) and (d).
Through the analysis of the samples block by block, it can be
obtained that abnormal spectral samples appear mainly due to
the block boundaries of aquaculture in the first type of Aquacul-
ture samples of Yellow River Estuary data. For the fifth Marsh
samples of Yancheng coastal wetland data, the differences of
spectral features are mainly caused by different swamp vegeta-
tion coverage and different peat accumulation proportion.

It can be seen that the actual environment of coastal wet-
lands is extremely complex and dynamically changing, which
bring great difficulty to classification. These problems are ef-
fectively solved after ICS_DLSR transformation. In the mul-
tisource remote sensing data of coastal wetlands, the label-
ing of the same location at the same time is invariant, and
it is unconcerned with the spatial resolution of the sensor
[49]. The training samples data matrix X € R™*", label ma-
trix Y € R°*"™, and parameters A1, Ao, and Ag are input into
optimization problem (2); then, we initialized matrix Q € R®*™
withrandom values: F = QX,E = 0,C = 0, t = 1078, ftypax =

108, and p = 1.01. Q, F, E, C, and y are updated alternatingly
until the minimum value of convergence is obtained and the
transformation matrix Q is derived. Each training and testing
sample is normalized to a unit vector. All samples are multiplied
by Q to obtain the regression domain data.

C. Two-Branch CNN for Regression Domain Data

The detailed structure of regression domain feature extractor
is shown in Fig. 3. Both spectral and spatial information are
critical to HSI pixel-level classification. Therefore, the 2-D
CNN classification framework is used to extract spectral—spatial
features of the regressive HSI on the local patch. As shown in
Fig. 3, the 2-D CNN consists of r x r x L pixel blocks, and
the 1-D CNN is composed of 1 x 1 x L pixel blocks (L is the
number of bands). In 2-D CNN stream, each convolution process
involves a certain operation, including 2-D CNNs (conv2D) and
two batch normalization layers. All the convolution operations
are executed with zero padding, and the convolution stride is set
as 1. In addition, the activation function is Leaky ReLU, and
Dropout is used to prevent overfitting [13]. In 1-D CNN stream,
it is applied to extract spectral features, and on the contrary,
convolution operations are executed without zero padding. Fi-
nally, both types of features are fused in the fully connected layer
through concatenation.

The flowchart of CascadeNet stream to extract features in
regressive MSIis also shown in Fig. 3. In this branch, the network
isdivided into three main parts: convolution layer, cascade block,
and max-pool layer. In order to extract the spatial information
around the sample and prevent redundancy, normalized data are
first fed into the network following a convolutional operation
with a spatial kernel (e.g., a 3 x 3 2-D kernel). Cascade block
consists of seven layers of operations, including three convo-
lution layers, two batch normalization, and leaky ReL.U. There
are two paths bridge, i.e., the first and middle convolution and
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two activation operations. The path passes previous features to
a subsequent layer with simple mathematical addition. Then,
fused features are propagated to the next layer in the forward
phase.

In the fusion stage, spatial features of HSI extracted by the
2-D CNN and spatial features of MSI extracted by CascadeNet
are stacked. After batch normalization, the fused feature vector
is classified by the fully connected layer.

D. Network Training Strategy

Usually, there are only a few training samples available for
inner areas of coastal wetlands since they are scattered and
difficult to access for labeling. But the external area is distributed
in flakes, and samples are easy to collect. Thus, the sample equi-
librium is very poor. In order to solve this problem, a randomly
generated initialization seed is introduced in the training phase,
which rotates at 90°, flipping left and right, and up and down.
Therefore, additional samples can be added to the training set.
All data are scaled to 0—1 to accelerate the convergence speed.
Thanks to the technique of fine-tune’s good performance, it is
applied to transfer a pretrained model for large-scale data to
small-scale and similar data [47].

In the training process of multisource data in regression
domain, the two-branch network is trained with labeled samples
separately; then, the high-level features of different domain for
further merging are extracted by branches whose classifying
layers are popped out. With an idea of transferred learning [65],
the proposed network is further retrained to fine-tune the weights
for better classification.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, two coastal wetlands are selected for ex-
perimental study because of their abundant land cover types,
which are Yellow River Estuary and Yancheng coastal wetland
in China. The performance of the proposed method is compared
with other state-of-the-art methods. For the proposed method,
the regression transformation is implemented by MATLAB.
Feature extraction and fusion classification are implemented in
Python and Tensorflow with the high-level application program-
ming interface Keras.

