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Abstract—In this article, we propose a promising approach for
the application-oriented content classification of spaceborne radar
imagery that presents an interesting alternative to popular current
machine learning algorithms. In the following, we consider the
problem of unsupervised feature-free satellite image classification
with already known classes as an explainable data mining problem
for regions with no prior information. Three important issues are
addressed here: explainability, feature independence, and unsuper-
vision. There is an increasing demand toward explainable machine
learning models as they strive to meet the “right to explanation.”
The importance of feature-free classification stems from the prob-
lem that different classification outcomes are obtained from using
different features and the complexity of computing sophisticated
image primitive features. Developing unsupervised discovery tech-
niques helps overcome the limitations in object discovery due to the
lack of labeled data and the dependence on features. In this article,
we demonstrate the applicability of a latent Dirichlet allocation
(LDA) model, one of the most established unsupervised probabilis-
tic methods, in discovering the latent structure of synthetic aperture
radar data. The idea is to use LDA as an explainable data mining
tool to discover scientifically explainable semantic relations. The
suitability of the approach as an explainable model is discussed and
interpretable topic representation maps are produced, which prac-
tically demonstrate the idea of “interpretability” in an explainable
machine learning paradigm. LDA discovers the latent structures in
the data as a set of topics. We create the interpretable visualizations
of the data utilizing these topics and compute the topic distributions
for each land-cover class. Our results show that each class has
a distinct topic distribution that represents that particular class.
Then these classes can be grouped based on their similarity of
topic composition. Both the topic composition and grouping are
explainable by domain experts.

Index Terms—Bag of words technique, discovery, explainable
machine learning, interpretability, latent Dirichlet allocation
(LDA), synthetic aperture radar (SAR), unsupervised image
classification.

I. INTRODUCTION

IN SPITE of the availability of immense amounts of earth
observation data from various sensors and many artificial

intelligence algorithms, the explainable unsupervised classifica-
tion of earth observation images is still an unexplored area. Still,
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the question remains as “How to make a classification with little
or no labeled data following a glass-box approach?” Here, we
have two problems: first, the unavailability of labeled datasets;
and second, explainability. Most machine learning models in
use today are supervised and trained on some labeled data. In
practice, first, obtaining labeled data are very expensive as it
needs human expertise. Not only that, any inaccuracy in the
labeled data leads to inaccuracies in the model. Naturally, it is
beneficial to be able to explore and make use of the huge amounts
of unlabeled being data available. However, the task of image
annotation or classification becomes challenging with a limited
amount of labeled data. In [25], most of the work refers to the
labeling of the data and matching the semantic classes based
on the empirical probability matrix. Unsupervised classifica-
tion is traditionally made with clustering techniques; however,
there are some limitations of clustering approaches. Hierarchical
clustering algorithms (such as the k means and agglomerative
complete-link algorithms) depend on the selected similarity
measure. Not only that, clustering in the high-dimensional data
is very time consuming. As of today, there have already been
some efforts in this direction.

The next question to answer is “Explainability.” Machine
learning techniques have shown undeniable success in various
disciplines. However, there has been an emerging demand to un-
derstand how a model functions and an explanation of its output.
Deep learning models have shown tremendous success in various
areas from image understanding and natural language processing
to speech recognition. However, most of these approaches do not
offer any explainability of the method. In many applications,
it may be unacceptable to trust the decisions of a black-box
system. For instance, in societal contexts, the reasons for a
decision are important. Typical examples are (semi) automatic
loan applications, employment decisions, or risk assessments
for insurance applicants, where it must be clear to the user why
a model gives a particular prediction and how such predictions
can affect him/her. In this context, and also due to regulatory
reasons, one aim is that decisions based on the machine learning
models shall be fair and ethical. The importance to give reasons
for the decisions of a machine learning algorithm is also high
for medical applications, where motivation is the question of
trust in decisions so that patients can rely on a decision having
been made. All this is supported by the General Data Protection
Regulation of the European Union, which contains new rules
regarding the use of personal information.

One component of these rules can be summed up by the term
“right to explanation” [1]. According to Adadi and Berrada [4],
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there are mainly four reasons to ask for explanations: to get clear
reasons for the decisions; to have greater control over the model;
to improve models; to discover new knowledge. Researchers in
the field [5] claim explainability as a prerequisite to ensure the
scientific value of the outcomes. Another important argument
about having an explainable machine learning model is that it
satisfies the “right to explanation” [1].

Recently, there have been efforts toward explaining black-
box AI models. Schlegel et al. [19] present a methodology to
test and evaluate various XAI methods on time series. Hohman
et al. [20] present a survey of the role of visual analytics in
deep learning research to understand how models work. Xi and
Panoutsos [21] propose a convolutional neural network learning
structure with added interpretability-oriented layers, in the form
of fuzzy logic-based rules. The previously mentioned researches
focus on understanding deep learning models, while Wick et al.
[22] propose a “cyclic boosting” machine learning algorithm,
which allows us to efficiently perform accurate regression and
classification tasks, and also allows detailed understanding of
each individual prediction made by the model.

In our case, we address the problem of explainable unsuper-
vised image classification with explainable data mining based
on the latent Dirichlet allocation (LDA). The purpose of such
research lies in proposing a discovery method, which follows the
principles of explainable machine learning and is seamless. Our
approach aims to “discover” latent structures in the dataset using
LDA and explain the final outcomes in terms of the physical
world.

