
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021 553

Union of Class-Dependent Collaborative
Representation Based on Maximum Margin

Projection for Hyperspectral Imagery Classification
Haoyang Yu , Member, IEEE, Xiaodi Shang , Student Member, IEEE, Meiping Song, Member, IEEE, Jiaochan Hu,

Tong Jiao, Qiandong Guo, and Bing Zhang , Fellow, IEEE

Abstract—This article proposed a novel spectral-spatial classi-
fication framework for hyperspectral image (HSI) through com-
bining collaborative representation (CR) and maximum margin
projection (MMP). First, class-dependent CR classifier (CDCRC)
is used on HSI classification to fully make use of self-information
contained in each class. Second, the MMP is included into the
framework to discover local manifold structure. Combined with
CDCRC, it formed the classifier named CDCRC based on MMP
(CMCRC), which aims to reduce band redundancy. Finally, a
comprehensive spectral-spatial classifier, called union of CMCRC,
is proposed to optimize the classification map through integrating
cumulative probability of residuals instead of applying strong con-
straints to maintain the spatial consistency. Experimental results
on three real hyperspectral datasets demonstrate the effectiveness
and practicality of the proposed methods over other related models
for HSI classification tasks.

Index Terms—Collaborative representation (CR),
dimensionality reduction, hyperspectral remote sensing, image
classification, maximum margin projection (MMP).
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List of Acronyms
HSI Hyperspectral image.
HSIC Hyperspectral imagery classification.
SVM Support vector machine.
SR Sparse representation.
SRC SR-based classifier.
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CR Collaborative representation.
CRC CR-based classifier.
DR Dimensionality reduction.
MMP Maximum margin projection.
JSRC Joint SRC.
JCRC Joint CRC.
CDCRC Class-dependent collaborative representation clas-

sifier.
CMCRC CDCRC based on MMP.
UCMCRC Union of CMCRC.
SCP Spatial cumulative probability.
OA Overall accuracy.
AA Average accuracy.

I. INTRODUCTION

HYPERSEPCTRAL remote sensing is a multidimensional
information acquisition technology that combines imag-

ing technology and spectral technology [1]–[3]. Compared to
multispectral images, hyperspectral images (HSIs) have higher
spectral resolution, which enhances their capability to describe
and distinguish the ground objects. Nowadays, HSIs have been
widely used in various fields such as target recognition, disas-
ter monitoring, resource exploration, land-use, and land-cover
mapping [4]–[6].

Hyperspectral imagery classification (HSIC), which assigns
the pixels to the available classes [7], is a widely used technique
in hyperspectral imagery processing. Various pixel-wise spectral
classifiers have been developed [8]–[15], such as support vector
machine (SVM) [8], [9], neural networks [10], [11], and sparse
representation (SR) [12]–[15]. Recently, deep learning [16] has
drawn significant attention and proved to be effective in HSIC
[17]. It can be considered as an extension of the hand-crafted
neural network. In contrast to traditional classification methods,
deep learning can automatically learn complex features of HSIs
with a large number of hierarchical layers [18]. However, train-
ing a deep network is quite expensive and requires a large num-
ber of training samples [19] and [20]. Additionally, SR-based
classifier (SRC), which represents each tested pixel sparsely by
a few labeled atoms via l0 or l1-normed regularization takes the
low-rank characteristic of HSI [21] into consideration, and has
been shown to improve HSIC [22]. However, its competitive
nature imposed by sparseness constraint [23] is not effective as
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expected in improving the accuracy of classification. In contrast,
collaborative representation (CR) [24], which incorporates all
the atoms for representation and makes each atom be selected
with equal chance, achieves a better performance than SR.
Despite of advances in spectral classifiers as mentioned above,
Hughes phenomenon produced by the unbalance between lim-
ited training samples and high-dimensionality continues to limit
the accuracy of classification [25].

Dimensionality reduction (DR) has been used to solve this
issue. In general, there are two approaches to reduce the dimen-
sionality of HSI, namely feature extraction and band selection.
Specifically, band selection preserves the most discriminative
bands while discarding some redundant and noisy bands to
reduce the band number [26]–[32]. The classical methods such
as maximum variance principal component analysis (MVPCA)
[26], constrained band selection (CBS) [27], entropy-based
[28]–[30], and evolution-based band selection [31] have been
shown to be effective. Recently, a Boltzmann entropy-based
band selection was developed, which can characterize both sta-
tistical information of HSI and spatial distribution of pixels [29].
Moreover, a band selection method based on a variant of entropy
has also proved efficient [30]. As a limitation, the band subsets
selected by most of these traditional band selection techniques
are not enough to describe the discriminants for different types
of classes to some extent [32].