A. Study Area and Dataset Description

The Yellow River Delta is the fastest growing delta in the
world, which is located in the northeast of Shandong Province,
China (36°55’-38°16’N, 117°31’-119°18’E). As shown in
Fig. 4(a), the Yellow River Estuary located in the east of Yellow
River Delta has the total area of 2.424 x 103 km?. The land
covers of this study area are strongly influenced by salinization
processes, and the vegetation mainly composes holophytic plant
communities dominated by grass and shrub species [11], [12].

As shown in Fig. 4(b), Yancheng coastal wetland is located in
the east of Jiangsu Province, China (32°34°-34°28’N, 119°27°—
121°16’E), with the coastline length of 582 km and an area of
4.553 x 103 km2. This area is rich in natural wetland resources,

with a large area of radiating sandbars, coastal forest farms and
grasslands, and a wide coastal beach [66].

HSI data are captured by advanced hyperspectral imager,
which is the main payload of the GF-5 satellite. MSI data
are captured by the multispectral imager carried by Sentinel-2.
Table I lists the information of satellite remote sensing data [17],
[18], [67]. To keep the time consistency and reduce the negative
effects from the changing land cover types in classification
results, multisource remote sensing images are chosen with the
acquisition time as close as possible. Some data preprocessing
steps are essential before carrying out the proposed method,
including spatial registration, geometric correction, atmospheric
correction, image clipping, and merging. In addition, Sentinel-2
data need to be resampled and band splicing processing [12].
Then, based on GF-5 data, multisource optical remote sensing
data are registered using the multiscale PIIFD descriptor [68].
Noisy and redundant bands are removed. The details of prepro-
cessed images are listed in Table I. The pseudocolor images of
HSIs and MSIs in two study areas are shown in Fig. 4(c)— (f).

The ground truth of the region of interest (ROI) is obtained
using the field survey with global positioning system and with
the help of high-spatial-resolution images. What is needed is that
all spatial and spectral information has better not lost. Therefore,
block scale transform is used for MSI before regression. In the
subsequent padding period, the appropriate scale is selected for
the two images to ensure the accuracy of classification. Training
and testing samples are then randomly selected from the ROI,
and their detailed information is listed in Table II. For sample
collection, 21 land types from Yellow River Estuary and 20 land
types from Yancheng coastal wetland are collected. To ensure
a fair sampling condition, the number of training samples is
almost three times that of testing samples. Since available sample
labeling is obtained by field sampling in blocks, samples are
distributed in small blocks with a small number. In order to
simulate the real situation and realize the separation of training
and testing samples, 10% blocks are randomly selected from
each category as training and other blocks are used for testing.
For convenience of observation, the ground truth maps of the
two datasets and the selected training labels maps cover HSIs’
pseudocolor images, as shown in Fig. 3(c) and (d). Table II lists
the training and testing sample information and detailed category
information of the data. For fair comparison, the number of
training and testing samples of each data remains unchanged
for all subsequent classifications.

B. Analysis on Regression Scheme

In order to evaluate the effectiveness of ICS_DLSR on clas-
sification, some popular LSR-based methods, including lin-
ear regression classification [69], sparse-representation-based
classification [70], and kernel collaborative representation with
Tikhonov regularization [71], are fairly evaluated on the Yellow
river estuary and Yancheng coastal wetland datasets. K-nearest
neighbor (KNN) is used to classify the results of feature transfor-
mation to compare performance. All methods are repeated ten
times, and the average value of accuracies is reported in Table I1I.
It is obvious that the ICS_DLSR obtains the best performance.
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Dataset visualization. (a) Location of Yellow River Estuary. (b) Location of Yancheng coastal wetland. (c) and (e) display pseudocolor images for HSI

(R: Band140, G: Band40, and B: Band54) and MSI (R: Band2, G: Band3, and B: Band4) in Yellow River Estuary. (d) and (f) pseudocolor images for HSI (R:
Band140, G: Band40, and B: Band54) and MSI (R: Band2, G: Band3, and B: Band4) in Yancheng coastal wetland. The yellow blocks in (c) and (d) refer to the

location of the labeled samples.

