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Pan-Sharpening Based on Convolutional Neural
Network by Using the Loss Function
With No-Reference

Zhangxi Xiong, Qing Guo

Abstract—In order to preserve the spatial and spectral infor-
mation of the original panchromatic and multispectral images,
this article designs a loss function suitable for pan-sharpening and
a four-layer convolutional neural network that could adequately
extract spectral and spatial features from original source images.
The major advantage of this study is that the designed loss function
does not need the reference fused image, and then the proposed
pan-sharpening method does not need to make the simulation
data for training. This is the big difference from most existing
pan-sharpening methods. Moreover, the loss function takes into
account the characteristics of remote sensing images, including
the spatial and spectral evaluation indicators. We also add the
feature enhancement layer in convolutional neural network, thus,
the proposed four-layer network contains feature extraction, fea-
ture enhancement, linear mapping and reconstruction. In order
to evaluate the effectiveness and universality of the proposed fu-
sion model, we selected thousands of remote sensing images that
include different sensors, different times and different land-cover
types to make the training dataset. By evaluating the performance
on the WorldView-2, Pleiades and Gaofen-1 experimental data,
the results show that the proposed method achieves optimal per-
formance in terms of both the subjective visual effect and the
object assessment. Furthermore, the codes will be available at
https://github.com/Zhangxi- Xiong/pan-sharpening.

Index Terms—Convolutional neural network, deep learning,
feature enhancement, loss function, pan-sharpening, remote
sensing image fusion.

1. INTRODUCTION

AN-SHARPENING is using a high spectral and low
I spatial resolution multi-spectral (MS) image with a high
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spatial resolution panchromatic (PAN) image to produce a
high spectral and high spatial resolution image. Many remote
sensing pan-sharpening methods have been proposed in
recent years and can be mainly classified into three types:
component substitution (CS), multiresolution analysis (MRA),
and model-based algorithms (MB).

The CS methods rely on the substitution of a component
obtained by means of a spectral transformation of the MS
data with the PAN image. Classical CS methods include the
intensity-hue-saturation transform [1], the principal component
analysis [2], Gram-Schmidt (GS) method [3], the GS adaptive
(GSA) approach [4], the band-dependent spatial-detail (BDSD)
method [5], [6], Brovey transform [7], etc. Most CS methods
achieve good performance in the spatial quality but usually cause
the spectral distortion with varying degrees.

The MRA methods are based on the injection of spatial details
that are obtained through a multiresolution decomposition of the
PAN image into the resampled MS bands. The MRA methods
mainly include wavelet transform (WT) [8], discrete WT [9],
a trous WT [10], Laplacian pyramid (LP) [11], the additive
wavelet LHS method [12], beyond wavelets [13]-[15] (e.g.,
shearlet) and generalized LP (GLP) based on Gaussian filters
matching the modulation transfer function (MTF) [16], [17].
MRA methods preserve the spectral characteristics well but are
generally not satisfactory in terms of the spatial enhancement.

The MB methods mainly include the sparse representation
(SR) and the deep learning algorithms. SR [18]-[20] methods
first learn the spectral dictionary from the low spatial resolution
data, then combine the known high spatial resolution data to
predict the high spatial resolution and high spectral resolution
data. In recent years, deep learning algorithm has been widely
used in remote sensing field [21]-[24] and there has been an
increasing interest in the deep learning fusion algorithms, such
as the pan-sharpening method with deep neural networks [25],
the pan-sharpening by learning a deep residual network [26],
the CNN-based pan-sharpening method (CNNB) [27], and pan-
sharpening by convolutional neural networks (PNN) [28].

The selection of loss function of deep learning based pan-
sharping method is a very important research point. Literatures
[26]-[32] were adopted mean square error (MSE) as loss func-
tion, MSE has simple calculation and good data fitting. However,
it has a strong penalty for large error and a low penalty for small
error, which will ignore the influence of image content itself.
In addition, the partial derivative value is very small when the
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output probability value is close to O or close to 1, which may
cause the partial derivative value to almost disappear when the
model starts training.