The reasons behind using LDA are as follows.
1) It is completely unsupervised.
2) It gives interpretable intermediate results and explainable

outcomes.
3) Having LDA as the learning model in our method helps us

satisfy most conditions of explainable machine learning.
In practice, it is unrealistic to expect that a single method

can satisfy all aspects of explainable machine learning as listed
by Roscher et al. [5]. However, we show that our LDA-based
approach supports the three main aspects of explainable machine
learning, i.e., transparency, interpretability, and explainability,
and can be considered as a highly explainable approach. LDA
originated as a topic model and has found wide acceptance in
remote sensing image processing. Additionally, an adaptation of
probabilistic latent semantic analysis was proposed to fuse the
synthetic aperture radar (SAR) and multispectral (optical) imag-
ing data for unsupervised land-cover categorization tasks [6].

LDA has been used on panchromatic Quickbird images to
annotate large satellite images using semantic concepts, where
examples of each semantic concept are given by the user [7].
LDA has also been used for measuring changes in multispectral
image time series [8]. LDA was also applied to high-level
scene understanding and content extraction [9], which aims
to discover latent semantic classes containing pairs of objects
characterized by a certain spatial positioning. Tănase et al.
[10] used LDA to discover semantic relationships in PolSAR
images. Bratasanu et al. [11] use LDA to map heterogeneous
pixels with similar intermediate-level semantics called topics
into separate classes. Here, we go further in the use of LDA. We
use LDA as an explainable machine learning model to produce

interpretable topic representation maps, explainable semantic
relations, and class distinctions based on semantic class-topic
relations.

A. Characteristics of Our Approach (Already Applied in a
Sea-Ice Case Study)

The general workflow of our method is presented in Fig. 1.
We used the annotated sea-ice classes from an active learning
research project [15] as a case study to retrieve semantic rela-
tions with intermediate-level semantics (topics) using LDA. The
topics retrieved from LDA are subjected to some data analysis to
obtain the semantic relations. Then, a domain expert can explain
these semantic relations of the sea-ice classes. At this point, we
introduced the following unique characteristics of our approach
from a methodological point of view.

1) Feature-independence and topics as intermediate-level
semantics: As there was no prior information, we used
a seamless data mining approach using LDA to discover
the semantic relations in the land-cover classes retrieved
by another research project [15]. The results allow for in-
terpretability and explainability due to their seamlessness.
For instance, we proposed several methods to generate
topic representation maps from seamless features, which
are fit for visual interpretation when compared with a
corresponding product quick-look image, without need-
ing any reference classification map. We also proposed
methods to derive explainable semantic relations between
intermediate-level semantics from LDA and the reference
classes, and explainable similarity information among
these classes based on their semantic relations.

2) Explainable semantic relations: The semantics from our
unsupervised model are the intermediate-level semantics
called topics. The semantic relations between such topics
and the supervised classification results from [15] provide
a mapping from the knowledge obtained from discovery
to that from a supervised classification. This can, possibly,
provide more granularity in the knowledge. The semantic
relations are further used to demonstrate the composition
of the land-cover classes. The difference between each pair
of classes is also provided in terms of semantic relations,
i.e., the presence, absence, and abundance of each topic in
quantitative terms.

3) Interpretable topic representation: Topic representation
maps are the initial visual information from the latent top-
ics discovered by LDA. This provides an educated guess
about the study area without requiring any reference data.
We chose the maximum probable topic for each word in the
bag of words framework to create this topic representation
map; consequently, the representation is, in turn, ranked
by the trust levels of the topic probabilities. From the point
of view of explainable machine learning, this visualization
serves as a tool for interpretation, possibly giving more
granular details.
Another important usefulness of topic representations is
that it is independent of any reference data. The topic
representation map can be compared with the quick-look
image of the product to make further interpretations.
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Fig. 1. Basic LDA workflow.

4) Explainable class distinctions as a validation tool: We
used a grouping of classes based on their semantic rela-
tions, which is explainable by a domain expert. We propose
it also as a validation method, which does not need any
additional verification information.

In a nutshell, the complete method is dedicated to explore
unknown data with no training or verification information. The
rest of the article is organized as follows. Section II presents the
concept of explainable machine learning and the adherence of
our approach to the principles of explainable machine learning,
while Section III presents the dataset being used for our ex-
periments and the general workflow of our method. Section IV
explains how LDA was used to derive semantic relations and the
explainability of the outcomes of this step. Section V discusses
the interpretable topic representation map, while Section VI is
dedicated to the class distinction step and the explainability
of the results. The article is concluded with a discussion in
Section VII.

II. EXPLAINABLE MACHINE LEARNING

The relevant literature on explainable machine learning lists
three aspects of it: transparency, interpretability, and explainabil-
ity. In Fig. 2, we describe how the components of our method sat-
isfy these aspects and present them diagrammatically. However,
it is important to mention that there are various degrees of com-
pleteness in models describing the ideas of explainable machine
learning. In other words, some models are more explainable
than others as they fulfill more conditions of explainability,
achieved by the application of the aspects of explainable machine
learning: transparency, interpretability, and explainability.

Informally, transparency is the capability of understanding
the mechanism of each component of a method. Lipton [12]
delineates three levels of transparency: design transparency,

Fig. 2. LDA as the explainable data mining. The diagram shows the contribu-
tion of each component of our method to the components of explainable machine
learning.

algorithmic transparency, and model transparency. Design trans-
parency calls for a clear logic behind the design decisions, such
as model parameters, choice of a distance metric, e.g., the Euclid-
ian metric, and choosing between linear and nonlinear kernels.
Algorithmic transparency is the capability to understand how the
algorithm works from a mathematical point of view. A model
is called algorithmically transparent if its input–output relations
and the process can be written down as a mathematical formula
[5]. On the other hand, approximations, such as early stopping
and stochastic gradient descent, cause algorithmic nontrans-
parency. Finally, the model transparency ensures the traceability
of the outcomes. All these types of transparency do not depend
on specific data but on the method being followed. Roscher
et al. [5] mention [13] as a black-box approach, commenting that
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it is design-nontransparent, noninterpretable, and nonexplain-
able as it neither offers any explanation for its design choices
nor applies any domain knowledge to explain its outcomes.
In contrast to this, our method is highly design-transparent,
model-transparent, and algorithmically transparent to a great
extent. A minor amount of nontransparency is introduced by
the use of LDA as the posterior distribution is intractable, and
approximations have to be used. However, the repeated appli-
cation of the method has shown consistent outcomes, thereby
ensuring reproducibility, overcoming the typical drawbacks in-
troduced by LDA, and making the whole method transparent
with simulatable outcomes.