Feature extraction, as a significant and effective approach for
DR [33], is mainly composed of linear or nonlinear equations
which aims to transform original data from a high-dimensional
space to an optimal low-dimensional space [34]. Some classical
algorithms have shown their capability to optimize spectral
features of HSI and demonstrated their effectiveness in HSIC,
including principal components analysis (PCA) [35], maximum
noise fraction (MNF) [36], and independent component analysis
(ICA) [37]. Manifold learning, as a basic approach for pattern
recognition, has also been employed for spectral feature extrac-
tion and HSIC [38], which assumes that high-dimensional data
can be approximately represented in manifold low-dimensional
subspaces [39]. Based on manifold learning, He et al. [40]
proposed a linear and semi-supervised algorithm called max-
imum margin projection (MMP) to extract features for image
retrieval tasks. Unlike most DR algorithms, which rely on global
Euclidean structure but ignore the difference in data distribu-
tion, MMP is designed to discover the local structure through
characterizing both geometrical and discriminant features of
data in manifold spaces. Its advantage of seeking class-specific
subspace allows it to be successfully applied to DR of HSI.
However, spectral features of similar objects could differ as a
result of noise and spectral variability [41], [42], which limits
the accuracy of HSIC based on spectral information alone and
thus makes it necessary to incorporate other information that
helps refine classification.

Spatial information is an example of such information. It has
been widely used in various classification methods [43]–[50],
the basic idea of which is to assume that pixels within an
adjacent region share similar spectral characteristics and, thus,
are more likely to belong to same category [43]. To integrate
spectral and spatial information, Tarabalka [44] proposed a

classification model, which combines SVM with MRF (SVM-
MRF). The SVM-MRF model can effectively modify initial
results in classification through incorporating the spatial cor-
relation between pixels into the posterior probability of spectral
features. In addition, spatial correlation has also been introduced
into the SR-based and CR-based models of second generation
[48]–[50], usually known as joint SRC (JSRC) [49] and joint
CRC (JCRC) [50], which represents an object with a local area
around a tested pixel rather than a single pixel. Although with
a better performance in HSIC, the joint representation-based
methods tend to be time-consuming as a result of finding solu-
tions for strong constraint vectors.

In this article, we proposed a framework that incorporated
recent advances in HSIC including CR, manifold learning, and
spatial correlation. First, we applied the class-dependent collab-
orative representation classifier (CDCRC) to explore the impact
of intraclass training samples on optimizing the sparse coeffi-
cient. Second, MMP is introduced to extract the class-specific
features for HSIC by obtaining the projection matrix according
to the dictionary of each class. The new classifier named CDCRC
based on MMP (CMCRC), which represents the MMP-reduced
data sparsely by CDCRC, aims to reduce band redundancy and
improve classification performance. Finally, a spatial informa-
tion integration method with consideration of spatial coherence
was incorporated into the framework of classification, called
the union of CMCRC (UCMCRC). In summary, UCMCRC
optimizes the classification map and improves the classification
performance by combining residual accumulation probability
image with a softer spatial information postprocessing method.
Major contributions of this article are summarized as follows.

1) Suitable mechanism and simple calculation based on
class-dependent CR

CDCRC simplifies the SR process from the perspective of
self-information of each class. It represents the tested pixel
by aggregating all samples of a single class in the dictionary,
which not only simplifies the calculation but also achieves better
classification performance than CRC.

2) Effective feature extraction and efficient hyperspectral
classification via MMP

CMCRC has fully considered the advantage of CDCRC repre-
senting the target vector by class, and finally unifies the samples
required for MMP with the labeled samples in the dictionary
used by the CDCRC to perform feature optimization and SR to
achieve final classification. In a word, CMCRC can reduce time
consumption and further improve the classification.

3) Relaxed spatial integration and precise classification based
on the cumulative probability of residuals

UCMCRC calculates the cumulative probability of the cen-
tral pixel for each class according to the reciprocal image of
residuals, and then integrates the spatial information to achieve
HSIC, which is effective and practical in classification for real
hyperspectral scenes.

The remainder of this article is organized as follows. Section II
introduces SRC, CRC as well as MMP algorithms. Section III
describes the proposed CDCRC, CMCRC, and UCMCRC in
detail. Section IV validates the proposed framework on three
real hyperspectral datasets by drawing comparisons with other
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state-of-the-art HSIC approaches. Section V concludes this ar-
ticle with some remarks.

II. RELATED MODEL DESCRIPTION

Before the description of the related models, we first list some
of the notations that will be used throughout this article.