TABLE I
LIST OF SATELLITE IMAGES DETAILS USED IN THIS STUDY

Study Areas Satellites Sensors Track Number Time Spatial Resolution Preprocessed size
Yellow River GF-5 AHSI 002/571 2018/11/01 30m 1185X1342x285
Estuary Landsat ~ Sentinel-2 ~ MSI 206/132 2018/11/03 10/20/60m 3555X4026x47
Yancheng coastal GF-5 AHSI 002/571 2019/04/04 30m 1175%585%253
wetland Landsat ~ Sentinel-2 ~ MSI 206/132 2019/03/29 10/20/60m 3525x1755%47

It can be seen that for the four datasets, the performance after
ICS_DLSR consistently outperforms the original data, which
proves the effectiveness of the regression. Among them, the
improvement of GF-5 hyperspectral data is more obvious, which
is due to abundant spectral information in HSIs. Regression
processing based on sample correlation not only increases the
margins of the samples, but also improves the problem of infor-
mation redundancy.

Fig. 5 visualizes the margins of the samples before and after
the transformation obtained by ICS_DLSR by using the t-SNE

visualization. From this figure, the samples of the same class
distribute closely and push samples of different classes far away
as much as possible after data regression processing.

C. Parameter Tuning

1) Regression Parameter Tuning: In the ICS_DLSR trans-
formation, there are three tuned parameters, i.e., Ay, Ao,
and Az, which are used to balance the importance of
the corresponding constraint terms. To learn the optimal
transformation matrix for coastal wetlands datasets, while
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TABLE II
DETAILS OF TRAINING AND TESTING SAMPLES FOR THE YELLOW RIVER ESTUARY AND YANCHENG COASTAL WETLAND DATASET

the Yellow River Estuary dataset the Yancheng coastal wetland dataset
Training Testing Training Testing
No. Classes ROI Samples ROI Samples No. Classes ROI Samples ROI Samples
1 Aquaculture 5 35 46 358 1 Sea 4 326 29 2069
2 Deep sea 3 87 23 709 | 2 | Immediate offshore area 7 116 58 1189
3 Arable land 2 8 18 102 |3 Salina 2 6 15 104
4 Phragmites 3 25 30 165 4 Pond 2 12 15 121
5 Rice field 3 11 29 72 5 Marsh 1 6 4 15
6 Sorghum 2 7 22 89 6 |Spartina alterniflora loisel 2 7 15 76
7 Corn field 2 5 15 90 7 Mudflats 3 23 27 195
8 Soybean 5 18 42 193 8 Aquaculture 5 23 39 205
9 Low-tide mudflats 2 22 19 178 9 Paddy field 8 87 64 745
10 Shallow sea 5 89 41 847 (10 Entrained water 3 24 25 148
11 Suaeda salsa 4 58 37 495 |11 River 7 20 61 197
12 Yellow river 3 59 24 410 |12 Woodland 2 16 18 140
13 Spartina alterniflora loisel 3 53 26 308 |13 Barren 3 25 22 129
14 |Freshwater herbaceous marshes 4 20 37 220 |14 Buildings 5 21 41 339
15 High-tide mudflats 5 64 40 531 |15 Fallow land 6 26 46 208
16 | Intertidal saltwater marshes 3 53 25 401 |16 Dry land 4 28 33 176
17 Intertidal phragmites 3 17 23 116 (17 Suaeda 2 43 14 42
18 Fishponds 3 51 25 326 (18 Mariculture 2 6 19 29
19 Tamarix 2 6 15 62 19 Irrigation canal 2 5 17 33
20 Locust 2 7 14 65 |20 Phragmites 3 12 20 120
21 Emergent vegetation 1 9 8 30
Total 65 704 559 5767 Total 73 832 582 6280
D 5%
ST
. > Ll 2%
e o
A s
(a) (b) (c) (d)

Fig. 5.

T-SNE visualization of (a) and (b) the original features of Yellow River Estuary and Yancheng coastal wetland and (c) and (d) the transformed features of

Yellow River Estuary and Yancheng coastal wetland obtained by ICS_DLSR on the GF-5 data. Training samples in Table II are used to learn the transformation.

All samples, including training and testing samples, are visualized.

