1194

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

DASNet: Dual Attentive Fully Convolutional
Siamese Networks for Change Detection in
High-Resolution Satellite Images

Jie Chen
and Haifeng Li

Abstract—Change detection is a basic task of remote sensing
image processing. The research objective is to identify the change
information of interest and filter out the irrelevant change infor-
mation as interference factors. Recently, the rise in deep learning
has provided new tools for change detection, which have yielded
impressive results. However, the available methods focus mainly
on the difference information between multitemporal remote sens-
ing images and lack robustness to pseudochange information.
To overcome the lack of resistance in current methods to pseu-
dochanges, in this article, we propose a new method, namely,
dual attentive fully convolutional Siamese networks, for change
detection in high-resolution images. Through the dual attention
mechanism, long-range dependencies are captured to obtain more
discriminant feature representations to enhance the recognition
performance of the model. Moreover, the imbalanced sample is
a serious problem in change detection, i.e., unchanged samples
are much more abundant than changed samples, which is one
of the main reasons for pseudochanges. We propose the weighted
double-margin contrastive loss to address this problem by punish-
ing attention to unchanged feature pairs and increasing attention
to changed feature pairs. The experimental results of our method
on the change detection dataset and the building change detection
dataset demonstrate that compared with other baseline methods,
the proposed method realizes maximum improvements of 2.9 % and
4.2%, respectively, in the F1 score. Our PyTorch implementation
is available at https://github.com/lehaifeng/DASNet.

Index Terms—Change detection, dual attention, high-resolution
images, Siamese network, weighted double-margin contrastive
(WDMC) loss.

I. INTRODUCTION

EMOTE sensing change detection is a technique for de-
tecting and extracting the change information in a geo-
graphical entity or phenomenon through multiple observations
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[1]. Remote sensing image change detection research plays a
crucial role in land use and land cover change analysis, for-
est and vegetation change monitoring, ecosystem monitoring,
urban expansion research, resource management, and damage
assessment [2]-[9]. With the development of satellite imaging
technology, many high-resolution remote sensing images can be
obtained more easily. In high-resolution remote sensing images,
ground objects have more space and shape features; hence, high-
resolution remote sensing images become an important data
source for change detection [10]. The effective extraction and
learning of the rich feature information in high-scoring remote
sensing images, reduction in the interference of pseudochanges,
which means changes that are not truly occurring and changes
that do not interest us, and further improvement in the accuracy
of change detection are important issues in the field of remote
sensing change detection.

Traditional change detection methods can be divided into two
categories according to the research objects: pixel-based change
detection methods and object-based change detection methods
[11]. Pixel-based change detection methods typically generate
a difference graph by directly comparing the spectral informa-
tion or texture information of the pixels and obtain the final
result graph via threshold segmentation or clustering [12]-[18].
Although this method is simple to implement, it ignores the
spatial context information and generates a substantial amount
of salt-and-pepper noise during processing. Another type of
method divides the remote sensing image into disjoint objects
and uses the rich spectral, textural, structural, and geometric
information in the image to analyze the differences of temporal
images [19]-[23]. Although this type of method uses the spatial
context information of high-resolution remote sensing images,
traditional manual feature extraction is complex and exhibits
poor robustness.

In recent years, deep learning has yielded impressive results
in image analysis, natural language processing, and other fields
[24]-[26]. Neural networks with FCN [27] structures are widely
used in remote sensing change detection tasks [28]-[33]. These
methods can be divided into two categories: methods in the first
category fuse unchanged images and changed images and input
them into a network with FCN structure to detect the changes
by maximizing the boundaries instead of directly measuring the
changes. The methods in the other category detect changes by
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measuring the distances between feature pairs that are extracted
from images.

However, the available methods have low robustness to pseu-
dochanges. There are two main reasons for this:

First, due to the lack of satisfactory features that can effec-
tively distinguish between changed areas and unchanged areas,
the available features are often sensitive to factors such as noise,
angle, shadow, and context.

Second, the distributions of the changed and unchanged data
are often severely unbalanced, namely, the number of unchanged
samples is much larger than the number of changed samples.

To address the first problem, we propose the dual attentive
fully convolutional Siamese networks (DASNet) framework.
The basic strategy is to use a dual attention mechanism to
locate the changed areas and to obtain more discriminant feature
representations, which renders the learned features more robust
to changes. Many previous studies [34], [35] have demonstrated
that more distinguishable feature representations can be obtained
by capturing long-range dependencies[35]. Attention mecha-
nisms can model long-range dependencies and have been widely
used in many tasks [36]-[41]. Among them, the self-attention
mechanism [42], [43] explores the performances of nonlocal
operations of images and videos in the space-time dimension.
The self-attention mechanism is of substantial significance for
the long-range dependencies of images. Additionally, many
researchers[44]-[46] began to combine spatial attention and
channel attention so that the network could not only focus
on the region of interest but also improve the discrimination
of features. Therefore, we introduce an extended attention
mechanism [46], which is composed of a channel attention
module and a spatial attention module, for obtaining more
discriminative image features to enhance the model’s perfor-
mance in recognizing changes and to improve its robustness to
pseudochanges.