The first step of our method is bag-of-words modeling. This
step satisfies the three levels of transparency: design, algorith-
mic, and model transparency. The method is design-transparent
as we have a clear reason behind choosing the number of words,
i.e., the vocabulary size is algorithmically transparent as one can
clearly understand how the modeling is done as described above,
and is model-transparent because the results are reproducible.
For the next step, i.e., the LDA modeling, we can claim that it is
design-transparent, as we already learned the parameters of LDA
from the data itself, and we set the number of topics empirically
based on the assumption that the number of topics should not be
less than the number of classes found by the reference research
in [15]. LDA is not completely algorithmically transparent as the
posterior distribution of LDA is intractable; however, the model
transparency is achieved as we get similar results with repeated
runs. The next step of our method is the topic representation. The
idea of design transparency does not apply here; however, this
step is model and algorithmically transparent. The same holds
for the next two steps, interoperability and explainability.

The second aspect of explainable machine learning is in-
terpretability, which is nothing but making sense of interme-
diate outcomes, e.g., from the latent layers of the model in
combination with the help of domain knowledge. Currently,
several interpretation tools are used by researchers. Among
them, visualization tools are the most commonly used ones
[5]. The model used in [14] is mentioned by Roscher et al.
[5] as an interpretable model. As an alternative, Ghosal et al.
[14] produce the maps of disease symptoms for plant stress
phenotyping to be compared with the manual maps produced by
experts, thereby interpreting the intermediate outcomes. Similar
to this, we produce the topic representation maps to visually
interpret topics (our latent layer retrieved from LDA) and by
comparing the topic representation maps with the classification
maps produced by supervised classification, as described in [15],
we also interpretable outcomes from the third step, i.e., topic
representation. Technically, topics are retrieved in the second
step (LDA) and they become interpretable with the help of the
visualizations developed in the topic representation step. We can
compare these topic representation maps with the classification
maps to make interpretations about the topics, thus providing
explainable class distinctions.

Next comes the third aspect, explainability. Montavon et al.
[3] define explainability as a decision produced with the help
of collections of elements in the interpretable domain, together
with the domain knowledge.

Fig. 3. Detailed workflow.

Here the topics are latent layer variables holding the
intermediate-level representations of the data that fall into the
interpretable domain. We then utilize these topics to create
explainable outcomes: explainable semantic relations and ex-
plainable class distinctions based on these semantic relations.
The concepts are presented in greater detail in Sections IV and
V. The final outputs are obtained from the semantic relations
and the class distinction steps. Finally, our method produces
scientifically consistent and explainable outcomes about the
compositions of classes.

III. DATASET AND GENERAL WORKFLOW

The proposed methodology was validated using Sentinel-
1 satellite data acquired around the North Pole. The images
are accessible for download from the ESA’s Copernicus Hub.
Sentinel-1 is a C-band SAR instrument and its characteristics
are described in [15] in detail.

From the available Sentinel-1 data products, we selected for
demonstration, based on our previous experience, level-1 ground
range detected data with high resolution taken in the interfero-
metric wide swath mode. The products are geocoded with a
resolution of 20 × 22 m (range × azimuth) and a pixel spacing
of 10 × 10 m. For these products, the images are provided in
dual polarization (for our polar areas, HH and HV) and with an
incidence angle of about 45°. The data are amplitude data.

In this article, we propose a promising approach for the
application-oriented content classification of spaceborne radar
imagery that presents an interesting alternative to popular current
machine learning algorithms. In the following, we chose these
images because they are free to access, offer frequent acquisi-
tions over the investigated areas, and are not dependent on the
prevailing weather conditions.

Here, both polarizations (HH and HV) are combined based
on [17].

The proposed method contains five main steps as demon-
strated in Fig. 3.

A. Experimental Setting

Macropatches with a size 256 × 256 pixels were extracted
from the image dataset consisting of three scenes; with a size
of each scene being 25 673 × 16 641 pixels, a total of 19 500
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patches were extracted. The reason for doing this was to match
the setting of the reference classes from [15]. Furthermore,
from these 19 500 macropatches, the micropatches of size 4
× 4 were extracted by dense sampling, i.e., 4096 micropatches
from each macropatch (of 256 × 256 pixels). The size of the
macropatches was intensively validated for SAR data as follows:
for TerraSAR-X data, as described in [23]; and for Sentinel-1
data, as described in [24]. In addition to this, an analysis of the
size of the micropatches was made in [18].

The pixel values in these micropatches were taken as the
local descriptors. A k means clustering was applied to these
local descriptors to obtain a 50-word dictionary [8]. After the
word assignment, we computed the histograms of words for
each macropatch, thereby generating the bag of words repre-
sentation of the dataset. Considering the macropatches as visual
documents, the micropatches as visual words, and the set of 19
500 visual documents as a single visual corpus, we subjected
this visual corpus to LDA with the number of topics set to 12
to roughly match the assumed number of semantic classes. A
gensim implementation of LDA written in python programming
language was used. The model calculates the sparsity parameters
from the data. This only states the experimental setting for
generating a bag of words model and applying LDA; the detailed
procedures of computing semantic relations, interpretable visu-
alizations, class distinctions (for validation), and the rationales
behind the design choices are presented in detail in the respective
sections.