TABLE III
CONTRAST EXPERIMENT OF DIFFERENT LSR WITH THE KNN CLASSIFIER
USING FOUR IMAGES

Yellow River Estuary  Yancheng coastal wetland

Methods GF-5 Sentinel-2 GF-5 Sentinel-2
Original 78.03% 68.89% 81.10% 63.29%
LRC 83.37% 73.54% 88.12% 68.79%
SRC 88.54% 76.48% 89.45% 71.29%
CRT 91.37% 81.25% 92.56% 70.23%
ICS DLSR  91.75% 80.89% 93.15% 72.77%

referring to the parameter settings in the candidate set
{le73,5e73,1e72,5e72,1e71,5¢71,1,5,10}, we then per-
formed ICS_DLSR with different combinations of these param-
eters. Fig. 6(a) shows the relationships of the three parameters

and the classification accuracy on Yellow River Estuary datasets.
Finally, A1 = 10, X2 = 0.5, and A3 = 0.1 are selected. Under
this parameter combination, the objective function value drops
the fastest. Since the two wetland datasets were shot by the same
satellite, respectively, with the same resolution and similar sam-
ple size, the characteristics of the two wetland datasets obtained
from the spectral analysis in Fig. 2 and T-SNE visualization in
Fig. 5. are similar, so the two datasets use the same regression
parameters.

2) CNN Parameter Tuning: The network of the branch has
complex architecture with more parameters. Therefore, it is
time consuming to train this network until its convergence. The
main network architecture of the two-branch CNN is shown in
Table IV. The size of convolution kernel and the dimension of
feature map are set. Besides, the effect of several different sizes
of the pixel block is investigated in the original domain feature
extractor, since the surrounding pixels are critical to the central
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Value of OA in Yellow River Estuary when the parameter changes. (a) Effect of three regression parameters on OA with the classification method in

[55]. For the convenience of clear presentation, slice at A1 = 1le 3,10, Ao = 5e 2,10, and A3 = 5e~ 2. Different colors are used to represent OA values, and the
corresponding relationship between color and OA is shown colormap. (b) Effect of the local input patch size on OA with the proposed method.

TABLE IV
DETAILS OF THE MULTISTREAM CNN ARCHITECTURE

HSI 2-D Tunnel MSI Tunnel
Layer | Kernel Size | Activation | Layer | Kernel Size | Activation
nput (15x15xB1) input (15x15xB2)
Conv2D 1| 3x3x256 [LeakyReLU| Conv2D 1| 3x3x64 |LeakyReLU
Conv2D_2 | 1x1x512 [LeakyReLU| Conv2D_2 | 3x3x128
MaxPool2D 2x2 Conv2D_3| 1xIx64 |LeakyReLU
Flatten (32768) Conv2D 4| 3x3x128

Add (Conv2D_2, Conv2D_4)
Comv2D_5| 1x1x64 |LeakyReLU

HSI 1-D Tunnel

Layer | Kemel Size| Activation | Add (Conv2D_3, Conv2D_5)
input (1x1xB1) Conv2D 6| 1x1x64 |LeakyReLU
ConvlD 1 11x64  |LeakyReLU[MaxPool2D 2x2 LeakyReLU
ConvlD 2 3x128 |LeakyReLU| Conv2D 7| 3x3x256
MaxPoollD 2x1 Conv2D_8 | 1x1x128 |LeakyReLU
Flatten (512) Conv2D 9| 3x3x256

Add (Conv2D_7, Conv2D_9)
Conv2D_10| 1x1x128 |LeakyReLU
Add (Conv2D_8, Conv2D_10)
Conv2D_11| 1x1x128 |LeakyReLU
Flatten (8192)

Fully Connected-33280
Fully Connected-41472
Fully Connected-128
Soft-max

B1 and B2 refer to the bands of HSI and MSI.

pixel. Several different window sizes of {3 x 3,5 x 5,7 x 7,
9 x 9, 11 x 11} are tested. The overall accuracy (OA) result
is shown in Fig. 6(b). After measuring the OA results and the
amount of network calculation, the input radius is selected as 7 x
7. The number of training epochs and batch size are empirically
set to 30 and 100, respectively. Besides, the learning rate is one
of the factors that affects the convergence of speed and training
performance. The learning rate is set as 0.01 with the policy of
Adam [47].

