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Registration of Multiresolution Remote Sensing
Images Based on L2-Siamese Model
Rongbo Fan , Bochuan Hou, Jinbao Liu, Jianhua Yang , and Zenglin Hong

Abstract—The registration of multiresolution optical remote
sensing images has been widely used in image fusion, change
detection, and image stitching. However, traditional registration
methods achieve poor accuracy in the registration of multiresolu-
tion remote sensing images. In this study, we propose a framework
for generating deep features via a deep residual encoder (DRE)
fused with shallow features for multiresolution remote sensing
image registration. Through an L2 normalization Siamese network
(L2-Siamese) based on the DRE, the multiscale loss function is used
to learn the attribute characteristics and distance characteristics
of two key points and obtain the trained feature extractor. Finally,
the DRE is used to extract the deep features of the key points and
their neighbors, which are concatenated with the shallow features
into a fusion feature vector to complete the image registration. We
performed comprehensive experiments on four sets of multires-
olution optical remote sensing images and two sets of synthetic
aperture radar images. The results demonstrate that the proposed
registration model can achieve subpixel registration. The relative
registration accuracy improved by 1.6%–7.5%, whereas the overall
performance improved by 4.5%–14.1%.

Index Terms—Deep descriptors, L2-Siamese, multiresolution
image registration, residual encoder, satellite remote sensing,
Siamese network.

I. INTRODUCTION

W ITH rapid development of remote sensing technology
in recent years, remote sensing images are advancing

toward multiresolution and multispectrum. Improved ground
observation requires the integration of heterogeneous remote
sensing data, and multiresolution remote sensing image reg-
istration is fundamental in the field of remote sensing image
processing. The goal is to make any pair of pixels in a multires-
olution remote sensing image at the same location represent the
same geographic location [1], [2].
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Multiresolution satellite image registration technology is used
extensively in remote sensing image fusion [3], ground feature
change detection [4], and disaster monitoring and assessment
[5], and its accuracy determines the performance of these al-
gorithms. However, it is challenging to obtain remote sensing
images with the same sensor type and spatial resolution to
complete the above application by following the actual process.
Moreover, because of the technical limitations of current satellite
sensors, typically only high-spectral low-spatial resolution mul-
tispectral images (MS) and high-spatial low-spectral resolution
panchromatic images (PAN) can be obtained. To exploit full
use of limited remote sensing image resources and improve the
accuracy of multiresolution remote sensing image registration,
multiresolution remote sensing image registration technology is
very important.

Traditionally, there have been three main types of image
registration: region-based methods, feature-based methods, and
combination of both methods [6]–[8]. Feature-based image
registration is the approach most commonly used for remote
sensing. This approach attempts to estimate the geometric
transformation between images by identifying and matching
features, which must be significant and stable. These features
include points, edges, and contours [9], [10], and the features
(descriptors) with the most similar invariance are matched (the
features are matched between the remote sensing and reference
images). There are currently several types of feature descriptors,
including the neighbor image intensity value, momentum-based
descriptor, and scale-invariant feature transform (SIFT). After
feature extraction, the texture and gray information of feature
points can be used for local deformation registration of remote
sensing images through the optical flow estimation method [11],
[12]. In addition, the large-scale geometric transformation of re-
mote sensing images can be performed through a transformation
matrix [13].

The most commonly used descriptor is SIFT [14], which
filters out unstable matches through a predefined distance ratio
threshold [15]. Numerous improved algorithms SIFT have
been developed. For example, the SIFT variant speeded-up
robust features (SURFs) offer a faster rate of operation and
better robustness [16]. Ma et al. [17] proposed the position
scale orientation-SIFT (PSO-SIFT) using the new gradient
definition and feature matching method. They combined the
position, scale, and direction of each key point to improve the
matching point pairs. Paul and Pati [18] proposed an improved
uniform R-SIFT that can effectively generate sufficiently
robust, reliable, and evenly distributed matched key points.
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The synthetic aperture radar-SIFT (SAR-SIFT) [19] is a new
gradient calculation method to generate directional and robust
descriptors to speckle noise. SAR-SIFT has better performance,
especially in registration tasks using SAR images with different
incidence angles. Wu et al. [20] proposed a novel point
matching algorithm named fast sample consensus (FSC), which
can improve matches in fewer iterations.