In [33], the mean absolute error (MAE) is used as the loss
function. Compared with MSE, MAE has better convergence.
Since the loss of MSE is much greater than that of MAE in the
position with large error, it will give more weight to outliers, and
the model will try its best to reduce the error caused by outliers,
thus reducing the overall performance of the model. Therefore,
the MAE is more effective when there are more outliers in the
training data.

In order to prevent the model from over fitting, the regulariza-
tion term is added to the loss function, such as [y norm penalty, {1
norm penalty (parameter sparsity penalty), and [> norm penalty
(weight decay penalty). In [25] and [34], the weight decaying
term and the sparsity term are added to the MSE loss function.

The cross-entropy loss function is generally used in the field
of classification. It can measure the difference between two
different probability distributions in the same random variable.
In machine learning, it is expressed as the difference between
the real probability distribution and the predicted probability
distribution. In [35], a pan-sharpening method based on gener-
ative adversarial networks (GANSs) is proposed. In the GANS,
the cross entropy is used to determine the closeness between the
actual output and the expected output, which can be regarded as
a binary classification problem.

In the most of the methods mentioned above, there is normally
no ground truth image as the reference fused image. Therefore,
the training dataset of these methods is often made by the
degraded original MS and PAN images according to the Wald
protocol [36], and the original MS is used as a reference image.
In this article, motivated by the super-resolution convolutional
neural network (SRCNN) [37], we build a four-layer CNN
architecture that is improved from the three-layered SRCNN
architecture. First, we add a feature enhancement layer to en-
hance complex features. Then, according to the characteristics
of remote sensing image, a new loss function including the
spectral and spatial evaluation is designed, which will make the
convolutional result have high spectral similarity with MS and
high spatial similarity with PAN. Next, mass remote sensing
images as training sets are used to improve the universality
of the proposed CNN model. We carry out experiments on
three datasets including Pleiades, GaoFen-1, and WorldView-
2 multi-resolution sensors, compare results with a score of
well-established fusion techniques, and obtain significant im-
provements on all three datasets under both full-reference and
no-reference performance metrics.

The remainder of this article is organized as follows. Section I1
describes our proposed framework in detail. Section III offers
both qualitative and quantitative analyses through three groups’
experimental results. Finally, this article draws conclusions and
discusses future work in Section I'V.

II. PROPOSED CNNB WITH LABELS OF ORIGINAL DATA

In order to improve the lack of prominent details and the
presence of blurred edges of some existing CNNBs, and to solve
the existing model learning is not real remote sensing data, the

TABLE I
SPATIAL RESOLUTIONS FOR GAOFEN-1, PLEIADES,
AND WORLDVIEW-2 SENSORS

MS PAN
Gaofen-1 8m 2m
Pleiades 2m 0.5m
WorldView-2 1.84m 0.46m

pan-sharpening method based on a CNN model is proposed in
this article. In order to solve the existing deep learning fusion
model needs the simulated degraded source images and is not
based on the real remote sensing data, the new loss function with
no-reference is designed. In the following, details about datasets
are first provided, then our proposed fusion architecture and the
improved CNN-based network with labels of original data are
described.

A. Datasets

Three different types of remote sensing images are selected
as the experimental datasets including Gaofen-1, Pleiades, and
WorldView-2. Table I shows the spatial resolution for Gaofen-1,
Pleiades, and WorldView-2 sensors. Table II shows the spectral
bands of datasets. When the band is comprised the wavelength
range (in nm) is reported.

B. Proposed Pan-Sharpening Model

The proposed basic architecture consists of two main parts:
The training stage and the testing stage. The training stage is to
learn the super parameters by our architecture in a supervised
manner, while the testing stage is to produce the high spatial
resolution multispectral (HMS) image through the training stage
learned super parameters.

Before introducing the training stage, it is better to introduce
how to make the training data and label, our training data and
label is different from that made by our predecessors. In [25]—
[28], the required HMS image is not available which means
cannot find the ground truth. In addition, they often use the
MSE as the loss function, which needs the reference fused HMS
image. Therefore, they preprocess the training data according to
the Wald protocol and get the simulated degraded MS and PAN
by using the MTF as the input data of the fusion network, while
the original MS is considered as the so-called HMS reference
image. In this article, we designed a no-reference loss function
including the spectral evaluation and spatial evaluation, so there
is no need to preprocess to get the simulated input data, while
the original MS and PAN images are as the references.