A. SR-Based Classifier

As a generation of the nearest neighbor classifier as well as the
nearest subspace classifier [59], SRC is a simple but effective
classifier, which codes a tested sample x over a dictionary D
such that x can be nearly represented by x ≈ Dα. SRC adopts
the l0-norm to measure the sparsity of α, which determines
the number of nonzero values in α. Because the combinatorial
l0-norm minimization turns to be a nonconvex NP-hard problem,
the l1-norm minimization as the closest convex function is
utilized to replace it in SR formulation. Then, the class label
of the tested pixel (i.e., check class by class) is determined by
representing it using all training samples in D. Therefore, SRC
can be formulated as a Lagrange formulation as follows:

α̂ = argmin
α

{||x−Dα||22 + λ||α||1} (1)

where ||α||1 =
∑n

m=1 |αm| denotes the l1-norm, and λ is de-
fined as a regularization parameter that measures the relative
importance of minimizing the vector α. Then, the residual of x
is calculated. Then, the SR of x using D and the optimal solution
of coefficient α̂ is given by

rm(x) = ||x−Dmα̂m||22 (2)

Fig. 1. Geometric illustration of the representation of x over D.

where α̂m is defined as the corresponding coefficient vector
related to the class m in α̂. Then, the final class label of x, which
is determined based on the minimum residual error between x
and its approximation Dmα̂m is assigned by

class(x) = argmin
m

rm(x). (3)

In this case, if x belongs to class m, Dmα̂m may represent
x well while the most coefficients in α̂ with m �= n are zeros,
and only α̂m has a value. That is, the nonzero value in α̂ will
ultimately determine the class label of x.

B. CR-Based Classifier (CRC)

Compared to the competitive mechanism imposed by sparse-
ness constraints in SRC, the collaborative mechanism is more
suitable for HSIC [23]. Therefore, the concept of CR and the
CRC is introduced in this section. As shown in Fig.1, if consid-
ering the classification criterion of SRC from the perspective of
geometric projection with letting x̂ = Dα̂ as the perpendicular
projection of x onto the space spanned by D, the reconstruction
residual rm(x) of mth class in (2) in SRC can be further derived
as

rm(x) = ||x− x̂||22 + ||x̂−Dmα̂m||22. (4)

Since ||x− x̂||22 is a constant, r∗m(x) = ||x̂−Dmα̂m||22
named as CR error plays a conclusive role in classification. For
simplicity, via donating the parallel vectors κm = Dmα̂m and
κ̄m =

∑
n�=m Dnα̂n, r∗m(x) can be expressed as

r∗m(x) =
sin2(x̂, κm)||x̂||2
sin2(κm, κ̄m)

(5)

where (x̂, κm) represents the angle between x̂ andκm. Similarly,
(κm, κ̄m) is the angle between κm and κ̄m. It can be concluded
from (5) that, CR considers not only whether the angle between
x̂ and κm is small, but also whether the angle between κm and
κ̄m is large. Due to eliminating the l1-norm constraint, such a
mechanism of “double checking” in CR can make HSIC more
effective and robust.

Differing from SRC with l1-norm that is time-consuming
and cannot exploit the sparsity of α with insufficient data sam-
ples, CRC believes that a tested sample can be collaboratively
represented by the l2-norm via all the training samples in D.
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The regularized least square is utilized in CRC such that its
closed-form solution can be easily achieved. Therefore, the CRC
can be modeled as

α̂ = argmin
α

{||x−Dα||22 + λ||α||22} (6)

where ||α||2 = (
∑n

m=1 |am|2)1/2 is defined as an l2-norm
constraint and λ is a regularization parameter, which makes the
solution stable and controls the sparsity of α̂. Eventually, the
sparsity by l2-norm is weaker than that by l1-norm. Then, the
optimal solution of CRC can be expressed as

α̂ = (DTD+ λI)−1DTx. (7)

Once the representation coefficient α̂ is obtained, the com-
bination of the dictionary and the weight vector is further con-
sidered to represent the tested pixel x. Furthermore, we can
compute residuals and obtain the final class label of the tested
pixel as the same way did by (2) and (3).

C. Maximum Margin Projection

MMP is a linear and semisupervised DR method proposed by
He et al. [40] based on a priori consistency assumption. Different
from conventional DR algorithms such as PCA and LSDA,
which only focus on global Euclidean structure, MMP could
discover the local structure and characterize both geometrical
and discriminant structures of the data manifold. The algorithm
constructs a within-class graph Gw and a between-class graph
Gb by exploiting both intraclass and interclass information, and
finds a linear transformation matrix A that maps image data X
to a subspace via

Y = ATX (8)

where Y ∈ �d×N , X ∈ �L×N , and A = (a1,a2, . . . ,ad) ∈
�L×d with d � L. Thus, if map all the points of graph Gwand
Gbto a line so that the points in Gw stay as closer as possible
while the points inGb keep as far as possible, the margin between
relevant and irrelevant data samples will be maximized at each
local neighborhood. Therefore, the two objective functions of
MMP can be described as follows:

min
∑
ij

(yi − yj)
2Ww,ij (9)

max
∑
ij

(yi − yj)
2Wb,ij (10)

whereWw andWb are the weight matrices ofGw andGb defined
as

Ww,ij =

⎧⎪⎪⎨
⎪⎪⎩

γ, if xi and xj share the same label
1, if xi and xj is unlabeled

butxi ∈ Nw(xj) or xj ∈ Nw(xi)
0, otherwise

(11)