Registration methods based on feature have achieved good re-
sults. However, the disadvantage of this approach is that feature
extraction requires manual design and often ignores the neigh-
borhood information of key points, resulting in a low matching
rate. In the remote sensing image registration task, the reference
and remote sensing images may originate from different sensors
and possess different spatial resolutions. Taking the QuickBird
satellite image as an example, the spatial resolution of the PAN
image is 0.61–0.72 m, but the spatial resolution of its MS image
is only 2.44–2.88 m [21], which leads to a clear difference in the
feature of the same target.

Taking the SIFT registration algorithm as an example, SIFT
determines a large number of key points, but there exists a
large proportion of mismatched points. This is due to the fol-
lowing reasons. First, remote sensing images contain several
features with high similarity. However, SIFT-based descriptors
only express the shallow information of key points, making the
descriptors less significant. Second, the SIFT descriptor ignores
the neighborhood information of key points. Hence, its image
feature is not used effectively.

Deep neural networks (DNNs) have been applied to achieve
remote sensing image registration via four main approaches
at present. The first approach involves using the feature map
generated by the intermediate layer of the DNN, instead of the
original image, for image registration [22], [23]. The idea is to
put image pairs in a pretrained DNN, and then merge high- and
low-order feature maps (such as SIFT feature and SURF maps).
Moreover, the deep features extracted by the existing methods
are less robust and more sensitive to image deformation.

The second approach involves directly using a DNN to match
key points [24]–[26], which translates the image matching prob-
lem into two types of classification problems. This approach
has a high matching accuracy, but the number of calculations
required increases with the square of the number of key points,
significantly increasing the registration time. These limitations
make the approach impractical. Moreover, models cannot per-
form the nearest neighbor search (NNS) [15].

The third approach is to use the deformation field to correct
the remote sensing image. Zhang et al. [27] proposed a method
that uses a deep fully convolutional neural network to perform
multiscale deformation correction on remote sensing images.
Ma et al. [28] proposed using an effective coarse-to-fine strategy
and to develop a new two-step registration method based on deep
features and local features for completing multi-modal remote
sensing image registration.

The fourth approach is based on deep network image matching
(registration) that not only can extract the deep features of key
points, but also can automatically extract key points. Methods
that apply this approach include D2-Net [29], Super-Point [30],

and RF-Net models [31]. These methods are commonly used for
natural image matching, and have good robustness to angle and
illumination.

The Siamese network [32] is a DNN often used for image
matching. Unlike in the general neural network structure, the
input of the Siamese network comprises two images, and the
output is the similarity between the two images [26], [33], [34].
Siamese networks can also be used in image registration. The
dual channel of the Siamese network is used to extract the
deep characteristic information of patched cropped images, and
then this deep characteristic information is normalized as deep
descriptors [35]–[37].

In particular, the models used for feature extraction of two
images share weights to ensure that the deep features of the two
images can be obtained under the same metric. Considering this
feature, in this study, we applied the L2 normalization Siamese
network (L2-Siamese) to train the depth feature extractor and
used a deep residual encoder (DRE) network to extract the depth
feature of key points and their neighborhood to improve the
robustness of image transformation and noise reduction.

In summary, the traditional shallow-feature matching and
DNN-based image registration methods cannot always meet the
requirements of multiresolution remote sensing image registra-
tion tasks. Therefore, in this study, we propose a multiresolu-
tion remote sensing image registration framework involving the
extraction of deep features of key points and their neighbor,
followed by the merging of deep and shallow features. The main
contributions of this work are as follows.

1) We propose the use of the L2-Siamese model to train
the deep feature extractor of key points and introduce a model
training method and a loss function.

2) The DRE model extracts significantly robust deep features.
The fusion feature vector formed by the fusion of deep and shal-
low features achieves improved performance in multiresolution
remote sensing image registration tasks.