D. Classfication Performance

To illustrate the performance of the proposed method for
coastal wetland data classification, it is compared with several
classical classifiers, such as SVM [72], LBP-ELM [73], and
the recently developed CNN-type methods, such as CD-CNN
[35], dual-tunnel CNN [47], and CascadeNet [63]. In order to
verify the validity of data fusion on coastal wetlands datasets,
each method tests in three cases. They are HSI data only, MSI
data only, and HSI and MSI combined data. The combined data
strategy here is the commonly used pixel-level image composite
method. The SVM is implemented using the LIBSVM toolbox.
All of the experiments are repeated ten times, and the average
results with standard variations are reported. Tables V and VI
list the class-specific accuracy, OA, average accuracy (AA), and
Kappa statistic of these methods for two datasets.

Judging from the classification results of different data
sources of each method, the accuracy of classification by fused
data is always better than that of single-source data classifi-
cation, which proves that the feature fusion strategy effectively
combines the advantages of both data sources in coastal wetlands
mapping task.

From the results of each individual experimental data, the
proposed method yields the best OA, AA, and Kappa with a
significant improvement over the reference methods for the two
coastal wetlands datasets. According to the experimental analy-
sis using the same fused dataset, the proposed method achieves
the gains of about 4% over the SVM method with high de-
pendence on clear samples margins. Compared with LBP-ELM
based on data change fitting and texture relationship extraction,
it has increased by about 1.7-3.8%. Due to the small amount
of coastal wetland data, classification results of three CNN-type
methods are not so good, and the accuracy from the proposed
method is about 4-5% higher than other CNN algorithms, which
effectively proves that it has stronger robustness in the case
of small samples. Meanwhile, the proposed method effectively
improves the classification of categories that are difficult to
distinguish by other methods (e.g., the fifth class of Yancheng
wetland data). The AA and Kappa parameters of the proposed
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TABLE V

COMPARISON OF THE CLASSIFICATION ACCURACY (%) AMONG THE PROPOSED METHOD AND THE OTHERS USING YELLOW RIVER ESTUARY DATASET