Aiming at overcoming the second problem, due to the im-
balance of data in change detection and the unbalanced con-
tributions to the network of the changed feature pairs and the
unchanged feature pairs in the contrastive loss [47] of traditional
Siamese networks, we established with weighted double-margin
contrastive (WDMC) loss. The WDMC loss can mitigate the
effects of having more unchanged regions than changed re-
gions in the original data by setting weight coefficients. It can
also alleviate the imbalance in the punishment between the
unchanged feature pairs and the changed feature pairs during
network training by setting double margins.

The main contributions of this article are as follows.

1) We propose a new remote sensing change detection
method that is based on deep metric learning, which uses
dual attention modules to improve feature discrimination
to more robustly distinguish changes.

2) We propose the WDMC loss, which increases the distance
between changed feature pairs and reduces the distance
between unchanged feature pairs while balancing the im-
pacts of changed regions and unchanged regions on the
network. Thereby enhancing the network’s performance
in recognizing change information and its robustness to
pseudochanges.
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3) Compared with the selected baselines, the proposed
method yielded SOTA results on the change detection
dataset (CDD) [48] and the building change detection
dataset (BCDD) [49], and the F1 scores reached 91.9%
and 89.8%, respectively. Compared with other baseline
methods, the maximum increases were 2.9% and 4.2%,
respectively.

The rest of this article is organized as follows. Section II
reviews the related works. Section III describes the proposed
method in detail. To evaluate our method, experiments are
designed in Section IV, and the proposed method is discussed.
Finally, Section V concludes this article.

II. RELATED WORKS

Change detection is a basic task in the field of remote sensing,
and researchers have developed many change detection tech-
nologies for this task. Remote sensing change detection methods
typically include feature extraction and changing area identi-
fication. The objective of the former is to extract meaningful
features, such as color distribution, texture characteristics, and
context information. The objective of the latter is to use technical
algorithms to analyze previously extracted features to identify
the changing regions in multitemporal remote sensing images.
Based on the techniques that are utilized in these change detec-
tion methods, we divide the remote sensing change detection
methods into traditional change detection methods and deep
learning change detection methods.

Traditional change detection methods mainly accept the fea-
ture differences and ratios of pairs of pixels or objects as input
and detect changes by determining thresholds. Change vector
analysis [12] conducts different calculations on the data of each
band of images in various periods to obtain the change amount
in each pixel in each band to form a change vector, and it
identifies the changed and unchanged regions using thresholds.
Principal component analysis [14], which is a classical mathe-
matical transformation method, obtains the difference image by
extracting the effective information in the image bands, performs
the difference calculation with the first principal component
and obtains the change map via threshold segmentation. Multi-
variate alteration detection [50] extracts change information by
maximizing the variance in the image difference. Slow feature
analysis [51] can extract invariant features from multitemporal
remote sensing image data, reduce the radiation differences
of unchanged pixels, and improve the separability between
changed and unchanged pixels.

The remote sensing change detection methods that are based
on deep learning use the features that are extracted from mul-
titemporal images by deep neural networks to determine the
change information in ground objects. In the field of natural
image change detection, deep learning methods perform well
[52], [53]. In the field of remote sensing, the strategy of using
deep learning for change detection has also been utilized. SCCN
[28] uses a deep symmetrical network to study changes in remote
sensing images, and DSCN [29] uses two branch networks that
share weights for feature extraction and uses the features that
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Fig. 1. Overview of the DASNet.

are obtained by the last layer of the two branches for thresh-
old segmentation to obtain a binary change map. CDNet [30],
FC-EF, FC-Siam-Conc, FC-Siam-Diff in [31], and BiDateNet
[32] implement end-to-end training on the CDD and learn the
decision boundary to obtain the change map.

In contrast to the above methods, the proposed method directly
measures changes and obtains a more discriminative feature
representation through the dual attention module, which can
capture long-range dependencies. Our proposed method uses the
WDMC loss to improve the degree of intraclass compactness
and to balance the influences of the changed regions and the
unchanged regions on the network to enhance the recognition
performance of the network for the changed information.

III. METHODOLOGY

In this section, we introduce the proposed network in detail.
First, the overall structure of the network that is proposed in
this article is introduced (see Fig. 1). The spatial attention and
channel attention modules are explained subsequently. Finally,
the proposed WDMC loss function is introduced.

A. Overview

Compared with general optical remote sensing images, high-
resolution remote sensing images have more abundant infor-
mation and higher requirements for feature extraction. We first
use the Siam-Conv module to generate local features (Fyo, Fi1)
by inputting high-resolution image pairs that are obtained at
different times in the same region. Then, the dual attention
mechanism is used to establish the connections between local
features, which are used to obtain global context information to
better distinguish the changing area from the unchanged area.