3) To solve the problem of scarcity of fully registered multires-
olution remote sensing images, we propose a method to create
high-generality datasets.

The remainder of this article is organized as follows. Section II
details the registration algorithm of multiresolution remote sens-
ing images, including the algorithm framework and model, data
set production, and registration. Section III outlines the experi-
ments conducted using the proposed algorithm on six datasets.
Section IV discusses the experimental results of the study. The
conclusion of the study is presented in Section V.

II. METHODOLOGY

A. Algorithm Framework

The algorithm framework presented in this article comprises
three main sections: an L2-Siamese model used to train the
DRE network; a DRE network that extracts the deep features
of key points and their neighborhoods; and a combination of
deep features and SIFT descriptors to generate feature vectors
and the multiresolution remote sensing image registration. Fig. 1
shows the block diagram of the proposed algorithm framework.
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Fig. 1. Framework of the proposed algorithm.

Fig. 2. Structure of the deep residual encoder.

B. Deep Residual Encoder (DRE)

We found a 28× 28 patch size to be optimal by analyzing the
registration results of different sizes by Wang et al. [25], and
conducting the experiment in this study (in Section III). Fig. 2
shows the structure of the residual coding network designed in
this study. The basic structure of the encoder is the convolutional
[38]. The network down-samples the feature map twice through
the convolution layer with a stride of two. The convolution layer
with a step size of two can retain the characteristic information
more effectively than maximum pooling. The feature map is di-
vided into three parts according to the size, and each part includes
a convolution layer (convolution kernel size: 3× 3 and 7× 7;
activation function: ReLU) and a residual block. The network
transforms the size of the feature map from 28× 28× 32 to
14× 14× 64 and 7× 7× 128 through two down-samplings.
Then, through the 7× 7 convolution kernel, the feature map is
converted into 128 vectors with the same size as SIFT descrip-
tors. The size of the network output is 128.

L2 normalization layer: L2 normalization has been used
mainly to perform dimensionless quantization on features. Ho-
mogenization of feature can solve the problem that the descrip-
tors of two patches are quite different in nature. Dimensionless
quantization can aid the comparison of features by changing

Fig. 3. Data distribution layer. Left: Feature maps of the output of the convolu-
tion operation of the first layer. Right: Proposed data distribution layer. Bottom:
feature map after the data distribution operation.

each index value to the same order of magnitude, which is
conducive to subsequent descriptor matching tasks. Moreover,
experiments show that the L2 normalization layer can improve
the convergence speed and accuracy of the model. Here, x
represents the element of input X . The relationship between
the input X and the output NormL2 is expressed as follows:

NormL2 =
X√

max(
∑128

i=0 x
2
i )
. (1)

Residual block: The residual block [39] is used to improve
the ability of the network to extract information and make the
network easier to optimize.

Data distribution layer: Because there is often a distortion
between the images to be registered in remote sensing image
registration, the neighborhood information of key points will
also undergo a rotation transformation centering on the key
points. At this time, the importance of each pixel of the matched
patches is inversely proportional to the distance between the
key points. Therefore, to improve the feature weights at the key
points, we propose the use of templates to change the feature
map weights of certain layers in the model. Fig. 3 shows the
visualization of this template.

C. L2-Siamese Model

In general, the feature map elements output by the middle
layer of a deep network are difficult to understand, and the
deep descriptors required for image registration must be suitable
for the NNS algorithm. Furthermore, the distances between the
descriptors of the matched key points are much smaller than
those between other mismatched descriptors.

In the multiresolution remote sensing image registration task,
the descriptors of key points must have high robustness to the
rotation, scaling, and affine transformation of the image but
need higher saliency for different key points. However, the deep
features generated by the general DNN cannot be applied to the
matching algorithm based on the NNS, so they do not have the
basic characteristics of descriptors.
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Therefore, it is impossible to extract the deep features of image
patches solely through the DRE, and the optimization of the
DRE network is a key problem. Using ideas from L2-Net [36]
and Autoencoder, we optimize the DRE model structure and loss
function in this study. We propose a Siamese network for deep
descriptor extraction to ensure the robustness of the deep features
extracted by the encoder through multiple transformations for
the same image.