The pseudocode listed in the following part is presented as
supplementary information to help readers to follow the method.
The workflow diagram in Fig. 3 shows the main steps in our
approach. The first step is the bag of words modeling. This step
is necessary before applying LDA to the image dataset. The next
step is the LDA modeling; this step learns the parameters from
the data and then models the Sentinel-1 scenes as the distribu-
tions of latent variables called “topics.” The fourth step is for
computing semantic relations between the reference classes and
the latent variables retrieved from the LDA model. The fifth
step creates a topic representation map, while the final step is to
compute the class distinctions based on precomputed semantic
relations. The underlying concepts are presented in the following
sections.

Step 0: Inputs
-A database of images Ii (i = 1, 2, 3, …,N).
-Size of each image (Hi, Wi) pixels.
-Class labels Cj (j = 0, 1, 2, …, NUM_OF_CLASSES-1)
for M patches (size: Ph, Pw pixels) cut out from N
images.

-Dictionary size V, Number of topics K.
-Size of micropatches (Rh, Rw)

Step 1: #This part computes the bag of words model of
images
#Extract macro and micropatches
For i in (0, N-1):

MACROPATCHES = extract_patches (Ii,Ph,Pw)

For m in (0, length(MACROPATCHES)-1):
MICROPATCHES =
extract_patches(MACROPATCHESm, Rh, Rw)
#Dictionary creation
FEATURE_MATRIX = reshape(MICROPATCHES,
(length(MICROPATCHES), (Rh ∗ Rw ∗
NUM_OF_CHANNELS))
DICTIONARY, CLUSTERLABELS = k-means
(FEATURE_MATRIX, VOCABULARY_SIZE = V)
DATA_ARRAY = reshape(CLUSTERLABELS, (Ph,
Pw))
BOW = compute_histogram(DATA_ARRAY,
NUMBER_OF_BINS = V)
Return BOW

Step 2: #This part applies LDA to the bag of words
model computed above

#Learn the alpha and beta parameters
ALPHA_BETA = learn_alpha_beta(BOW)
WORD_TOPIC_PROBABILITIES,
DOCUMENT_TOPIC_PROBABILITIES =
lda_model(DATA_ARRAY, K)
Return (both) PROBABILITIES

Step 3: #This part computes the semantic relations
CLASS_TOPIC_PROB_MAT =
zeros(NUM_OF_CLASSES, K)
SEMANTIC_RELATION =
zeros(NUM_OF_CLASSES, K)
#Computation
For j in (0, NUM_OF_CLASSES-1):

For k in (0, K-1):
CLASS_TOPIC_MAT[j, k] =
count_occurences(CLASS = j, TOPIC = k,
argmax_topic_probability(DATA_ARRAY,
WORD_TOPIC_PROBABILITIES))
SEMANTIC_RELATION[j, k] =
CLASS_TOPIC_MAT[j,
k]/number_of_micropatches(Cj)

Return SEMANTIC_RELATIONS

Step 4:#This part draws the topic representation maps
COLORS = COLORi.(i = 0, 1, …, K-1)
draw_topic_representation(DATA_ARRAY, COLORS,
WORD_TOPIC_PROBABILITIES))
#And save the map on disk

Step 5:#Class distinction
avg_kl_div(P_X, Q_X) =
(sum(P_X[i]�log(P_X[i]/Q_X[i])+
sum(Q_X[i]�log(Q_X[i]/P_X[i]))/2
For i in (0, NUM_OF_CLASSES-1):

For j in (0, NUM_OF_CLASSES-1):
DISTANCE_MAT[i, j] =
avg_Kl_div(SEMANTIC_RELATION[i],
SEMANTIC_RELATION[j])

Return DISTANCE_MAT
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IV. EXPLAINABLE SEMANTIC RELATIONS IN SENTINEL-1
IMAGES USING LDA

A. Experimental Procedure

The supervised classification of sea-ice images from [15]
(used as a case study) shows the semantic classes of the dataset.
We used these classes as a reference for finding semantic
relations using intermediate representations (topics) using an
LDA model. Since the last decade, LDA has been successfully
used in remote sensing image understanding. LDA originated
as a generative probabilistic model of text data and works in
a bag-of-words framework. However, our approach focuses on
using LDA as a seamless and explainable data mining tool to
discover the semantic relations in Sentinel-1 images.

The bag-of-words framework is a prerequisite for applying
LDA. In general, the steps in the bag of words modeling in
the image processing domain are patch sampling, local feature
extraction, dictionary learning, word assignment, and histogram
computation. There are two parameters to be determined for
patch sampling: the patch size and the sampling strategy. It has
been shown that a smaller patch size yields better classification
accuracies both for overlapping and nonoverlapping patches
[18]. Furthermore, one has to decide upon a sampling technique
to sample p patches from the image dataset, for instance, ran-
dom sampling or dense sampling. It was shown that random
sampling and dense sampling do not cause a big difference in
the classification accuracy [18]. The next step is to extract x local
descriptors from the p sampled collection of patches. In case of
no features, the feature vectors are the vectorized pixel values
of the patches. The third step is learning a dictionary D = (d1,
…, dv) with V words using all local features from the p patches.
Usually, this is done by an unsupervised learning method, e.g.,
k means clustering or a Gaussian mixture model. Each entry di
in the dictionary is the center of a cluster. The next step is to
find a dictionary-based representation r = [r1, …, rv] for each
previously extracted local descriptor x and its dictionary size of
v words. This can be done using a hard feature assignment or
a soft assignment [18] to each local descriptor x. Finally, r, the
descriptor representation has only one nonzero element. Next,
for each image, the count of each word is computed to get the
final bag of words model of the image dataset.