Consider spatial attention as an example, which generates new
features that contain spatial long-range contextual information
via the following three steps. The first step is to use a spatial at-
tention matrix to model the spatial relationship between any two
pixels of the features obtained from Siam-Conv. The next step

is to conduct matrix multiplication between the spatial attention
matrix and the original features. Third, the final representations
are obtained by applying the element-by-element summation
operation on the matrix that was obtained in the second step, and
the original features. The channel attention module captures the
long-range context information in the channel dimension.

The process of capturing channel relationships is similar to
that of spatial attention modules. The first step is to compute
the channel attention matrix in the channel dimension. The
second step is to conduct matrix multiplication between the
channel attentional matrix and the original features. Finally,
the matrix that is obtained in the second step and the original
features are summed element-by-element. After that, the outputs
of the two attention modules are aggregated to obtain a better
representation of the features.

Then, the features A_F}y and A_F}; that are obtained through
the dual attention mechanism are mapped to the feature space.
We use the WDMC loss function to decrease the pixel pair
distance of the unchanged area and to increase the pixel pair
distance of the changing area. Our method uses metric learning
and uses the distance between deep features as the basis for
discrimination, thereby substantially increasing the accuracy of
change detection.

B. Spatial Attention Mechanism

As discussed previously, discriminant feature representations
are important for determining the types of features and, thus,
for identifying changed and unchanged areas. However, many
studies [54], [55] have shown that using only local features that
are generated by traditional FCNs may lead to misclassification.
To model the rich context of local features, we introduce a spatial
attention module. The spatial attention module encodes the
context information of a long range into local features, thereby
enhancing the feature representations.

As illustrated in Fig. 2, the feature F € REXHXW ' where
C represents the number of channels of feature F, whereas H
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and W represent the height and width of feature F, respectively,
that is obtained by Siam-Conv is input into three convolutional
layers that have the same structure to obtain three new features,
namely, Fa, Fb, and Fc, where { Fa, Fb, Fc} € R€*H*W Then,
we reshape Fa and Fhto RE*N ' where N = H x W. After that,
we conduct matrix multiplication between the transpose of Fb
and Fa and obtain the spatial attention map Fs € R™V*® through
a softmax layer

exp(Fa; - Fbj)
Zij\il exp(Fai - Fb;)

F's;; can be used to measure the effectiveness of the feature at
position i on the feature at position j. The stronger the connection
between the two features, the larger the value of F's;.

We reshape Fc to RE*Y and conduct matrix multiplication
with Fs to obtain the result and reshape it to R©*7*W  Finally,
we multiply the result from the previous step by a scale parameter
1 and perform an elementwise summation operation with F to
obtain the final output

N
Fsa; =0y (Fs;jiFc;) + F; 2
i=1

where 7 is initialized as 0 and gradually learns to assign more
weight. From formula (2), it can be concluded that the resulting
feature Fsa at each position is the result of a weighted sum of
the features at all positions and the original features. Therefore,
it has a global context view and selectively aggregates contexts
based on spatial attention maps. Similar semantic features pro-
mote each other, which improves the compactness and semantic
consistency within the class and enables the network to better
distinguish between changes and pseudochanges.

C. Channel Attention Mechanism

Each high-level feature channel map can be regarded as a re-
sponse to a ground object, and the semantic responses are related
to each other. By utilizing the correlation between channel maps,
interdependent feature maps can be enhanced, and feature rep-
resentations with specified semantics can be improved to better
distinguish changes. Therefore, we construct a channel attention
module for establishing the relationships between channels.

As illustrated in Fig. 3, in contrast to the spatial attention
module, the convolution operation is not used to obtain the new
features in the channel attention module. Feature F € RE>*H*xW
that was obtained by Siam-Conv is reshaped to R€*", where
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N = H x W. After that, matrix multiplication is performed
between the transpose of F' and F to obtain the channel attention
map Fx € RV through a softmax layer
Fry= ) 3)
>i—1 exp(F - Fj)

Fz; can be used to measure the impact of the ith channel on
the jth channel. Similarly, the stronger the connection between
the two channels, the larger the value of Fxj;.

We reshape F to RE*Y and conduct matrix multiplication
with Fx to obtain the result. Finally, we multiply the result
from the previous step by a scale parameter v and conduct
an elementwise summation operation with F to obtain the final
output

c
Fca; :'YZ(FCjiFi) + F 4)

i=1
where + is initialized as O and gradually learns to assign more
weight. From formula (4), it is concluded that the final feature of
each channel is the result of a weighted sum of the features of all
channels and the original feature, which models the long-term
semantic dependence between the feature graphs. It enhances
the identifiability of the feature and highlights the feature repre-

sentation of the region of change.