To improve the rotation invariance of deep features, we use
the L2-Siamese network to train the residual encoder and to
optimize the DRE. Fig. 4 shows the Siamese network model
based on the residual encoder. In Section III, we discuss why
the deep features obtained by the multiscale loss function is
more suitable for image registration.

The L2-Siamese model first extracts the deep features of the
image patches with the same weight through the DRE and then
calculates their distance matrix. To avoid the gradient explosion
of the model, the concatenation features are input to the three-
layer fully connected layer, and the number of nodes is 64–32–2.
The activation function of the first two layers is the ReLU; the last
layer obtains the matching condition of the two image blocks.
The activation function is SoftMax.

The learning of the local feature descriptor is a more specific
problem than general image classification in ImageNet. This is
because, compared with different objects of the same visual cat-
egory, local patches can experience limited transformation [35].
Therefore, we propose to use the distance matrix of two deep
feature descriptors to determine the optimization parameters of
the model. In this study, the deep features are obtained after the
L2 normalization layer of the DRE. The distance matrix DN×N

is expressed as follows:

DN×N =
∑

axis=−1

⎡
⎢⎢⎣
⎛
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(2)

where N is the value of a batch (N = 48 in this model).
f ′
k and f ′′

k are 128-D descriptors by two image patches with
k = 1, 2, . . . , N . dij is the Euclidean distance between f ′′

i

and f ′′
j .

According to the distance matrix DN×N , to simulate the de-
scriptor in the matching algorithm based on Euclidean distance,
we determine the loss function Lsame as the loss function of the
matched image patches. When there is a matched label (yt = 0),
the minimum value is selected from each row and each column
of the distance matrix DN×N and is compared with the value
of the matched feature. Ideally, the Euclidean distance between
the matched descriptors is the smallest. The difference between
the minimum value of the row and column and the value of the
matched feature vector is calculated through Lsame to improve

Fig. 4. L2-Siamese model based on the DRE. The model is used to train the
residual encoder and generate the DRE model.

the significance of the descriptor:

Lsame =−
∑
N

log(exp(min(drow)− dii))

−
∑
N

log(exp(min(dcol)− dii)) (3)

where dii is the Euclidean distance between the matched fea-
tures, min(drow) is the minimum value of the row where dii
is located, and min(dcol) is the minimum value of the column
where dcol is located. Here,dii ≥ {min(drow),min(dcol)} is
always satisfied.

The Euclidean distance between matched and unmatched
descriptors should be small and large, respectively. In addi-
tion, paired patches representing counter examples usually vary
greatly, simplifying the learning process to optimize the dis-
tance. Because there is a large number of mismatched samples
in the actual registration task, we select all nondiagonal elements
in the distance matrix DN×N as the sample design loss function
Ldiff, which is written as follows:

diffcol
ij =

exp(max(0, 2− dij))∑
N exp(max(0, 2− dcj))

diffrow
ij =

exp(max(0, 2− dij))∑
N exp(max(0, 2− djn))

(4)

Ldiff = − 1

2
·
(∑

N

log(diffcolij ) +
∑
N

log(diffrow
ij )

)
(5)

where dij are the off-diagonal elements in the distance matrix
DN×N , and diffcolij and diffrowij are operations on the rows
and columns in the distance matrix DN×N , respectively. The
expected minimum Euclidean distance is 2.

After calculating the loss functions of the matching and non-
matching image patches separately, we add them to generate the
loss function Lossdis based on the distance matrix:

Lossdis = Lsame + Ldiff. (6)

The third part of the loss function (Lossclass) evaluates the
difference between the probability distribution of the current
training and the real distribution. The objective function is
determined as the categorical cross-entropy loss function, which



FAN et al.: REGISTRATION OF MULTIRESOLUTION REMOTE SENSING IMAGES 241

Fig. 5. Training variation curve based on the Siamese network model: change
in the loss value of each part; Lossdiss and Lossclass are denoted as “dis-loss”
and “match-loss,” respectively.

describes the distance between the actual output probability and
expected probability. Therefore, a smaller cross-entropy value
corresponds to closer probability distributions.Lossclass enables
the entire model to converge quickly during training, and it is
given by

Lossclass(y
t, yp) = −[yp · log(yt) + (1− yp) · log(1− yt)]

(7)
where Lossclass represents the loss function between the actual
output of the network yp and the true value yt (yt = 0 when
matching; yt = 1 when not matching).