Wb,ij =

{
1, if xi ∈ Nb(xj) or xj ∈ Nb(xi)
0, otherwise

(12)

where N(xi) is defined as the set of k nearest neighbors of xi.
Furthermore, Nb(xi) contains the neighbors with different la-
bels, andNw(xi) is consist of all the remainder of the neighbors,

Algorithm 1: CDCRC.
Input: X, D, x
Step 1: Compute α̂m according to (16) with Dm.
Step 2: Obtain residual image cube R according to (2).
Step 3: Identify the class label of x according to (3).
Output: class(x)

with Nb(xi) ∪Nw(xi) = N(xi) and Nb(xi) ∩Nw(xi) = ∅. γ
is a weighted adjustment parameter.

When the high-dimensional feature space is projected to a
low-dimensional subspace, minimizing (9) attempts to ensure
the nearest neighbors within-class closer after dimensionality
reduction. Besides, maximizing (10) is to make samples outside
the k-nearest neighbors as dispersive as possible. Formulas (9)
and (10) can be further expressed by (13) and (14) as follows:

min
1

2

∑
ij

(yi − yj)
2Ww,ij = aTXΛwX

Ta− aTXWwX
Ta

(13)

max
1

2

∑
ij

(yi − yj)
2Wb,ij = aTXΛbX

Ta− aTXWbX
Ta

(14)

where ais a projection vector. Λw and Λb are within-class
and between-class diagonal matrices, respectively. With a con-
straint aTXΛwX

Ta = 1, (13) can be simplified as mina 1−
aTXWwX

Ta equivalent to maxa a
TXWwX

Ta. Thus, the
objective function of MMP can be further reduced as

argmax
a

aTX[β(Λb −Wb) + (1− β)Ww]X
Ta (15)

where β is a constant with β ∈ [0, 1]. The vector a given in
(15) can be obtained by a maximum eigenvalue solution. Fi-
nally, the process of MMP for dimensionality reduction can be
implemented by yi = ATxi.

III. PROPOSED METHODS

The original CRC adopts all the labeled samples from differ-
ent classes in D for solving the sparse coefficients and represen-
tation. Although CRC considers the information of all classes
in the process of solving sparse coefficients, it does not fully
consider the discrimination information contained in each class,
which may influence the representation, the calculation of resid-
uals, and lead to misclassification. Accordingly, an alternative
way, such as the class-dependent SRC [60] and the nearest
subspace classifier [59], which estimates the sparse coefficients
through within-class samples to represent the tested samples and
generate residuals, was developed. Therefore, drawing on the
abovementioned methods, this section applies CDCRC, which
focuses on the initial representation information for each class
into HSIC, introduces a dimensionality reduction method us-
ing the spectral information of dictionary to extract the class-
specific features effectively, and proposes an effective decision
mechanism by integrating the spatial information of a residual
image.
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Fig. 2. Collaborative representation of CRC and CDCRC.

Algorithm 2: CMCRC.
Input: X, D, x
Step 1: Perform MMP on the dictionary D to obtain the
projection matrix A.

Step 2: Reduce the dimensionality of the data X by (8) to
obtain the dimension-reduced data Y.

Step 3: Implement CDCRC on Y for HSIC.
Output: class(x)

A. Class-Dependent CRC

Unlike CRC keeps D as a whole to obtain optimal vector α̂
for the tested pixel x in (6), CDCRC utilizes each subdictionary
to obtain a representation coefficient α̂m of class m, which is
given by

α̂m = argmin
αm

{
‖x−Dmαm‖22 + λ ‖αm‖22

}
. (16)

It should be noted that the main purpose of the CDCRC is
to explore the interaction between the intrinsic information of
single class and coefficient α. Thus, the key difference between
original CRC and its improved method CDCRC illustrated in
Fig. 2 is whether D is divided into M classes for the solution
of α̂. As mention in (2), CDCRC utilizes each subdictionary
Dm as well as corresponding weight vector α̂m to represent the
tested pixel approximately. Also, the image classification can be
finished by (3) that minimizes the residual error gained in (2).
The process of CDCRC is summarized in Algorithm 1.

B. CDCRC Based on MMP

CDCRC defines a different way of obtaining the weight coef-
ficient, which takes into account the global sample information
and the local discrimination information of a single class. How-
ever, CDCRC still uses all bands of HSI for HSIC, and does not
specifically select features that are helpful for the classification
task. When the dimension of the HSI is large and does not match
the number of training samples, the classification accuracy may
be reduced, which is called the Hughes phenomenon. To address
this issue, we choose a DR method originated from image
retrieval, MMP, for effective feature extraction.