D. WDMC Loss Function

In the traditional contrastive loss, a problem of imbalance
is encountered in the punishment for the changed feature pairs
and the unchanged feature pairs during training. The traditional
contrastive loss can be formulated as

. 1 2
contrastive loss = Z 3 (1 —yij)di;
2%}
+ ;. max (d; j —m,0)?]. (5)

We denote the feature map of the unchanged image through
our model as fy and the feature map of the changed image
through our model as f1, d; ; is the distance between the feature
vectors of fy and f; at (i,j), m is the margin that is enforced
for changed feature pairs, and y € {0, 1}, where y = 0 if the
corresponding pixel pair is deemed unchanged, and y = 1 if it
is deemed changed.

According to formula (5), the traditional contrastive loss does
not contribute to the loss value only if the distance between the
unchanged feature pairs is 0. However, in the remote sensing
change detection task, the unchanged area is affected by various
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imaging conditions, and the imaging difference is sometimes
very large; hence, many noise changes will hinder the opti-
mization of the distance between the unchanged feature pairs
to 0. However, the changed feature pairs can only contribute
to the loss if the distance exceeds the margin, which results in
the imbalance of the punishment degree in the training process
and affects the network’s judgment of the change. In addition,
the unchanged area in remote sensing change detection tasks
is much larger than the changed area; hence, there is a severe
imbalance between the unchanged samples and the changed
samples. In response to these problems, we propose the WDMC
loss function.
The proposed WDMC loss can be formulated as follows:

1
WDMC loss = Z 5 (w1 (1 =i j) max(di ; - my,0)2
i,
+wy yi,; max(d,; — mz,0)] 6)
where m; and mo represent the margins of the unchanged
sample pairs and the changed sample pairs, respectively, and

wj and wy represent the weights of the unchanged feature pairs
and the changed feature pairs, respectively

1

wy = P7U @)
1

W = FC (8)

where Py and Po are the frequencies of the changed and
unchanged pixel pairs, respectively.

According to formula (6), by setting the margins for the
unchanged sample pairs, we can alleviate the imbalance in
the punishment between the unchanged feature pairs and the
changed feature pairs during network training. We set the weight
coefficients to mitigate the effects of having more unchanged
regions than changed regions in the original data. Finally, these
parameters balance the network’s interest in the changed area
and the unchanged area.

Inspired by the strategy of deep supervision [56], [57], we
calculate the WDMC loss for the feature pairs that are obtained
through the spatial attention module, the feature pairs that are
obtained by the channel attention module and the final out-
put feature pairs. A; represents the weight for each loss, L,
represents the WDMC loss that is calculated using the feature
pairs that are extracted from the spatial attention module, L.,
represents the WDMC loss that is calculated using the feature
pairs that are extracted from the channel attention module, and
L. represents the WDMC loss that is calculated using the final
output feature pairs.

Thus, our loss function is ultimately expressed as

Loss = A1Lgsq + AoLcq + AsLe. 9)

In summary, we balance the contributions of the unchanged
feature pairs and the changed feature pairs to the loss value dur-
ing the training process and use the strategy of deep supervision
to enhance the feature representation performance of the hidden
layers. The discriminative feature representations improve the
network’s performance in recognizing changes.
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E. Implementation Details

Now, we introduce in detail the relevant parameter design in
the model design process.

First, we describe the design of the network structure. In terms
of Siam-Conv network structure selection, we chose two basic
networks: VGG16 [58] and ResNet50 [59]. For VGG16, we
keep only the first five convolution modules, and we remove the
max-pooling layer of the last module. In the first five convo-
lution modules, the size of the convolution kernel is 3 x 3. For
ResNet50, we remove the downsampling operations and employ
dilated convolutions in the last two ResNet blocks. Then, the dual
attention module composed of the spatial attention module and
the channel attention module is connected to Siam-Conv to form
the complete DSANet.

In terms of loss design, we set four parameters to balance
the contributions of the unchanged region feature pairs and the
changed region feature pairs to the network and to enhance the
network’s performance in the identification of changed regions.
The values of parameters w; and wy are the pixel ratios of
the changed area and the unchanged area in the dataset. The
parameters m; and mo must be manually adjusted to optimize
the performance of the model.

IV. EXPERIMENTS AND DISCUSSION

To evaluate the performance of the proposed method, we com-
pared other change detection methods on the CDD and BCDD
datasets, and we designed ablation experiments for evaluating
the proposed structure and improved loss function. Finally, the
experimental results are analyzed comprehensively.