Finally, the total loss function of the model is as follows:

Loss(yt, yp,f ′, f ′′) = λ1 · Lossdiss + λ2 · Lossclass (8)

where f ′ and f ′′ are the deep features output by two encoders
with shared weights, and λ1 = 10−2 and λ2 = 5× 10−1 are
weights in the model.

Adam optimizer is used in the model. The learning rate was
found to fall from 0.1 to 0.001, and 50 training iterations were
performed. The method of creating the training set required for
the Siamese network training is introduced in the next section.
Fig. 5 shows the loss change curves during the network training
process.

D. Datasets Preparation

A large number of training datasets are required to train a
DNN, and the performance of the model correlates with the
scale and generality of the training datasets. Thus, a large
number of image transformations is required to generate and
expand datasets for strong generalization when the number of
remote sensing images is small. The problem of insufficient
images can be solved by generating low-resolution remote sens-
ing images from each high-resolution remote sensing image
by down-sampling (φ : R3×t·W×t·H → R3×W×H , where t is a
random number between one and three). The high-resolution re-
mote sensing images were selected from the NWPU-RESISC45
dataset [40].

A high-resolution remote sensing image is used as the ref-
erence image I1, and the low-resolution image is the sensed
image I2; I1 and I2 are fully registered. The SIFT algorithm

Fig. 6. Training images. These are two remote sensing images randomly
selected from the NWPU-RESISC45 dataset. The images on the right and left
sides of the arrow are patch pairs with the same key points and the images
generated by transformation, respectively.

is used to determine the key points for I1 and I2, and the
key point (x, y) is used as the center to cut 28× 28 patches
for I1 and I2, which are called p1x,y and p2x,y , respectively. To
ensure that the position of the center point does not change, p2x,y
is subjected to random rotational transformation, affine trans-
formation, brightness transformation, distortion transformation,
and noise addition to obtain p2

′
x,y . The rotation, zoom, affine, and

brightness coefficients are controlled within [0, 360], [0.5, 2],
[−10, 10], and [0.5, 2], respectively. The training samples are
randomly divided into training and test sets in a ratio of 8 : 2.
Fig. 6 shows some of the training data.

We labeled patch pairs with the same and different key
points as 0 and 1, respectively. After image transformation, the
patches differed significantly in gray distribution and morphol-
ogy, thereby ensuring that image transformation significantly
improves the generality of the training data.

E. Registration

After the training of the L2-Siamese model, we trained the
DRE network, which was then used to extract the key points
needed for multiresolution remote sensing image registration
and the depth characteristics of its neighborhood. In the registra-
tion process, the key points of the two images are first determined
through the SIFT algorithm. The patches centered on the key
points of the two images are intercepted and inputted to the DRE
to extract its deep features. The deep features output by the model
and the shallow features of the standardized SIFT descriptor,
which have 128 dimensions, are concatenated to obtain a 256-D
feature vector.

The final feature vector is used to determine the matching
point through the distance-based brute force matching method.
As the remote sensing image has a large number of targets in
grayscale with similar textures, similar feature vectors will cause
mismatched points. In this study, the random sample consen-
sus algorithm (RANSAC) was employed to delete mismatched
points globally.

F. Experimental Setting and Datasets

In the following subsections, we report the evaluation of the
DRE proposed in this study, including the comparison with
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TABLE I
OVERVIEW OF THE EXPERIMENTAL DATA

Fig. 7. P-1 experimental image. (a) Low-resolution multispectral remote
sensing image. (b) High-resolution panchromatic remote sensing image.