No SVM BP-ELM CD-CNN Dual-tunnel CNN ascadeNet Multi-s tream
. GF5 Sen2 |GF5+Sen| GF5 Sen2 |GF5+Sen| GF5 Sen2 |GF5+Sen| GF5 Sen2 |GF5+Sen| GF5 Sen2 |GF5+Sen CNN
1 64.69 73.96 89.55 94.13 49.72 94.69 95.31 71.32 85.89 90.97 82.35 89.29 71.18 73.29 86.60 86.39+1.09
2 100.00 | 86.79 99.02 75.18 65.87 98.87 96.87 83.69 99.85 95.30 7730 |100.00 | 98.02 89.35 [100.00 | 100.00+0.00
3 74.75 81.37 88.89 96.08 91.18 85.29 69.18 50.30 75.37 72.79 71.05 68.92 76.12 65.32 62.96 73.88+7.46
4 83.63 79.92 84.80 86.67 81.82 86.67 86.67 79.41 95.33 97.54 78.17 [ 100.00 | 99.25 76.19 95.33 97.28+6.8
5 14.00 38.34 8.00 54.17 11.11 22.22 71.27 95.65 |100.00 |100.00 | 100.00 | 94.29 95.65 96.30 |100.00 | 100.00+0.00
6 26.44 50.51 87.36 98.88 55.06 88.76 84.85 97.14 [ 100.00 | 100.00 [ 100.00 {100.00 [ 97.14 87.50 |[100.00 96.10£5.19
7 55.81 85.84 7791 [100.00 | 91.11 97.78 84.11 75.00 98.63 97.78 92.47 98.90 75.00 70.69 86.54 97.83+£2.17
8 100.00 | 93.45 98.95 |100.00 | 98.96 |100.00 | 91.90 77.11 96.50 97.97 79.01 |[100.00 [ 92.34 81.01 85.78 92.68+4.88
9 56.11 |[100.00 | 93.89 99.44 [100.00 | 99.44 97.27 76.39 | 100.00 | 98.88 65.93 96.77 94.68 70.94 97.65 99.44+2.77
10 92.41 71.83 90.63 87.72 49.47 77.45 61.97 54.19 86.57 83.85 51.79 66.48 85.74 55.82 72.57 92.54+0.04
11 98.19 98.15 98.80 99.80 98.38 99.80 96.46 89.68 94.06 97.44 85.71 99.40 95.56 89.03 98.59 96.30+1.94
12 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 97.62 88.17 99.51 |100.00 | 89.13 99.76 89.17 95.35 [100.00 [ 100.00+0.00
13 99.38 98.46 98.15 99.03 99.03 99.35 [100.00 | 95.36 94.87 99.33 91.94 |100.00 | 95.56 87.25 95.22 91.67+2.38
14 77.31 77.62 71.30 84.09 90.91 90.00 83.76 79.82 67.97 66.24 84.92 89.73 71.43 83.92 80.58 87.36+4.94
15 | 100.00 | 96.02 |100.00 | 100.00 | 95.10 | 100.00 | 99.62 95.78 99.07 99.81 95.32 94.52 98.15 96.36 98.88 95.40+1.85
16 99.51 64.87 98.29 99.25 85.79 |100.00 | 99.50 77.15 98.04 99.75 81.93 |[100.00 | 92.77 79.39 97.05 100.00+0.00
17 83.33 75.23 78.33 89.66 91.38 93.10 87.30 66.01 85.16 85.22 63.57 92.24 81.20 56.41 72.97 94.34+4.72
18 80.59 40.60 64.71 75.15 83.44 81.60 52.38 52.31 49.90 46.69 32.95 55.61 39.51 47.54 49.81 88.06+3.22
19 75.81 84.75 81.61 80.65 66.13 12.90 75.00 65.63 62.50 11.11 81.25 64.79 53.57 63.10 69.05 76.32+13.16
20 75.38 71.06 52.31 92.31 5231 86.15 98.39 [100.00 | 98.33 9231 83.33 98.46 89.55 71.62 91.94 100.00+0.00
21 97.22 91.46 97.22 93.33 90.00 96.67 [100.00 | 52.63 93.33 61.36 50.00 86.21 74.36 41.10 64.86 100.00+0.00
OA (%) 87.19 81.46 89.85 91.05 78.57 91.66 85.45 76.54 88.54 87.86 74.51 88.54 85.33 77.20 86.02 93.41+0.46
AA (%) 78.79 79.06 83.80 90.74 78.42 86.23 87.40 77.27 89.57 85.44 78.01 90.26 84.09 75.12 86.02 93.60+3.03
Kappa | 0.8744 | 0.8012 | 0.8898 | 0.9029 | 0.7691 | 0.9096 | 0.8426 | 0.7729 | 0.8769 | 0.8687 | 0.7549 | 0.8758 | 0.8417 | 0.7541 | 0.8488 | 0.9286=0.0053
TABLE VI

991

COMPARISON OF THE CLASSIFICATION ACCURACY (%) AMONG THE PROPOSED METHOD AND THE OTHERS USING YANCHENG COASTAL WETLAND DATASET