A. Databases

1) CDD Dataset: CDD (see Fig.4)is an open remote sensing
change detection dataset. The dataset is composed of multi-
source remote sensing images with 11 original image pairs,
which include seven pairs of seasonal change images with a
size of 4725 x 2200 pixels and four pairs of images with a size
of 1900 x 1000 pixels. The resolution varies from 3 to 100 cm
per pixel, with the seasons varying widely among the bitemporal
images. In [49], Ji ef al. processed the original data to generate
datasets with training sets of size 10 000 and test and validation
sets of size 3000 via clipping and rotation.

2) BCDD Dataset: The BCDD dataset (see Fig. 5) covers the
area of the 6.3 magnitude earthquake that struck Christchurch,
New Zealand, in February 2011. The dataset contains two image
scenes that were captured at the same location in 2012 and
2016, along with semantic labels and change detection labels for
buildings. Since the size of each image is 32 507 x 15 354 pixels,
we divided the two images into nonoverlapping 256 x 256 pixel
image pairs. Then, we used the cropped images to form the
training set, the verification set, and the test set according to the
ratio of 8:1:1.

We counted the number of changed pixels and the number of
unchanged pixels in the CDD dataset and the BCDD dataset,
and the result can be seen in Table 1. In the CDD dataset, the
ratio of changed pixels to unchanged pixels was 0.147. In the
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TABLE I
STATISTICS ON THE NUMBER OF CHANGED PIXELS AND THE NUMBER OF
UNCHANGED PIXELS IN THE CDD DATASET AND BCDD DATASET

Dataset changed pixels unchanged pixels c/uc
train | 83,981,014 571,378,986 0.147
CDD val 24,676,497 171,800,431 0.144
test 25,411,239 171,196,761 0.148
total | 134,068,750 914,376,178 0.147
train | 17,071,534 382,435,922 0.044
val 1,854,764 48,083,668 0.039
BCDD — 12426517 47511015 0.051
total | 21,352,815 478,031,505 0.045

BCDD dataset, the ratio was 0.045. This means that in these two
datasets, the area that changed is much smaller than the area that
has not changed.

B. Metrics and Implementation Details

To evaluate the performance of the proposed method, we used
four evaluation indicators: precision (P), recall (R), F1 score
(F1), and overall accuracy (OA). In the change detection task,
the higher the precision value, the fewer false detections of

Multitemporal images that were selected as the training set from the CDD dataset. First row: unchanged images, second row: changed images, and third

Multitemporal images that were selected as the training set from the BCDD dataset. First row: unchanged images, second row: changed images, and third

the predicted result occur, and the larger the recall value, the
fewer predicted results were missed. F1 score and OA are the
overall evaluation metrics of the prediction results. The larger
their values, the better the prediction results. They are expressed
as follows:

TP
P=—_ 1
TP + FP (10)
TP
r= TP + FN (1)
2PR
- 12
fi P+ R (12)
TP + TN
OA = + (13)
TP + TN + FP + FN

where TP is the number of true positives, FP is the number of
false positives, TN is the number of true negatives, and FN is
the number of false negatives.

The proposed method was implemented with PyTorch as
the backend, which is powered by 3 x GTX TITAN XP. The
Adam optimizer was adopted with a learning rate of le—4 as an
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Fig. 6. Distance map visualizations for various layers: (a) unchanged image,
(b) changed image, (c) label, (d) distance map of DASNet (VGG16) with the
cosine similarity, (e) distance map of DASNet (VGG16) with the 12 distance.
The changed parts are shown in white, whereas the unchanged parts are shown
in black.

optimization algorithm, and the batch size of the training data
was set to 8. According to the experimental performance, the
value of m; was set to 0.3, the value of ms was set to 2.2, and
the values of A1, A3, and Ao were set to 1.

C. Effect of the WDMC Loss Function

The measurement values differ between feature pairs that are
obtained by different distance metrics. In the task of change
detection, a suitable distance metric must increase the distance
between the changed feature pairs and decrease the distance
between the unchanged feature pairs.

To obtain a suitable distance metric, we evaluated the impacts
of the 12 distance and the cosine similarity on the results of
the change detection task. We visualize the results from various
distance metrics. As shown in Fig. 6, we visualized the output
of two trained DASNet networks, which were all set up in the
same way except for different distance metrics, and we obtained
the distance maps based on various distance metrics. For the
same feature layer, the background of the receiving map that
was obtained using the cosine similarity was noisier, and its
performance in describing the changing boundary was weaker.
Thus, the performance of this metric in excluding noisy changes
was weak. The resulting graph that was obtained by using the
second-order Euclidean distance had a cleaner background and
a higher contrast in the front background, which endowed the
model with stronger change recognition performance.