The characteristic of MMP is that it can minimize the com-
pact graph within the class and maximize the separation graph

Algorithm 3: UCMCRC.
Input: X, D, x, w, τ
Step 1: Obtain residual image cube R with regard to Y
according to CMCRC. Let R̂ be the reciprocal image of R.

Step 2: Extract w × w pixel-sized window centered on (i,
j) from R̂, R̂i,j .

Step 3: Normalize the value of R̂i,j to form a probability
map, Pi,j .

Step 4: Calculate the SCP of the tested pixel for each class
according to Pi,j by (14).

Step 5: Identify the class label of x with maximum SCP
class(x) = argmax

m
SCPm(x)

Output: class(x)

between classes by differently constructing weights of dif-
ferent classes, so that the similar data points are closer and
the heterogeneous data points are more distant after embed-
ding the low-dimensional manifold of high-dimensional data.
It cannot only use a small number of labeled samples to de-
scribe the manifold structure of the data, but also use a large
number of unlabeled samples to avoid overfitting problems,
thereby effectively solving the problem of high dimensional-
ity and less labeled information in HSIC. More importantly,
the projected samples used in MMP are very similar to the
labeled training samples that form the dictionary in the CD-
CRC model, which is also the main reason why we combine
MMP and CDCRC to design a new classification model called
CMCRC.

The proposed CMCRC algorithm first takes the labeled sam-
ples in the dictionary constructed by CDCRC and all the tested
samples in the image as the labeled samples and unlabeled
samples for MMP to map high-dimensional data into the low-
dimensional data space. Then, the dimension-reduced image
is classified by CDCRC to obtain the final classification map.
Detailed steps of CMCRC is presented in Algorithm 2.

C. Union of CMCRC

CMCRC can effectively obtain spectral information through
feature extraction, so that CDCRC can perform accurate CR in
a typical feature domain and improve classification accuracy.
However, both CDCRC and CMCRC belong to the classifiers in
the spectral domain, only considering the spectral information of
HSI. In fact, the tested pixel may produce spectral variation, that
is to say, the same objects may have different spectral character-
istics, which will negatively affect the classification performance
of spectral classifiers, leading to in misclassification.

Several approaches [3],[7], [9], [10], [13], [15], [36], [37],
[53], [54], [46]–[50], [53]–[58] such as edge-preserving filtering
[9], Boltzmann entropy [29], SVM-MRF [44], JSRC [49], and
JCRC [50], focusing on the utilization of spatial information are
proposed in HSIC. In information theory, the improved Shannon
entropy [51]–[53] and Boltzmann entropy [54]–[56] capture the
configuration and composition information of hyperspectral data
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Fig. 3. Schematic diagram of the proposed UCMCRC model.

to obtain spatial information. In this article, the basic assumption
is that the spatially adjacent pixels are more likely to belong to
the same class. Therefore, the pixels with spectral variation will
be corrected based on the spatial consistency assumption. It is
noticeable that most CR-based spectral-spatial classifiers are too
restrictive on spatial information. In practical applications, it
is difficult and time-consuming to obtain the optimal sparsity
coefficient under such strong constraints. Motivated by this
point, a novel spectral-spatial framework with an extension of
the aforementioned CMCRC model, called the UCMCRC, is
further proposed.

The schematic diagram of UCMCRC is shown in Fig. 3. The
implementation process can be divided into three steps. First,
MMP makes use of the atoms in the dictionary of CDCRC to
reduce the original HSI to a low-dimensional feature image
Y by (8). Second, for the abovementioned feature image Y,
we can use CDCRC to solve the optimal coefficient value α̂m

obtained from the subdictionaryDm, and gain the residual value
of the tested pixel according to (2). Finally, most of CR-based
models determine the class label of the tested pixel according to
the minimum residual error. Unfortunately, in some cases, the
spectral variation may cause the issue that the class where the
tested pixel gets the smallest residual is not correct. According
to the assumption with spatial consistency, that is, the closer the
pixels, the higher the probability of the same class, UCMCRC
considers the impact of neighborhood pixels on central pixels
and proposes a new concept of spatial cumulative probability
(SCP). For a tested pixel xi,j , Ri,j represents a w × w pixel-
sized window centered on it from residual image R. R̂i,j is
denoted as the reciprocal image of Ri,j , and is normalized to
generate a probability map, Pi,j . In this case, we can use the
SCP of the tested pixel to update and correct the residual value
in spatial domain before the final decision. The SCP of xi,j for

class m is calculated as follows:

SCPm(xi,j) = pm + τ

�
w

2∑
v=1

pm
(v) (17)

where τ is a penalty parameter, which controls the significance of
neighborhood. pm represents the value of central pixel for class
m in Pi,j and pm