No SVM LBP-ELM CD-CNN Dual-tunnel CNN CascadeNet Multi-stream
) GF5S Sen2 |GF5+Sen| GF5 Sen2 [GF5+Sen| GFS Sen2 |GF5+Sen| GF5 Sen2 |GF5+Sen| GF5 Sen2  |GF5+Sen CNN
1 95.63 93.56 92.76 92.51 71.92 92.51 99.41 83.43 99.13 99.38 73.42 | 100.00 | 99.49 78.51 100.00 100.00£0.00
2 94.13 32.90 |100.00 | 98.77 70.56 | 100.00 [ 99.75 52.93 99.26 99.75 53.27 99.92 99.66 69.51 |100.00 | 100.00£0.00
3 71.72 68.57 29.29 62.50 10.58 29.81 80.00 88.41 77.78 41.27 78.95 29.67 83.33 92.86 36.72 80.25+20.51
4 87.50 83.67 |100.00 | 84.30 66.12 84.30 81.13 [ 100.00 | 100.00 | 100.00 | 95.00 97.75 (100.00 | 100.00 | 100.00 100.00£0.00
5 21.05 5.26 0.00 60.00 66.67 40.00 1.96 76.67 11.03 13.33 66.67 65.30 4.81 25.00 11.90 88.24+16.02
6 100.00 | 95.84 |100.00 | 100.00 | 64.47 |100.00 | 94.52 37.93 91.46 97.87 45.45 [ 100.00 | 96.30 79.25 98.51 96.15+0.15
7 88.83 86.92 93.91 90.77 92.82 92.82 60.43 64.21 57.47 97.42 45.40 93.99 84.91 72.33 85.32 96.76+0.54
8 96.06 73.74 93.20 89.76 70.24 95.12 93.46 89.81 91.90 89.73 90.63 97.99 83.61 67.38 97.03 98.55+0.97
9 99.20 85.28 99.20 98.52 82.68 99.73 93.27 89.21 98.41 88.57 86.00 97.13 94.49 91.39 98.02 99.46+0.41
10 90.97 35.44 97.42 91.22 37.84 92.57 58.54 40.49 70.71 89.16 55.64 59.50 84.00 44.34 93.67 86.05+5.81
11 95.92 52.96 63.78 98.48 71.57 93.91 69.58 82.20 83.49 79.82 77.83 74.13 82.01 79.34 81.67 89.50+0.91
12 21.99 79.51 97.16 98.57 17.86 94.29 71.43 95.12 86.96 92.78 [ 100.00 | 97.90 97.22 | 100.00 | 97.90 100.00£0.00
13 92.81 67.07 97.84 [100.00 [ 93.02 |100.00 | 55.19 85.11 84.78 93.98 88.72 51.39 43.86 97.54 76.10 86.58+6.71
14 91.98 78.22 72.53 47.49 60.18 85.25 95.33 97.86 | 100.00 | 100.00 | 96.89 98.60 94.14 97.12 82.48 100.00+0.00
15 80.57 68.67 99.05 99.52 41.35 75.96 82.61 65.58 88.61 79.15 60.77 87.84 96.84 48.72 100.00 91.28+4.52
16 11.09 32.97 98.91 91.48 65.91 97.73 81.16 44.00 78.22 65.57 38.69 92.74 68.97 54.17 87.10 95.00£0.56
17 97.40 0.00 76.62 88.10 54.76 80.95 47.41 48.78 56.16 71.43 41.98 46.34 58.82 26.53 38.10 80.77+3.85
18 62.50 57.04 0.00 |100.00 | 55.17 51.72 65.52 81.82 | 100.00 | 76.32 71.79 80.65 70.27 81.82 48.28 72.50£12.5
19 14.29 23.70 5.71 69.70 60.61 87.88 | 100.00 | 100.00 | 50.00 93.75 [100.00 | 100.00 | 73.68 84.62 50.00 91.67+£8.33
20 98.32 71.78 97.48 63.33 51.67 75.00 95.65 83.53 |100.00 | 90.82 94.52 | 100.00 | 9857 87.34 |100.00 99.14+0.86
OA (%) | 90.97 70.88 91.61 91.27 68.26 92.47 88.05 71.91 92.06 91.49 69.39 92.60 90.64 76.10 92.50 96.274£0.15
AA (%) | 75.60 59.66 75.74 86.25 60.30 83.48 76.32 75.35 81.27 83.01 73.08 85.28 80.75 73.89 79.14 91.09+1.28
Kappa | 0.9007 | 0.6454 | 0.8997 | 0.8960 | 0.6198 | 0.9102 | 0.8574 | 0.6674 | 0.9033 | 0.8976 | 0.6835 [ 0.9113 | 0.8880 [ 0.7112 | 0.9104 [ 0.9552+0.0019
TABLE VII
ABLATION ANALYSIS EXPERIMENT IN TWO DATASETS
Yellow River Estuary Yancheng coastal wetland
Regre ssion X v v v X v v v
Cascade Net v v x v v v x v
Dual-tunnel CNN v X v v v X v v
OA(%) 89.50 86.06 93.38 93.41 92.96 82.55 94.16 96.27
Kappa 0.8840 0.8436 0.9282 0.9286 0.9324 0.8487 0.9303 0.9552
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Fig. 7.
CascadeNet, and (f) the proposed multistream CNN.

method are the highest, demonstrating that the proposed method
achieves the best performance in class equilibrium.