In the change detection task, there were far more unchanging
sample pairs than changing sample pairs. The traditional con-
trastive loss has an unbalanced penalty for unchanged feature
pairs and changed feature pairs. As a result, the network with
the traditional contrastive loss performed weakly in discerning
change information. We propose the WDMC loss to strengthen
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TABLE II
INFLUENCE OF DIFFERENT VALUES OF A1, A2, AND A3

A1 A2 A3 Rec Pre F1 OA

0 0 1 0.924 0921 0922 0.981

025 025 05 0927 0925 0926 0.982

1 1 1 0932 0922 0927 0.982
TABLE III

Lo0ss COMPARISON STUDIES ON THE CDD DATASET

Method BaseNet Rec Pre F1 OA
Siam-Conv with contrastive loss ~ VGG16  0.822 0.913 0.859 0.967
Siam-Conv with WDMC loss(cos) VGGI16  0.889 0.827 0.856 0.963
Siam-Conv with WDMC loss(12) VGGI16 0.896 0.888 0.892 0.973
DASNet with contrastive loss VGG16  0.844 0915 0.878 0.971
DASNet with WDMC loss(cos) VGG16 0.896 0.841 0.871 0.970
DASNet with WDMC loss(12) VGG16  0.925 0.914 0.919 0.980
Siam-Conv with contrastive loss ~ ResNet50 0.841 0.915 0.876 0.971
Siam-Conv with WDMC loss(cos) ResNet50 0.893 0.841 0.866 0.969
Siam-Conv with WDMC loss(12) ResNet50 0.902 0.898 0.900 0.975
DSANet with contrastive loss ResNet50 0.878 0.905 0.891 0.973
DASNet with WDMC loss(cos) ResNet50 0.901 0.879 0.890 0.973
DASNet with WDMC loss(12) ResNet50 0.932 0.922 0.927 0.982

the network’s performance in the identification of change infor-
mation.

Since the selection of the values of m; and ms will have
a great influence on the results of the network, many experi-
ments were designed to find the values of m; and mo with the
best performance. Fig. 7 shows the performance of a DSANet
network using ResNet50 as the backbone on the CDD dataset
with different m1 and m2 values. We also tested the effect of
different values of A1, Ay and A3 on the CDD data set to the
final result. As listed in Table II, the appropriate choice of A,
XAo, and A3 improved the accuracy of the model to a certain
extent. Table III lists the comparison between the improved
loss function and the traditional contrastive loss, and precision,
recall, F1 score, and OA were used as judgment indicators to
evaluate the performance.

According to the results in Table III, when we used VGG16
as the backbone, compared with the traditional contrastive loss,
the recall and F'1 score of our proposed WDMC loss function
with 12 distance improved by 7.4% and 3.3%, respectively, and
OA improved by 0.6%, whereas other experimental conditions
remained unchanged. When we used ResNet50 as the backbone,
for Siam-Conv, compared with the traditional contrastive loss,
the recall and F'1 score of our proposed WDMC loss function
with 12 distance improved by 6.1% and 2.4%, respectively, and
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Fig. 8.  Visualization results of Siam-Conv (ResNet50) using different losses:
(a) unchanged image, (b) changed image, (c) label, (d) result of Siam-Conv
(ResNet50) with contrastive loss, and (e) result of Siam-Conv (ResNet50) with
WDMC loss. The changed parts are shown in white, whereas the unchanged
parts are shown in black.

OA improved by 0.4%, whereas other experimental conditions
remained unchanged. We also carried out experiments on the
improved loss and traditional contrastive loss based on the
proposed method, and they also proved the effectiveness of
the proposed WDMC loss. Therefore, the use of the proposed
WDMC loss can improve the performance of the network.

To verify the robustness of the proposed loss function to
pseudochanges, we visualized the output results of Siam-Conv
using traditional contrastive loss. Similarly, we also visualized
the output results of Siam-Conv using WDMC loss. The use
of Siam-Conv is to avoid the influence of the dual attention
mechanism on the results. It can be clearly seen in Fig. 8 that the
network trained with WDMC loss was more resistant to pseu-
dochanges. The network trained with WDMC loss was better
able to distinguish the pseudochanges due to seasonal changes,
sensor changes, etc. However, the traditional contrastive loss
could not do this well.

D. Ablation Study for Attention Modules

To better focus on the change regions and to improve the
recognition accuracy of the network, on the basis of the WDMC
loss, a dual attention module was incorporated for the iden-
tification of long-range dependencies to obtain better feature
representations. We designed ablation experiments to evaluate
the performance of the dual attention mechanism. As Fig. 9
shows, we also give the change process of the two parameters 0
and + in 30 epochs.

According to Table IV, the dual attention module improved
the models performance comprehensively. Compared with the
baseline Siamese network (a Siamese network that is based
on VGG16 or ResNet50), for using VGG16 as the backbone,
the recall, precision, F1 score and OA of the network with
the spatial attention module were 0.919, 0.901, 0.910, and
0.978, respectively, which correspond to increases of 2.3%,
1.3%, 1.8%, and 0.5%, respectively. For using ResNet50 as
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Fig. 9.