(v) is the neighborhood value of pm where
v denotes the index of vector in the neighborhood. If the label
of xi,j is determined only by residual r(xi,j) in CMCRC with
rm+1
i,j < rm+2

i,j < rmi,j , the xi,j belongs to class (m+1). Inversely,
if we consider the neighborhood pixels via SCP in UCMCRC,
it is obvious that the class label of the tested pixel xi,j should be
(m+2) with SCPm+2

i,j > SCPm
i,j > SCPm+1

i,j as shown in Fig. 3.
The process of UCMCRC is given in Algorithm 3.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, CDCRC, CMCRC, and UCMCRC are
evaluated via three real hyperspectral datasets provided in
Section IV-A. The settings of the related parameters including
the number of training samples n, the dimension d, the win-
dow size of neighborhood w and the penalty parameter τ in
UCMCRC are investigated in Section IV-B. For comparison,
SVM and the SR-based models including SRC and CRC, are
first utilized in the spectral domain. Furthermore, in the spatial
domain, a postprocessing model for spatial information called
SVM-based Markov random field (SVM-MRF), and two joint
representation-based models, JSRC and JCRC, are analyzed.
Finally, the classification results of various tested methods are
discussed from the perspective of d, n, overall accuracy (OA),
and average accuracy (AA) in Section IV-C. In the meantime,
the computational complexity of CR-based models comprising
CRC, CDCRC, CMCRC, and UCMCRC is also calculated.
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Fig. 4. Indian Pines dataset. (a) False-color composite image. (b) Reference
map.

Fig. 5. Washington DC Mall dataset. (a) False-color composite image. (b)
Reference map.

A. Datasets

1) Indian Pines: The Indian Pines scene was collected by
the Airborne Visible/Infrared Imaging Spectrometer sensor with
the size of 145× 145× 220, the spatial resolution of 20 m, and
the spectral range from 0.4 to 2.5 μm. Following [24], [61],
[62], there are eight mutually exclusive classes used in this
study so as to satisfy the requirement of sparsity and sample
selection, which are Corn-no till, Corn-min till, Grass/Pasture,
Hay-windrowed, Soybean-no till, Soybean-min till, Soybean-
clean till, and Woods. Fig. 4(a) and (b) shows the false-color
composite image and the reference map, respectively.

2) Washington DC Mall: The Washington DC Mall scene is
a hyperspectral airborne data with 210 bands and 2 m spatial
resolution. After removing noisy bands due to water absorption,
the size of this scene is 280× 307× 191 with spectra ranging
from 0.4 to 2.4μm. In order to satisfy the requirement of sparsity
and sample selection, six classes of interest are considered for
HSIC. The false-color image is shown in Fig. 5(a) and its
reference map is shown in Fig. 5(b).

3) University of Pavia: The University of Pavia scene ac-
quired by the reflective optics system imaging spectrometer sen-
sor in Italy. Its size is 610× 340× 103 with 12 bands removed
due to the high noise and water absorption. Its spatial resolution
is 1.3 m and the spectral range is from 0.43 to 0.86 μm. Its
false-color image is shown in Fig. 6(a). There are nine classes
provided in the reference data shown in Fig. 6(b).

Fig. 6. University of Pavia dataset. (a) False-color composite image. (b)
Reference map.

B. Parameter Setting

The relationship of four key parameters, n, d, w, and τ is
investigated in detail for UCMCRC in our experiment. First,
as can be seen from Fig. 7, the OA does not increase with
an increasing n, especially for the Washington DC Mall and
University of Pavia scenes.

Second, to a certain extent, the increase of data dimension d
will improve OA, but too high d will lead to the deterioration of
classification results, which also verifies the adverse impact of
the mismatch between n and d on HSIC. With consideration of
the balance between the extracted feature and the limited training
samples, it is recommended that the maximum dimension should
not be higher than �L/2
, where L is the dimension of original
HSI. Therefore, the maximum dimension of three datasets is 110,
100, and 60, respectively. When n, d, and OA are considered
at the same time, it can be found that OA is very low and
classification performance is poor with small n and d. Especially,
the regularization parameters λ in the methods based on the
representation models for three different datasets are set to the
values ranging from 10−6 to 1 [63].

Third, when n and d are fixed, the different neighborhood
window size w will also affect OA. In the experiments, w is
assigned a total of seven different scales from 3 to 15 with a step
size of 2. As a matter of fact, the optimal w will change according
to datasets, which is related to the distribution characteristics
of ground objects. As shown in Fig. 7, the OA mostly reaches
a peak at first, and then decreases with the increase of w. For
these three datasets, the optimal w is 5, 3, and 11, respectively. It
indicates that different datasets generally have different optimal
w according to the spatial coherence. Moreover, once w is too
large, there will be overcorrection, resulting in misclassification.