The training data consists of up-sampled MS and original PAN
images. Assuming the original MS is an n-band image, then the
original MS is up-sampled to the size of PAN. Finally, the n + 1
bands training data is obtained by concatenating the up-sampled
MS and the original PAN. Fig. 1 shows the production process
of training data.

The label consists of the original MS and the original PAN.
Due to the different sizes between the original MS and the
original PAN, we should cut the original PAN image to the size
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TABLE II
SPECTRAL BANDS FOR GAOFEN-1, PLEIADES, AND WORLDVIEW-2 SENSORS

PAN Coastal Blue Green Yellow Red Red Edge NIR NIR 2
Gaofen-1 450-900 no 450-520 520-590 no 630-690 no 770-890 no
Pleiades 470-830 no 430-550 500-620 no 590-710 no 740-940 no
WorldView-2 450-800 400-450 450-510 510-580 585-625 630-690 705-745 770-895 860-1040
SGD + BP
Original PAN
i uz;l;t}:ieng =
stage
>
Concatenate Network output Label (MS + PAN)
Predict by learned
The super parameters
n+ 1 bands training data predicting

Original MS upsampling to PAN size

Fig. 1. Production process of training data.

Cut to original
MS size, get 16
sub-images

Original PAN

ﬂ ﬁ
Concatenate |  fad-eee

n + 16 bands label data

Original MS

Fig. 2. Production process of label data.

of the original MS first. The ratio of PAN to MS size of the
three groups satellite images we selected is 4, so PAN will be
cut into 16 parts. Finally, the n + 16 bands label is obtained
by concatenating the original MS and the cut PAN subimages.
Fig. 2 shows the production process of label.

In the training stage, the n + 1 bands training data as the CNN
based pan-sharpening network input, the output is the fused
image, and the loss function is used to calculate the spectral and
spatial losses. In the predicting stage, we choose the same source
satellite images that are not in the training data. Then, stacking
the up-sampled MS and original PAN as the predicted input.
Finally, the fused HMS image is predicted through the training
stage learned super parameters. Fig. 3 shows the workflow of
the proposed pan-sharpening method.

stage

Stacking upsampled MS and original PAN

Fused image

Fig. 3. Workflow of the proposed pan-sharpening method.
Input | |(] 1 | i 0 Output
Fearulje Feature Non-h‘near Reconstruction
extraction enhancement mapping
Fig. 4.  Structure of pan-sharpening.

InFig.3,the I = f(t) denotes the pan-sharpening structure,
which is based on CNNs. In article [28], the SRCNN has
achieved a praiseworthy effect, and it greatly retains the spectral
characteristics of the original MS image. However, since its
training data is simulated data processed by the Wald protocol
and its network structure is simple, the details in PAN cannot be
extracted well when using real data to predict. Inspired by the
improvement of details enhancement by a feature enhancement
layer [38], we try to add a feature enhancement layer to SRCNN
and propose a new four-layer CNN pan-sharpening structure.

The proposed structure of pan-sharpening has four parts:
feature extraction, feature enhancement, nonlinear mapping, and
reconstruction, which is shown in Fig. 4.

1) Feature extraction: using convolution to extract features
of the input image, it is similar to map image patch to low
resolution dictionary in sparse coding.

2) Feature enhancement: enhancing the feature gotten in the
layer of feature extraction.

3) Non-Linear mapping: mapping low-resolution features to
high-resolution features, which is similar to find high-
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TABLE III
PARAMETERS OF THE PROPOSED CNN BASED PAN-SHARPENING STRUCTURE

cl K1xK1 f1(x) c2 K2xK2 2(x) K3xK3 f3(x) c4 K4xK4 f3(x) ¢5
n+l 9%9 ReLU 64 77 ReLU 5%5 ReLU 32 5%5 X n
resolution dictionary corresponding to image patch in the n+ 16 bands label data
dictionary learning. gﬂ
4) Reconstruction: image reconstruction based on high
. Spil
resolution features. Pt
The proposed pan-sharpening structure parameters are shown Original MS Network output

in Table III, where n means the number of the MS bands, c1
means the n +1 bands input image which has been described
above. The output ¢5 comprises n bands, which corresponds to
the MS bands with the resolution of PAN. The Ki x Ki (i =
1,2,3,4) means the filter kernel size, ci (i = 2,3,4) is the
number of filters, which corresponds to the output feature maps.
Rectified linear unit (ReLU) which function is max(0, ), is
used as the activation function. More details could find in [28]
and [38].