TABLE IV

Change process of the two parameters 7 and - in 30 epochs.
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ATTENTION MECHANISM ABLATION RESEARCH ON THE CDD DATASET,
WHERE CAM DENOTES CHANNEL ATTENTION AND SAM DENOTES

SPATIAL ATTENTION
Method BaseNet SAM CAM Rec Pre F1 OA
Siam-Conv  VGGI16 0.896 0.888 0.892 0.973
DASNet VGG16 v 0.919 0901 0910 0.978
DASNet VGGI16 v 0.922 0.892 0.906 0.976
DASNet VGG16 v v 0.925 0914 0.919 0.980
Siam-Conv  ResNet50 0.902 0.898 0.900 0.974
DASNet ResNet50 v 0.927 0903 0916 0.979
DASNet ResNet50 v 0.930 0.894 0912 0.978
DASNet ResNet50 v v 0.932 0.922 0.927 0.982

the backbone, the recall, precision, F1 score, and OA of the
network with the spatial attention module were 0.927, 0.903,
0.916, and 0.979, respectively, which correspond to increases of
2.5%,0.5%, 1.6%, and 0.5%, respectively. The recall, precision,
F1 score, and OA of the network that used VGG16 as the
backbone with the channel attention module were 0.922, 0.892,
0.906, and 0.976, respectively, which correspond to increases of
2.6%,0.4%, 1.4%, and 0.3%, respectively. The recall, precision,
F1 score, and OA of the network that used ResNet50 as the
backbone with the channel attention module were 0.930, 0.894,
0.912, and 0.978, respectively, which correspond to increases of
2.8%,.0.4%, 1.2%, and 0.4%, respectively. After both the spatial
attention module and the channel attention module were added
into the network, the network that used VGG16 performance was
further improved. The recall, precision, F'1 score and OA were
0.925, 0.914, 0.919, and 0.980, respectively, which correspond
to increases of 2.9%, 2.6%, 3.7%, and 0.7%, respectively. The
network that used ResNet50 performance was further improved.
The recall, precision, F'1 score and OA were 0.932,0.922,0.927,
and 0.982, respectively, which correspond to increases of 3.0%,
2.4%, 2.7%, and 0.6%, respectively.

The addition of a dual attention module to the Siamese
network overcomes the problem that the WDMC loss func-
tion cannot improve the precision while improving the recall.
Both the spatial attention mechanism and the channel attention
mechanism improve the accuracy of the network. When these
two attention mechanisms are combined, the spatial information
and channel information of the features are fully utilized, and
the comprehensive performance of the network is improved.
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t-SNE visual comparison diagram: (a) unchanged image, (b) changed image, (c) label, (d) result of Siam-Conv, (e) result of DASNet, (f) the last feature

layer of Siam-Conv, and (g) the last feature layer of DASNet. The changed parts are shown in white, whereas the unchanged parts are shown in black.

E. Visualization of the Dual Attention Mechanism Effect

To more intuitively reflect the role of the dual attention
module, we used the t-SNE [60] algorithm to visualize the
last feature layer of the Siamese net without adding the dual
attention mechanism (Siam-Conv) and the last feature layer of
the proposed model (see Fig. 10). In the t-SNE diagram, the
purple parts represent the unchanged feature vectors in 2D, and
the green parts represent the changed feature vectors in 2D.
Compared with Siam-Conv, the main advantage of the DASNet
model was that changed and unchanged features were both
well clustered, with strong discrimination between them. This
enlarged the margin between the types of features and effectively
increased the accuracy of feature classification.

To further illustrate the effectiveness of the attention mech-
anism, we applied the Grad-CAM [61] to different networks
using images from the CDD dataset. Grad-CAM is a visual-
ization method that uses gradients to calculate the importance
of spatial positions in the convolutional layer. We compared
the visualization results of Siam-Conv and DASNet. Fig. 11
illustrates the visualization results. In Fig. 11, we can clearly
see that the Grad-CAM mask of DASNet covers the target area
better than Siam-Conv. In other words, DASNet can make good
use of the information in the target object area and aggregate
characteristics from it.

Fig. 11 also demonstrates the robustness of the dual attention
mechanism to pseudochanges. Siam-Conv focuses not only on
change information but also on pseudochange due to seasonal
changes in trees, agricultural fields, etc. This is a manifestation
of the network’s lack of resistance to the interference of

(@)

Fig. 11.  Grad-CAM visualization results: (a) unchanged image, (b) result of
the fusion of the changed image with Grad-CAM mask of the Siam-Conv, (c)
result of the fusion of the changed image with Grad-CAM mask of the DASNet,
and (d) label. The changed parts are shown in white, whereas the unchanged
parts are shown in black.

pseudochange information. DASNet, however, is more con-
cerned with real changes.

F. Performance Experiment

To evaluate the performance of the proposed method, we
compared it with several image-based deep learning change
detection methods: CDnet [30] is used in the study of street
scene change detection. It is composed of contraction blocks
and expansion blocks, and the change map is obtained through
a softmax layer. FC-EF [31] stacks image pairs as the input
images. It uses the skip connection structure to fuse the shallow
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Fig. 12.