Fig. 8. P-2 experimental image. (a) Low-resolution multispectral remote
sensing image. (b) High-resolution panchromatic remote sensing image.

several state-of-the-art feature matching methods. The experi-
ments were performed using different remote sensing images to
evaluate the performance and robustness of the algorithm. Seven
remote sensing registration algorithms were used as comparison
groups: SIFT [14], SURF [16], FSC-SIFT [20], PSO-SIFT [17],
SAR-SIFT [19], PSO-SIFT-CNN [23], and RF-Net [31].

Six experimental datasets were selected for the experiment:
four sets of PAN and MS images, and two sets of SAR images.
Among them, PAN and MS images prove the effect of the pro-
posed multiresolution remote sensing image registration model,
and SAR images serve as a supplementary experiment to prove
the robustness of the proposed method. Table I lists the details
of the experimental data.

Fig. 9. P-3 experimental image. (a) Low-resolution multispectral remote
sensing image. (b) High-resolution panchromatic remote sensing image.

Fig. 10. P-4 experimental image. (a) Low-resolution multispectral remote
sensing image. (b) High-resolution panchromatic remote sensing image.

Fig. 11. P-5 experimental image. (a) Low-resolution multispectral remote
sensing image. (b) High-resolution panchromatic remote sensing image.

Figs. 7–12 show the experimental images. Owing to page
layout limitations, the images shown in this article are scaled
down. However, the image ratio is unchanged.

G. Evaluation Criteria

To experimentally compare the image registration perfor-
mance of the proposed model, we employed the metrics pro-
posed by Goncalves et al. [41] to evaluate the image registration
results. The metrics are as follows.

1) Nred: number of control points.
2)RMSall: root-mean-square error based on all control points

(it should reach the sub-pixel level).
3) RMSLoo: root-mean-square error computed by the control

point residuals based on leave-one-out method. That is, calculate
the RMSall of the control points of Nred − 1 except for a certain
pair of feature points, and then calculate the average value.
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Fig. 12. P-6 experimental image. (a) Low-resolution multispectral remote
sensing image. (b) High-resolution panchromatic remote sensing image.

4)Pquad(Nred > 20): statistical evaluation of residual distribu-
tion across the quadrant. The Chi-square distribution (degree of
freedom: 1.0) is used to detect the distribution of feature points.

5) BPP (1.0): bad points proportion with Nred. Points with a
residual distance greater than 1.0 pixel are called bad points.

6)Skew: statistical evaluation of preference axis on the residual
scatterplot. When Nred < 20, use Spearman correlation coeffi-
cient; when Nred ≥ 20, use Pearson correlation coefficient.

7) Scat: statistical evaluation of the distribution of control
points across the image.

8)∅: weighted sum of the above seven measures. The weighted
sum of the abovementioned seven measures ∅ is calculated as
(9) and (10).

In the metrics present at the bottom of this page, except
for Nred, the smaller the value of the other metrics, the better
the performance. In addition, the qualitative evaluation was
performed using a checkerboard image. The continuity of the
image edges and overlapping region illustrate the registration
performance.

H. Evaluation of the DRE Robustness

We investigated whether the deep features obtained by the
DRE are more rotation-invariant and better suited for remote
sensing image registration than those obtained with the auto-
encoder. Using the encoder with the same structure, the deep
features obtained from the autoencoder were compared with
the deep features obtained by the DRE. First, a key point was
randomly selected in P-4. Then, the patch centered on it was
intercepted, and various images of the patch were transformed
through rotation, scaling, affinity and brightness change, and
noise addition. Fig. 13 shows the transformation results.

Fig. 13. Experimental images of robustness test for deep features. (a) Original.
(b) Rotation. (c) Scaling. (d) Affine. (e) Brightness. (f) Noise. (g) Other images.

The patches in 13 were inputted into the autoencoder and DRE
to observe the distribution of their deep features. To distinguish
the deep features of the patches of different key point neighbor-
hoods, a patch from P-4 was randomly added as a reference in
this experiment.

III. EXPERIMENTAL RESULTS

Fig. 14 is a distribution map of deep features. It shows that
the deep feature distribution of an image generated by the
auto-encoder differs significantly after transformation, and its
features are unsuitable for image registration. However, the
distribution of deep features generated by the proposed DRE
network is consistent, proving that the deep features obtained
are more rotation-invariant and better suited for remote sensing
image registration.