Finally, given n, d, and w of the three datasets (the settings of
n, d, and w for the Indian Pines, the Washington DC Mall, and
the University of Pavia scenes are 100, 90, and 5, 50, 80, and 3,
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Fig. 7. Relationship between the number of training samples n, the dimension d, the size of neighborhood w, and the OA for the proposed UCMCRC using (a)
Indian Pines dataset, (b) Washington DC Mall dataset, and (c) University of Pavia dataset.

Fig. 8. Relationship between the penalty parameter τ and the OA with fixed n, d, and w for the proposed UCMCRC using (a) Indian Pines dataset, (b) Washington
DC Mall dataset, and (c) University of Pavia dataset.

30, 60, and 11, respectively), Fig. 8 shows the influence of the
penalty parameter τ in SCP on the classification performance
of UCMCRC. For the three datasets, τ is consistent contain-
ing 11 different values with τ= {2Δindex

/(w2 − 1), Δindex =
−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8} where index is range from 1 to
11. Fig. 8(a)–(c) shows that UCMCRC achieves the best OA
when τ is equal to 2/3, 1/2, and 8/15 where the index is 7, 5,
and 9.

C. Results Analysis

In experiments, the classifiers are evaluated by different
numbers of training samples, of which are randomly selected
(from 10 to 100 samples per class for the Indian Pines, the
Washington DC Mall, and the University of Pavia scenes) for
dimensionality reduction and dictionary construction. In addi-
tion, all the remaining samples as the test samples are used for
validation. Tables I –III show the OA obtained by the nine tested
classifiers. The best OA of each classifier is highlighted and the
corresponding classification maps is shown in Figs. 9 –11 for
three real datasets. It should be mentioned that under the different
number of training samples, the corresponding dimensions of

CMCRC and UCMCRC are different when the classification
accuracy is optimal. Finally, the comparisons of computing
time for four CRCs including CRC, CDCRC, CMCRC, and
UCMCRC are shown in Fig. 12. As the results mentioned above,
three conclusions can be drawn.

1) Comparison of the Spectral Classifiers: In the Indian
Pines scene, the OA increases as n increases, and there is a
positive relationship between them. This trend is obvious when
n is small. As can be seen from Table I, when n is 100, both
SRC and CRCs perform better than SVM whose performance
is worst, which verifies the effectiveness of the representation-
based framework in HSIC. It is worth noting that CRC and
CDCRC do not have an advantage over SRC. Nevertheless,
the mechanism of obtaining sparse coefficients by class is still
effective, which can be demonstrated by CDCRC being superior
to CRC.

After the data space characterized by MMP, the classification
performance of CMCRC is greatly improved, with its OA being
3.71%, 14.15%, and 5.27% higher than that of SRC, CRC, and
CDCRC, respectively. In addition, CMCRC achieved the highest
AA among the spectral classifiers, which is 1.93%, 9.25%,
and 4.54% higher than SRC, CRC, and CDCRC, respectively.
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TABLE I
OVERALL ACCURACIES (IN PERCENT) OBTAINED BY THE DIFFERENT TESTED METHODS FOR THE INDIAN PINE SCENE

In all cases, various from 10 to 100 labeled samples per class were used. The best results are highlighted in bold typeface.

TABLE II
OVERALL ACCURACIES (IN PERCENT) OBTAINED BY THE DIFFERENT TESTED METHODS FOR THE WASHINGTON DC MALL SCENE

In all cases, various from 10 to 100 labeled samples per class were used. The best results are highlighted in bold typeface.

TABLE III
OVERALL ACCURACIES (IN PERCENT) OBTAINED BY THE DIFFERENT TESTED METHODS FOR THE UNIVERSITY OF PAVIA SCENE

In all cases, various from 10 to 100 labeled samples per class were used. The best results are highlighted in bold typeface.

This indicates that the combination of MMP and CDCRC can
effectively solve the band redundancy under limited training
samples and bring better characteristic representation results to
improve the classification. For the other two datasets, among the
five spectral classifiers, the OA value of CMCRC ranks second

and third, respectively, as does AA. Although the classification
results of CMCRC are not the best, it is still competitive with
lower computational cost than other classifiers.

2) Comparison of the Spectral-Spatial Classifiers: Com-
pared with SVM, SVM-MRF with spatial information can
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Fig. 9. Classification maps of best overall accuracy obtained by the different tested methods for the Indian Pines dataset. In all cases, various from 10 to 100
labeled samples per class were used. The overall/average accuracies are given in the parentheses. (a) False-color composite image. (b) SVM (71.76%/76.59%). (c)
SRC (83.64%/87.51%). (d) CRC (73.20%/80.19%). (e) CDCRC (82.05%/84.90%). (f) CMCRC (87.35%/89.44%). (g) SVM-MRF (87.19%/89.36%). (h) JSRC
(93.19%/94.69%). (i) JCRC (92.85%/94.92%). (j) UCMCRC (98.23%/98.48%).