LDA is a probabilistic model for discrete data, which discov-
ers latent semantics of the documents as a set of topics, where
the topics are distributions over the words of the dictionary. To
apply LDA to images, we need to find the analogies to corpora,
documents, topics, dictionaries, and words.

In our approach of applying LDA to Sentinel-1 images, each
scene Ii (i = 1, …, N) is considered as a corpus. M patches
(henceforth referred to as macropatches) of size (Hi, Wi) pixels
are extracted from each scene to serve as visual documents using
the dense sampling.

We chose a fixed size for these documents, which is the
same as the patch size of the reference research. The words
are obtained by the quantization of local image features. The
vectorized pixel values of micropatches (extracted from the
macropatches) are then used as local features. Each document
(macropatch) Mi consists of Ni visual words (micropatch). A

dictionary of size V is computed by the vector quantization of
the feature space using a k means clustering approach. For LDA,
the number of topics K must be specified. We set the number of
topics K to roughly match the number of classes in the reference
research. This concept is presented in Fig. 4.

1) LDA Generative Process: The following generative pro-
cess (see Fig. 4) is pursued to model M documents, each docu-
ment containing N words and K topics:

For each document di:
1) Choose θi ∼ Dirichlet (α), i � {1, …, M};
2) Choose ϕk ∼ Dirichlet (β), k �{1, …, K}.
For each word position wij in each image patch i:
1) Choose a topic zk ∼ multinomial (θi);
2) Choose a word wi,j ∼ multinomial (ϕzi,j )

where α and β are the Dirichlet parameters determining the
sparsity of the document-topic and of the topic-word distribu-
tions. Given the α and β parameters and the number of topics
K, LDA models the documents as the probability distributions
of the topics.

The joint distribution of a topic mixture θ, a set of N topics z,
and a set of N words w is given by

p (θ, z, w | α, β) = p (θ | α)
N∏

n=1

p(zk | θ)p (wn | zn, β) (1)

where p(zn�θ) is actually the θi for the unique i such that zin= 1.
Integrating over θ and summing over z, we obtain the marginal
distribution of a document

p (w | α, β) = ∫ p (θ | α)

×
(

N∏
n = 1

∑
zn

p (zdn | θ) p (wnzn, β)

)
dθ.

(2)

We retrieve the document-topic probability matrix θM×K

from the trained model. Each vector θi (i = 1, 2, …,M) is a
K-size vector containing the topic probability distribution for
document di, i.e.,

θik = p(zk = 1 | di = 1). (3)

Likewise, LDA models the topics as distributions over word
probabilities and outputs another matrix ϕ where

Φkj = p(wj = 1 | zk = 1). (4)

2) Semantic Relations: After modeling a visual corpus with
LDA, we get the topic-word probability matrix θM×K. This
matrix is then used to assign the maximum probable visual topic
to each visual word in each visual document according to

Word j → max(p(zk | wj). (5)

This, in turn, labels the micropatches used for building visual
words with visual topics. Such a representation now allows one
to compute the probability of each visual topic for each reference
semantic class as the count of micropatches being labeled with a
visual topic, divided by the total number of micropatches labeled
with any visual topic, i.e., the probability of a visual topic ti for



682 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 4. Topics as an intermediate level of the information modeled by LDA.

Fig. 5. Semantic relations derived by using topic distributions.

a reference semantic class Cj is computed as

p (ti | Cj) = Count (Micropatch (ti)) |

×
K−1∑
0

Count (Micropatch (ti)) . (6)

For each reference class Ci (i = 1, 2, …, Num_of_classes),
the semantic relation is heuristically stated as

Ci =
∑
k

p (tk) ∗ tk + ui (7)

where i is the index for each semantic class, k is the index for a
topic, p(tk) denotes the probability of the kth visual topic in class
Ci, while ui is the normalized count of words with no assigned

topic to class Ci. These semantic relations are scientifically
explainable by domain experts.

B. Experimental Results

We followed the experimental procedure as described in Sec-
tion II to produce the results. Then the semantic relations of the
11 classes (including black edges) were computed and shown
in Fig. 5. We did not consider a black edge (image edge effects)
as a distinct class and present only the semantic relations of the
other ten classes.

C. Explainable Outcomes

The topics retrieved by LDA are considered to be in the
interpretable domain, because, when visually presented and
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compared with the classification maps or combined with the do-
main knowledge, they are able to generate some interpretation.
The features in the interpretable domain are used to provide
explanations. However, semantic relations computed by using
the probability of topics are only explainable by domain experts.

The semantic relations of each reference class indicate the
physical composition of that particular class, which means that
a domain expert can specify the nature of each topic. Although
the visual topics are modeled as the distributions of visual words
(which are vectorized pixel values and have no semantic mean-
ing), an explanation by a domain expert would assign semantic
meanings to the visual topics. This domain expert can also give
scientific reasons for the presence, absence, and abundance of
particular visual topics in each particular class. This offers a way
of how to generate intermediate semantic labels from low-level
features, such as pixel values, and to explain them.