To verify the effect of patches of different sizes on the registra-
tion performance, we selected P-1 and P-6 as experimental data
and conducted comparative experiments on patches of different
sizes, including 20× 20, 28× 28, and 36× 36. Subsequent
to two down-samplings, the size of the convolution kernel of
the final convolution layer was set to 5× 5, 7× 7, and 9× 9.
Finally, 128-D deep features were obtained. The experimental
results are shown in Table II. The results indicate that the28× 28
patch size is the best; however, the difference effect produced
by different patch sizes is minimal.

Some of compared algorithms are required to determine
the ratio of the Euclidean distance between the nearest and
second-nearest neighbors of the corresponding feature, denoted
by Distr. In this experiment, Distr from 0.7 to 0.95 was

Nred < 20 :

∅ =
2× ( 1

Nred
+RMSLOO +BPP (1.0) + Scat) +RMSall + 1.5× Skew

(2 + 2 + 2 + 2 + 1 + 1.5)
(9)

Nred ≥ 20 :

∅ =
2× ( 1

Nred
+RMSLOO +BPP (1.0) + Scat) +RMSall + 1.5× (Pquad + Skew)

(2 + 2 + 2 + 2 + 1 + 1.5+1.5)
. (10)
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TABLE II
REGISTRATION PERFORMANCES OF P-1 AND P-2 IMAGES BY VARYING PATCH SIZE

TABLE III
QUANTITATIVE COMPARISON AMONG NINE METHODS ON P-1

Fig. 14. Distribution map of deep features. (a) Deep features generated by the
DRE. (b) Deep features generated by the autoencoder.

searched for the smallest RMSall as its comparison parameter.
We set dr of the PSO-SIFT to 0.9. Because the features of the
multiresolution remote sensing images vary significantly, there
were numerous error points after registration. SIFT, SURF, and
the proposed algorithm use RANSAC for error point screening.

Tables III–VIII show the experimental results of seven meth-
ods on P-1 to P-6, respectively. The symbol “–” in these tables

indicates that the registration result does not meet the test condi-
tions. DER* represents the DER model without mixed shallow
features.

The proposed method achieved subpixel registration of the six
pairs of experimental images, including multiresolution optical
remote sensing images and SAR images. In addition, it achieved
better performance on the six sets of experimental images.

In order to visually detect the performance of the image
registration, the multispectral image P-2 and the SAR image
P-6 with larger registration errors were selected as the data for
the comparison experiment. Through the analysis of Table IV
and Table VIII, PSO-SIFT and SAR-SIFT are the best models
in the comparison method for P-2 and P-6 images, respectively.
The comparison result is shown as a panel mosaic image, as
shown in Fig. 15. It can be seen that the method proposed is
continuous in edges and overlapping regions, while the frame
area in the contrast experiment picture is not aligned. Since
the registration and visualization results of other images have
relatively small differences, this article does not compare and
display other images. Fig. 16 directly shows mosaicked image
results of other registered images.

IV. DISCUSSION

The DRE network was shown to extract deep features ef-
fectively. This is because the deep model can transform mul-
tiresolution data features to the same scale, significantly im-
proving the robustness of the extracted features and achieving
the registration of multiresolution remote sensing images. The
results demonstrate that the proposed registration model can
achieve subpixel registration. The relative registration accuracy
improved by 1.6%–7.5%, whereas the overall performance im-
proved by 4.5%–14.1%.