Visualized comparison of the results of various change detection methods on the CDD dataset: (a) unchanged image, (b) changed image, (c) label,

(d) CDnet, (e) FC-EF, (f) FC-Siam-Diff, (g) FC-Siam-Con, (h) BiDateNet, (i) DASNet(VGG16), and (j) DASNet(ResNet50). The changed parts are shown in

white, whereas the unchanged parts are shown in black.

Fig. 13.

Visualized comparison of the results of various change detection methods on the BCDD dataset: (a) unchanged image, (b) changed image, (c) label,

(d) CDnet, (e) FC-EF, (f) FC-Siam-Diff, (g) FC-Siam-Con, (h) BiDateNet, (i) DASNet(VGG16), and (j) DASNet(ResNet50). The changed parts are shown in

white, whereas the unchanged parts are shown in black.

and deep features and finally obtains the change map through
the softmax layer. FC-Siam-Conc [31] is an extension of FC-EF.
Its encoding layers are separated into two streams with equal
structure and shared weights. Then, the skip connections are
concatenated in the decoder part. FC-Siam-Diff [31] is another
extension of FC-EF. It differs from FC-Siam-Conc in that it does
not fuse the feature results that are obtained from the encoder
streams in the decoder part but calculates the absolute value
of the difference between the feature results. BidateNET [32]
integrates the convolution module in LSTM [62] into UNet [63]
so that the model can better learn the temporal change pattern.

We conducted comparative experiments with the above meth-
ods on the CDD and BCDD datasets.

From the data in Tables V and VI, the proposed method
performed significantly better than the other change detection
methods. For a more intuitive evaluation, we visualized the
experimental results (see Figs. 12 and 13). According to Ta-
ble IV, the proposed method realized satisfactory performance
in remote sensing change detection. Compared with the other
optimal change detection methods, the F1 score improved by
2.9% on the CDD dataset and by 4.2% on the BCDD dataset.

TABLE V
RESULTS ON THE CDD DATASET

Method Rec Pre F1 OA
CDnet 0.817 0.827 0.822 0.964
FC-EF 0.528 0.684 0.596 00911
FC-Siam-Diff 0.703 0.677 0.691 0.931
FC-Siam-Conc 0.666 0.710 0.687 0.925
BiDateNet 0.894 0.901 0.898 0.975
DSANet(VGG16) 0925 0914 0919 0.980
DSANet(ResNet50)  0.932  0.922  0.927 0.982

To evaluate the performance of our method more intuitively,
we visualized the experimental results. According to Figs. 12
and 13, the proposed method realized satisfactory results on
both the CDD and BCDD datasets.

In Fig. 12, the first row demonstrates our model’s perfor-
mance in recognizing small changes in complex scenarios. The
colors of images before and after the change in the second
row vary substantially, but this has a highly limited impact on
our network; there are many pseudochange interferences in the
images before and after the change in the third row, whereas
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TABLE VI
RESULTS ON THE BCDD DATASET

Method Rec Pre Fl1 OA
CDnet 0.821 0908 0.862  0.989
FC-EF 0.746  0.841 0.791 0.981
FC-Siam-Diff 0.710 0.700 0.704 0.971
FC-Siam-Conc 0.736  0.631 0.679  0.966
BiDateNet 0.819 0.889 0.852 0.986
DASNet(VGG16) 0.905 0.892 0.898 0.990
DASNet(ResNet50)  0.905  0.900 0910 0.991

the change in the bottom-left corner of the fourth row is not
readily observable. Our method performed well under both
conditions.

According to Fig. 13, compared with other change detection
methods, the proposed method focuses more on the changing
area of interest. Since the BCDD is a dataset for building change
detection, it is only necessary to identify building changes.
Other changes, such as road changes, can be regarded as pseu-
dochanges. The first row and the third row clearly show that
the method proposed in this article not only performs well in
identifying changes but also exhibits satisfactory resistance to
the interference of pseudochanges.

V. CONCLUSION AND FUTURE WORK

In this article, we proposed a DASNet for high-score re-
mote sensing image change detection, which directly measures
changes by learning implicit metrics. To minimize the distance
between the unchanged areas and maximize the distance be-
tween the changed areas, we used spatial attention and channel
attention to obtain better feature representations and used the
WDMC loss to balance the influences of the changed regions
and the unchanged regions on the network. Compared with other
baseline methods, our proposed network performed well on both
the CDD and BCDD datasets. The Siamese network structure
can learn the change representations of remote sensing images
well, and the attention mechanism can describe the local features
of the changes and recognize the pseudochanges.

In the future, we will conduct further research on small
samples and on open-world and noisy environments to improve
the mobility and robustness of change detection.
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