Based on the experimental results using single-source
datasets, it can be seen that in the CNN-type methods, spectral
and spatial features can be extracted simultaneously, such as
CD-CNN and dual-tunnel CNN methods, which has a good
classification effect on HSI. Among them, the dual-tunnel CNN
method of feature fusion after extracting spectral and spatial
information separately has higher mapping accuracy. Compared
with the CD-CNN method that uses multiscale convolutional
filter bank extract local block information, the CascadeNet
methods extracting multiple scales information have a better
classification effect on MSIs. Compared with the CD-CNN
method that explores local contextual interactions, CascadeNet,
which integrates features of different layers and scales, has
higher classification accuracy for coastal wetland MSI. It fur-
ther proves the reliability of the proposed method fusing the
MSI features extracted from CascadeNet methods and the HSI
features extracted by the dual-tunnel CNN.

The experimental results of the ICS_DLSR regression, Cas-
cadeNet, and dual-tunnel CNN are shown in Table VII for a
further quantitative ablation analysis, where 1/ means that part

- Tamarix - Phragmites l:l High-tide mudflats
- Sorghum - Suaeda salsa \:lLow-tide mudflats
- Spartina alterniflora loisel -Emergent vegetation
E Soybean

Full classification maps on the Yellow River Estuary multisource dataset obtained by (a) SVM, (b) LBP-ELM, (c) CD-CNN, (d) dual-tunnel CNN, (e)

is employed and X means that part is not employed. Classifica-
tion results are obtained by the partial combinations shown in
each column. The CascadeNet stream and the dual-tunnel CNN
stream were used separately in the corresponding single source
data. The results of the single branch in the fused data are shown
in Tables V and VI. It can be seen that in two datasets that the
classification accuracy of our method in columns 5 and 9 is the
highest of the list. The ablation experiments prove that these
three parts are all necessary for this classification.

Using the fused data and 10% of the labeled samples as the
training set, all samples in the dataset are classified and mapped.
As in Figs. 7 and 8, the full classification maps obtained by
the proposed method contain more detailed information, and
the boundary of the feature type area is also clearer. Further-
more, the proposed method presents more similar results to the
reference map in Fig. 3. Exhibiting smoother appearance than
other reference methods proves more robust spectral and spatial
features.

To verify the generalization ability of the proposed method
on different numbers of training samples, 10%, 30%, 50%,
and 90% samples block per class are randomly chosen as
training data for two datasets, and the fused data are used for
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Fig. 8.
(e) CascadeNet, and (f) the proposed multistream CNN.
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Fig. 9.
multisource dataset.

classification. Fig. 9 shows the OA for the proposed method
and five kinds of reference methods. Clearly, all the methods
yield better classification performance as the number of training
samples increases. The proposed method consistently provides
superior OA compared with the reference methods for two
datasets. Especially, when the number of the labeled training
datais limited, the proposed method has an obvious advantage in
terms of classification performance over the reference methods.
It proves that the proposed method exhibits robust classification
performance for balanced and unbalanced training samples.

V. CONCLUSION

In this article, an effective multistream CNN method is
proposed to improve feature extraction capability for coastal
wetland mapping, where the CNN architecture is designed to
combine features extracted from multisource remote sensing
data after regression processing. With the proposed method,

-Immediate offshore area -Aquaculture -River

B s [ Woodiand | |Dry land

-Mariculture -Mudflats -Suaeda :ll-‘allow land -Barren
-Pond -Spanina alterniflora loisel -Paddy field -Buildings I:Ilrrigation canal

\:I Phragmites

Full classification maps on the Yancheng coastal wetland multisource dataset obtained by (a) SVM, (b) LBP-ELM, (c) CD-CNN, (d) dual-tunnel CNN,

<

X

<

>

Q

<

—

=]

Q

Q

<

= v/

5 72

5 9 - w= @=  Two-branch CNN
== = CascadeNet
Q= Multi-stream CNN

% i | 5
10 30 50 70 90
Training proportion per class (%)

(b)

OA of different methods with different numbers of training samples per class. (a) Yellow River Estuary multisource dataset. (b) Yancheng coastal wetland

each class of samples was transformed to a more discrimina-
tive space, and high-resolution spatial information and spectral
information are effectively combined, leading to the improve-
ment of the overall classification accuracy. Experimental results
have demonstrated the effectiveness of the proposed method for
more than 20 object types in the Yellow River Estuary dataset
and the Yancheng coastal wetland dataset captured by GF-5
and Sentinel-2 satellites, and the statistical performance of this
method is better than state-of-the-art classifiers when the training
sample size is small.
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