The semantic classes floating ice, water bodies, melted
snow/ice, and water/ice currents contain mostly topics Topic-5
(0.34, 0.38, 0.29, and 0.32) and Topic-11 (0.27, 0.36, 0.44,
and 0.39). We also found that the topic distributions of each
class vary every month due to the varying characteristics of the
land-cover classes (not presented here). This allows us not only
to identify the observation month but also to conduct time-series
analyses of land-cover classes. In Fig. 5, we present the semantic
relations for the given classes in terms of topic probabilities. The
floating ice class is dominated by Topic-5 and Topic-11, whereas
the icebergs class has less appearance of Topic-5 but more of
Topic-0. Topic-11 is dominant in all classes but this is not the
case for Topic-0, Topic-3, Topic-4, Topic-5, and Topic-10. Here,
a domain expert can explain the nature of the topics, e.g., Topic-5
and Topic-11, and even nonexperts can intuitively confirm that
Topic-5 is a water-like element.

V. INTERPRETABLE TOPIC REPRESENTATIONS USING LDA

A. Experimental Procedure

Topic representation maps can be created easily by using the
topic-word probability matrix retrieved from LDA. Each visual
word in the visual corpus is assigned to the most probable topic
according to

Word j → max(p(zk | wj). (8)

The topic representation map can be visualized by drawing
each micropatch filled with a color identifying the labeling topic.

Thus, drawing a topic representation map for each visual
corpus recreates each scene with colors identifying the visual
topics. This map gives a visual impression of the nonvisual
Sentinel-1 information and shows the abundance of the visual
topics, which enables us to make guesses about the study area
with limited domain knowledge.

B. Experimental Results

Each visual word is a 4 × 4 pixel cut out from the scene and
by coloring each cut out with the specific color that identifies
its most probable topic, we obtain a topic representation map
that recreates the scene in a completely unsupervised manner.

According to the annotations, 11 classes (including the black
edges) could be found in the images comprising floating ice,
glaciers, icebergs, melted snow/ice, mountains, old ice, first-year
ice, young ice, water bodies, and water/ice currents.

The left column of Fig. 7 shows the original quick-look
data of an image acquired in August 2018, while the central
column represents the semantic annotations obtained from an
active learning framework [15], and the right column presents
the topic representations. Fig. 7 also displays the quick-look
images and the topic representations for two images taken in
June and April 2018.

C. Seamlessness to Interpretability

In our research, the topics retrieved from the LDA model are
the features in the interpretable domain. We used these topics
to create visualizations called “topic representation map” for
subsequent interpretation. Thus, our method proposes a way to
map seamless features into interpretable maps. Unlike a color
slide, their interpretation requires some domain knowledge. In
the following (see Fig. 6), we present the three case studies from
our research as follows.

1) Case study-1 demonstrates no or very limited inter-
pretability, using only the topic representation map.

2) Case study-2 shows their limited interpretability, achieved
by comparing the topic representation map and the corre-
sponding product quick-look image.

3) Case study-3 is done by comparing the topic representa-
tion map with the corresponding classification map; this
produces a great amount of interpretable information.

We observe that a greater amount of interpretability is
achieved with a higher quality of the domain knowledge. How-
ever, one can see that the topic representation map gives more
granular details than the quick-look image (case study-2) or the
reference classification map (case study-3).

We define three levels of interpretability with respect to our
study, as depicted in Fig. 6(d). Low interpretability means only
being able to find the shapes of objects, the homogeneity of topic
compositions together with the spatial relations of these objects,
and the topics composing these objects. Medium interpretability
is defined as all interpretabilities defined in low interpretability
plus a matching of brightness levels. Finally, high interpretability
refers to medium interpretability plus a visual class-topic map-
ping. All these levels of interpretability can be demonstrated in
three case studies.

1) Case Study-1: Low Interpretability: From the topic repre-
sentation map of the study area, acquired on August 9, 2018, we
can only see the shapes of objects composed of a set of topics, the
spatial relations of the objects, and the homogeneity of the topics
composing the objects. Some objects are made of homogeneous
topics, while others are heterogeneous combinations of topics.
For instance, the area, as shown in Fig. 6(a), is mostly described
by the cyan topic, with a significant amount of dark green
and pink topics. We also find some dark green chunks, having
some pink objects on top, surrounded by almost homogeneous
cyan-colored objects. This method offers a limited amount of
interpretability, denoted as low interpretability.
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Fig. 6. Interpretation of topic representation maps. (a) Case study-1. (b) Case study-2. (c) Case study-3. (d) Levels of interpretation in our study. The bottom
right color legend is linked to the semantics retrieved by the active learning method, while the bottom left color legend is linked to the topic distribution.

Fig. 7. Topic representation maps. (Top from left to right) A quick-look of Sentinel-1 image acquired in April 2018, followed by its LDA topic representation,
and the semantic map of the active learning step. (Middle from left to right) The first two left images are the quick-look of Sentinel-1 image from June 2018 together
with its LDA topic representations, while the last two right images are the quick-look of Sentinel-1 image from August 2018 and its LDA topic representation
map. (Bottom from left to right) The left color legend is the one for the semantic classes of the active learning, while the right color legend illustrates the topic
distribution.
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2) Case Study-2: Medium Interpretability: A visual compar-
ison of the topic representation maps with the product quick-look
images can provide a good guess of the study area. Here, we
use the quick-look image as a source of a limited amount
of domain knowledge, which provides information about the
spatial relations of the objects in the scene and their comparative
brightness. We can easily find the mapping between objects in
the quick-look image and the objects in the topic representation
map. The red boxes in Fig. 6(b) show the shape of the objects,
the homogeneity of the topics, and their mutual spatial relations.
The darkest objects in this quick-look image appear as a cyan
topic in the topic representation map. The objects with a higher
brightness have the dark green topic assigned to them. The ob-
jects in the lowest right area map to the objects with a cyan topic,
with some appearance of pink topics in the topic representation
map, which may stand for another level of brightness, not being
visible in the quick-look image. Following this approach, it is
possible to make consistent interpretations over the whole scene,
also with greater granular details.