Fig. 10. Classification maps of best overall accuracy obtained by the different tested methods for the Washington DC Mall dataset. In all cases, various from 10 to
100 labeled samples per class were used. The overall/average accuracies are given in the parentheses. (a) False-color composite image. (b) SVM (95.36%/96.15%).
(c) SRC (97.59%/97.73%). (d) CRC (94.98%/95.74%). (e) CDCRC (94.85%/94.85%). (f) CMCRC (97.16%/97.01%). (g) SVM-MRF (98.31%/98.35%). (h) JSRC
(96.38%/96.49%). (i) JCRC (96.18%/95.44%). (j) UCMCRC (99.05%/99.10%).

remarkably improve the classification accuracy on the three data
sets and obtain more homogeneous classification maps. It is
proved that spatial information is helpful to HSIC. Similarly,
this can be confirmed by the classification results of JSRC and
JCRC whose OAs are superior to those of spectral classifiers
SRC and CRC in the Indian Pines and the University of Pavia
scenes. Regarding the result of the Washington DC Mall scene,
the reason why the OA of JSRC is lower than that of SRC is
the misclassification caused by the contradiction between strong
sparsity constraint and fragment distribution.

Compared with the established CMCRC model, the succes-
sively proposed UCMCRC has significant improvements in all
datasets, which verifies that introducing a spatial item, SCP, into
the final decision mechanism to adjust and correct the residual
information of the tested pixel is effective for HSIC.

In general, compared with other classifiers used for test-
ing, UCMCRC obtained the best classification results on the
three datasets with the OA of 98.23%, 99.05%, and 95.32%,
respectively, which is 5.04%, 0.74%, and 2.22% higher than
the suboptimal classifiers (JSRC, SVM-MRF, and SVM-MRF),
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Fig. 11. Classification maps of best overall accuracy obtained by the different tested methods for the University of Pavia data set. In all cases, various from 10 to
100 labeled samples per class were used. The overall/average accuracies are given in the parentheses. (a) False-color composite image. (b) SVM (88.55%/91.13%).
(c) SRC (80.00%/85.58%). (d) CRC (68.66%/67.48%). (e) CDCRC (77.53%/77.56%). (f) CMCRC (79.69%/80.01%). (g) SVM-MRF (93.10%/94.74%). (h) JSRC
(86.49%/84.43%). (i) JCRC (86.95%/83.44%). (j) UCMCRC (95.32%/92.58%).

Fig. 12. Comparison of computing time for four CR-based methods for three
datasets. The numbers of the labeled samples correspond to the cases are 100,
50, and 30.

and 25.03%, 4.07%, and 26.66% higher than original CRC
classifier. Furthermore, comparing the AA of all spectral-spatial
classifiers, UCMCRC obtained the best value in the Indian Pines

and Washington DC Mall datasets. For the University of Pavia
dataset, UCMCRC also has a good classification result, and
its AA is only lower than SVM-MRF. Therefore, the effective-
ness and stability of the proposed spectral-spatial classification
method for HSIs based on residual information are verified.

3) Computational Complexity of CRCs: Fig. 12 illustrates
the computational time acquired by four CRCs including CRC,
CDCRC, CMCRC, and UCMCRC, where the settings of n for
three datasets are 100, 50, and 30, respectively. To be noticed that
the time consumption of the original CRC model is largest com-
pared with the other three proposed models. Most importantly,
the time-consuming of the original CRC model is 5.6 times,
2.5 times, and 1.9 times than that of the established CDCRC
model, which demonstrates that solving the coefficients class
by class can effectively improve the speed of the classifier. For
a clearer comparison, we have listed the specific values below
the bar chart in Fig. 12. The time cost of CMCRC (13.74 s,
4 s, and 15.2 s) and UCMCRC (13.21 s, 3.92 s, and 15.5 s) is
almost consistent both of which are lower than that of CDCRC
(24.93 s, 5.59 s, and 25.02 s), which indicated that MMP could
effectively reduce the complexity of data in the process of data
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preprocessing and ultimately reduce the time consumption of
the classifiers. In a word, CDCRC, CMCRC, and UCMCRC
achieve relatively low computational cost, which confirms their
practicability in HSIC.

V. CONCLUSION

This article proposes a novel spectral-spatial classification
framework based on CDCRC and MMP. Through integrating
spatial information of the pixel, the classification performance
of CDCRC using MMP-reduced data improved dramatically. In
general, the main advantages of UCMCRC can be summarized
into the following three points.

1) The CDCRC can solve sparse coefficients more accurately
and efficiently.

2) The organic combination of class-specific MMP and CD-
CRC in CMCRC reduces time consumption and obtains
better classification performance.

3) The decision mechanism of SCP based on the residual ac-
cumulation probability image has faster processing speed
and higher classification accuracy.

Experimental results on three real hyperspectral datasets
demonstrate the superiority of the proposed method over other
related methods.
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