The shallow features used for the traditional manual design
cannot effectively identify image data that are very similar but in
a different form; this results in ineffective feature matching for
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TABLE IV
QUANTITATIVE COMPARISON AMONG NINE METHODS ON P-2

TABLE V
QUANTITATIVE COMPARISON AMONG NINE METHODS ON P-3

TABLE VI
QUANTITATIVE COMPARISON AMONG NINE METHODS ON P-4

TABLE VII
QUANTITATIVE COMPARISON AMONG NINE METHODS ON P-5

TABLE VIII
QUANTITATIVE COMPARISON AMONG NINE METHODS ON P-6
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Fig. 15. (a) P-2 registration result based on DER model. (b) P-2 registration
result based on PSO-SIFT model. (c) P-6 registration result based on DER model.
(d) P-6 registration result based on SAR-SIFT.

two images with large differences. SIFT and SURF, which are
the most commonly used methods, were shown to have relatively
stable performance but poor matching accuracy. In most cases,
the RMSall value of the two methods is greater than 1, and
subpixel registration is not achievable. PSO-SIFT performs well
on optical remote sensing images, but its registration perfor-
mance on SAR images lags behind the method proposed in this
study. Conversely, SAR-SIFT performs poorly on optical images
but performs better on SAR images. It can be seen that feature
extraction algorithms based on manual design are significantly
affected by the type of remote sensing image data.

The SIFT variants, such as PSO-SIFT, FSC-SIFT, and SAR-
SIFT, have strong constraints on key point matching. These
strong constraints can eliminate incorrect points better but might
remove a large number of correct points on some images. PSO-
SIFT performs better on P-1 and P-2. Nevertheless, in the experi-
ments of P-3 and P-4, the value ofNred obtained by the algorithm
is far lower than that obtained by the other algorithms. FSC-SIFT
performs well in the optical image registration task, but, owing
to its strong constraints, it has difficulty determining the matched
point in SAR image registration. SAR-SIFT performs well on
SAR images (P-5 and P-6) but poorly on multiresolution optical
remote sensing images. It is worth noting that the Nred value
of the SAR-SIFT algorithm on P-3 is insufficient to complete
the registration task. The experimental results prove that it is
difficult to determine the constraint strength and increase the
robustness of the algorithm by simply improving the matching
points screening capability of the algorithm.

Fig. 16. The result of registration on the checkerboard mosaicked image:
(a) Result of P-1. (b) Result of P-3. (c) Result of P-4. (d) The result of P-5.

During this research, we found that the design and training of
deep feature extractors also directly affect the results of remote
sensing image registration. The deep feature extractor used by
PSO-SIFT-CNN is the VGG16 model for classification tasks.
This kind of deep descriptor lacks a special design in the training
process, so the deep features obtained by VGG16 have poor
rotation invariance and are more sensitive to image deformation
and rotation. Moreover, the model structure of VGG16 is larger,
and the feature extraction requires considerable time. The exper-
iments show that the performance of PSO-SIFT-CNN is poor.

RF-Net can not only extract the deep features of key points,
but also automatically extract key points, which is the future
development direction of image registration based on deep net-
works. Unfortunately, the performance of the RF-Net model is
mediocre in the experimental data, especially when the image
resolution is low and the feature difference is large.

This article presented a method to fuse deep and shallow fea-
tures into multiresolution remote sensing image registration. To
compare the registration performance of the hybrid feature and
the single deep feature, a comparative experiment was conducted
in the study, namely DER and DER*. The experimental results
show that DER has better registration performance than DER*.
These results prove that the hybrid feature is more significant
and robust than the single deep feature.

V. CONCLUSION

We proposed an algorithm framework for generating deep
features using a DRE combined with shallow features for mul-
tiresolution remote sensing image registration. The DRE was
trained with the L2-Siamese model. Unlike traditional registra-
tion based on shallow features, the proposed deep features can



FAN et al.: REGISTRATION OF MULTIRESOLUTION REMOTE SENSING IMAGES 247

better utilize key point neighborhood information and possess
strong robustness. The proposed algorithm achieved a relatively
uniform feature expression for images of different resolutions
in the same area.

The method based on the combination of deep features and
shallow features for multiresolution remote sensing image reg-
istration performed better than state-of-the-art methods. The
dataset required for the model training was designed to solve the
problem of having only a few registered remote sensing images.

In the future, we plan to optimize the structure of deep feature
extraction models and improve the robustness and saliency of
deep features. In addition, we will attempt to establish the deep
feature correspondence of multisource heterogeneous images
and apply them to the registration of SAR and optical images.
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