3) Case Study-3: High Interpretability: By using a quick-
look image and its reference classification map as the sources
of domain knowledge, we can achieve a greater level of in-
terpretability, which gives us information about the shape of
the objects, the homogeneity of topic compositions, the mutual
spatial relations of objects and topics, the brightness differences,
and our heuristic class-topic mapping.

A class-topic mapping can be interpreted by a visual compari-
son of a topic representation map with its reference classification
map. For instance, Fig. 6(c) shows an iceberg area from the
quick-look image, its topic representation, and the resulting
classification map. From this, we can interpret the shape of the
object “icebergs” object, that icebergs are mostly linked with the
green topic, with some pink patches of this topic appearing in
the portions that look brighter in the quick-look image, and that
the pink topic patches appear around the left boundary of the
iceberg object. Noticeably, we obtain an additional granularity
of information that is missing in the classification map but is
visible in the topic representation map.

Furthermore, Figs. 6 and 7 also show another example of
interpretation, this time without the classification map.

VI. EXPLAINABLE CLASS DISTINCTIONS

A. Experimental Procedure

Once the semantic relations for each class have been com-
puted, we get a signature for each class in terms of the prob-
abilities of the visual topics. Each term in the signature is the
probability of a topic, followed by the id of that topic and an
∗ operator. The general formula of the semantic classes can be
heuristically written as

Ci =
∑
k

p (tk) ∗ tk + ui (9)

where i is the index for each semantic class, k is the index for a
topic, p(tk) denotes the probability of the kth topic in class Ci,
and ui is the normalized count of words with no assigned topic

in class Ci, while ui is the normalized count of words with no
assigned topic in class Ci.

This gives a probability distribution for each class. Now it
is possible to distinguish between the classes to see whether
that gives some scientifically consistent decision. This step also
serves as a validation of the approach. To distinguish between
the classes, we have to distinguish between the probability
distributions. The Kullback–Leibler (K–L) divergence is the
state-of-the-art method for this. The divergence from a distri-
bution Q to a distribution P is defined as

DKL (P || Q) =
∑

(P (x)) log

(
P (x)

Q (x)

)
. (10)

However, for using the K–L divergence as a distance metric,
we need to have symmetric values

disti,j = distj,i ,i �=j. (11)

To have a symmetric form of the K–L divergence, we averaged
the divergence between every two classes and used these values
as a distance metric, which results in a symmetric matrix of
interclass distances. Next, to have a clear grouping of similar and
dissimilar classes, in terms of this distance metric, we subjected
this distance matrix to a hierarchical clustering algorithm. Hi-
erarchical clustering is a common analysis tool for relationship
discovery based on some distance metric.

B. Experimental Results

The results of this step are obtained by subjecting the 11 × 12
semantic relation matrix (11 classes and 12 topics) to the K–L
divergence computation module to retrieve the distance matrix.
We get an 11 × 11 symmetric matrix. This distance matrix
is shown in Fig. 8. The distances of less than the mean value
of all distances are highlighted in light green, the remaining
ones are highlighted in cyan, while the diagonal elements are
set to zero and highlighted in dark green. We get an initial
grouping of similar and dissimilar classes from this. For a
better classification, based on the measure of similarity using the
K–L divergence, we ran a hierarchical clustering on the classes,
thus, grouping them into clusters. Although it needs a domain
expert to confirm the correctness of the grouping, we can claim
that the resulting dendrogram (see Fig. 9) reflects our intuition
about the physical properties of the semantic classes. The set
of classes floating ice, water bodies, melted snow, and water
currents form the first group in the dendrogram (see Fig. 9).
This is distinguished from the second group containing glacier,
young ice, icebergs, mountains, old ice, and first-year ice.

Looking closer into the first group, we see that floating ice
is separated from the subgroup containing water bodies, melted
snow, and water currents.

The grouping of land-cover classes and their topic compo-
sitions are further summarized in Fig. 9. This actually shows
a cause–effect relationship between class groupings and topic
compositions. In other words, this tells us which classes are
closer to each other and why, as well as which classes are distant
from each other, and the reason behind them for being so distant.
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Fig. 8. Class distinction using the K–L divergences.
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Fig. 9. Grouping of similar classes based on their semantic relations.

The graph shown in Fig. 9 contains two types of nodes and
two types of edges as follows.

1) Labeled nodes: These nodes depict the land/surface cover
class. For visual simplification, only six classes are chosen
for display.

2) Unlabeled colored nodes: For each class, they indicate the
topic probabilities for six topics. The larger the node, the
higher is the probability of that particular topic.

3) Topic assignment edges: They relate each class to its
component topics identified by colored nodes.

4) Class similarity edges: These edges are of three types.
Each type identifies the group relationship between the
pair of class nodes they join. These relationships are
the level differences obtained when the dendrogram is
considered as a tree structure.

We see that the nodes, water body and melted snow (depicting
the classes water bodies and melted snow), both have large cyan
and pink nodes indicating that both of them are dominated by
cyan and pink topics, and consequently are on the same level
of the dendrogram. The bar graph presents the dissimilarity of
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the semantic classes. We can track each class and describe its
dissimilarity from the other classes by following each row in the
bar graph. For instance, the floating ice class is highly dissimilar
with glacier and young ice but very similar to water bodies. Re-
peated experiments found similar groupings of classes, thereby
ensuring our scientific and algorithmic consistency.

C. Explainable Outcomes

The semantic relations between reference classes and visual
topics define the class compositions in terms of topics. From the
distance matrix shown in Fig. 8, we can get an initial idea about
the similarity and the dissimilarity between each pair of semantic
classes. For instance, the glacier class is similar to mountains,
old ice, first-year ice, and young ice. We can algorithmically
explain these phenomena in terms of the K–L divergence.

The K–L divergence compares the abundance of each vi-
sual topic between two given classes and finds the smallest
divergence between glacier (a ∗ Topic-0 + b ∗ Topic-1 + c
∗ Topic-3 +…) and mountains (a ∗ Topic-0 + b ∗ Topic-1
+ c ∗ Topic-3 +…), the second smallest divergence between
glacier and young ice (a ∗ Topic-0 + b ∗ Topic-1 + c ∗ Topic-3
+…), whereas the glaciers class has the greatest divergence
between glacier and melted snow/ice (a ∗ Topic-0 + b ∗ Topic-1
+ c ∗ Topic-3 +…) because they have more dissimilar topic
probability distributions.

However, these interclass distances are scientifically explain-
able by domain experts who can comment on the physical
similarity of the classes and map that information to our findings.

Consequently, the results of the hierarchical clustering based
on the similarity of such compositions provide explainable out-
comes.

We found that the classes that are physically similar, for exam-
ple, water body, melted snow, and water currents are dominated
by the same set of topics. The water body class is composed of
Topic-5 and Topic-11. The same holds for the classes melted
snow and water currents, the only difference being the amounts
of Topic-3 and Topic-4, which are higher in the latter two cases.

A dendrogram is actually a tree representation of the results
of hierarchical clustering. Cutting a given tree at various height
levels along the y-axis helps understand the similarity of the
classes. If we cut our tree at 0.5, we are left with two clusters.
Starting from the left, we first get floating ice, water currents,
water bodies, and melted snow. Then the second cluster contains
the classes glacier, young ice, icebergs, mountains, old ice, and
first-year ice.

When we look at the first cluster obtained by the cut at 0.5, this
cluster contains floating ice, water currents, water bodies, and
melted snow. In this cluster, the floating ice class stands apart
from the other three classes (water body, melted snow, and water
currents), which are most similar to each other. Looking closer
into the second cluster obtained by the cut at 0.5, we see that
the glacier class is an outlier. When we apply a cut at a height
of 0.3, we are left with a lone cluster glacier, and another one
containing young ice, icebergs, mountains, and first-year ice.
Among these four, obviously, the class first-year ice is the most
distant one. Among the other four, iceberg and mountains are

most similar to each other and different from the other group of
similar classes, namely, old ice and first-year ice.

Any dissimilarity of classes can also be understood from the
diagram. From a physical perspective, the classes, mountains
and water bodies, must be distinct. Such a decision can also be
reached from the topic distributions of these two classes. The
mountains class has a fair share of Topic-0, Topic-3, Topic-4,
Topic-5, and a large amount of Topic-11.

In the case of the class water body, there is much less appear-
ance of other topics, except for Topic-5 and Topic-11.

VII. CONCLUSION AND FUTURE WORK

The idea behind this work is to apply unsupervised topic mod-
els, such as LDA, as a data mining tool for learning high-level
semantic structures in image areas with no or poor existing prior
knowledge. We demonstrated our approach using Sentinel-1
data for an area near the North Pole for which no ground-truth
data existed.

LDA, when being used as a data mining tool, maps each
semantic class into combinations of topics and demonstrates the
method’s capability to detect new semantics. Here, the images
are represented as the distributions of the topics. We further
used a sample annotation of the images, derived from and based
on the results of an active learning method to investigate the
relationships between the topics and the land/surface cover
classes. To this end, the topic distribution of each class was
computed. The results show that different classes have different
topic distribution signatures.

In addition, to use all information provided by Sentinel-1 data,
we also considered the combination of its two polarizations
[17], and we compared the results of the average (avg) and
the difference of polarizations with those obtained by the HH
polarization. Three sets of experiments are performed based on
the combinations of polarization, i.e., HH, HH-HV, combination
of HH, HV, and avg (HH+HV). The obtained results show a
consistent structure and also similar class groupings using the
K–L divergence on semantic relations. However, more visual
granularity is obtained by combining polarizations [HH, HV,
avg (HH, HV)].

Furthermore, LDA is a well-studied subject; however, the
uniqueness of our approach lies in the following aspects.

A. Featurelessness

As there is no prior knowledge about the dataset, we use a
seamless data mining method to avoid any bias caused by the
feature model. The pixel brightness values of the image patches
are used as features for the machine learning model.

B. Unsupervised Discovery of the Innate Data
Model Ranked by Trust

The model is ranked by trust levels of the topic probabilities.
For each word in the bag of words framework, the maximum
probable topic given by the LDA model is chosen; this, in turn,
removes the irrelevant topics and leads to a refined result.
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C. Visual Interpretability

The topic representation map provides a way to visually
interpret the study area by comparing the map with the product
quick-look image, without requiring any reference data.

D. Explainability and a New Validation Method

We used the topics as data model descriptors to provide an
explanation of the composition of the land/surface cover classes.
We quantitatively determined their semantic relations, using the
topics as an intermediate-level data representation model.

In addition, we proposed methods dedicated to exploring
unknown data without training or verification information. The
validation of results obtained when using LDA is usually made
with the classification results and using some reference dataset.
In our case, we applied a unique validation method that computes
the interclass dissimilarities by exploiting the K–L divergence
between the topic probability distributions of the land/surface
cover classes.

E. Visual Representation From the Nonvisual
Sentinel-1 Images

One of the outcomes of our research is a visual representation
of selected areas covered by Sentinel-1 images. When scientifi-
cally explained, they can serve as a benchmark dataset for further
research and/or applications. This idea is planned as future work.

The data of this study can be requested from the authors under
the conditions imposed by the projects that funded this study.
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