During the training stage, stochastic gradient descent algo-
rithm (SGD) and backpropagation are utilized to iteratively
learn all of the parameters (w,b) in the network for optimal
allocation. Considering the spectral and spatial characteristics of
remote sensing images, we design a no-reference loss function to
measure the spectral and spatial characteristics of convolutional
results and labels at the same time. The spectral distortion index
(D) and spatial distortion index (D) are employed in the loss
function, they are defined as follows: (1) shown at the bottom of
this page.

D, A \/i Zf: |@ tusear, Py - @ (MSZ,P)‘(I 2)

where Q(fused;, fused,.) is the quality index values between
the [_th band and r_th band of fused image, Q(MS;, M S,)
calculates the quality index values between the [_th band and
r_thband of MS image, Q) (fused;, P) is the quality index values
between the fused image [_th band and PAN, Q(M S, 15) is
the quality index values between the MS image [_th band and
degraded PAN image. L is the number of MS bands. p and g are
typically setto 1 [39]. D, and Dy are always lower than or equal
to 1. The closer D, and D, are to 0, the better the evaluation
index is. The output is derived from the training data through
the pan-sharpening structure, and we name it as F'. Then, when
calculating the loss, we divide the tensor label into two parts:
MS and PAN. Finally, we calculate the D, and D, respectively,
and choose larger as loss function. In this way, D, and Dg will
gradually tend to zero in thousands of epochs. Fig. 5 shows the
workflow of the loss function.

Original PAN

S

Calculating Dy Calculating D,

I

IfDs>D;, loss=Ds
else, loss= D,

Fig. 5.  Workflow of loss function.

The loss function L(w, b) is defined as

M
1 ~
dy= 57 ;DA(M& F) 3)
1 M R
= — D,MS,PAN, F 4
ds M; «(MS,PAN, F) “)
dy., dy > d
L(w,b) = ’ 5
(w,b) {ds,ds>d,\ )

where (w,b) is the set of all involved super parameters of
the proposed pan-sharpening architecture which named filter
weights and biases, and M represents the number of patches.
Using this alternating loss function, the spectral loss and spatial
loss of fusion results can be controlled simultaneously. SGD
uses a momentum parameter to reduce randomness, therefore

(w, b)iJrl = (’U}7 b)l'f‘A(U), b)lz(w, b)Z+M . A(’LU, b)ifl—OéVLi

(6)
where o denotes the momentum and « denotes the learning rate.
According to the work of predecessors, the number of iterations
has been fixed to 1.12x10°%, 1 = 0.9, and @ = 10~*, except
for the last layer, where a = 1075 .

A 1
D, = 75
P L(L_l)lzlr
——
rEl

L
Z |Q (fused;, fused,.) — Q (M Sy, M S,.)[” M
=1
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Fig. 6. Comparative experiments. (a) Up-sampled MS. (b) PAN. (c) Output
one. (d) Output two. (e) Output three.

TABLE IV
EVALUATION INDEX OF COMPARATIVE EXPERIMENTS

Dy D;
SRCNN 0.0386 0.1123
Improved SRCNN 0.0287 0.0302
Our model 0.0253 0.0217

In order to verify the feasibility and effectiveness of feature
enhancement layer in the improved SRCNN, we designed a
comparative experiment. In experiment one, the network is
SRCNN and the MSE is used as the loss function. In experiment
two, the network is our improved SRCNN. According to the
control variable comparison principle, we still use the MSE loss
function, not our designed loss function. Dy and D, are used
as the evaluation index. The test image is from WorldView-2
satellite and the size is 400 x 400.

In Fig. 6, output one is the SRCNN output, output two is
the improved SRCNN output, output three is improved SRCNN
using designed loss function. Compared with the up-sampled
MS image, we can find that (c)—(e) maintain the good spectral
characteristics. However, the underpart of image (c) does not
look as normal as image (d), it has a slight spectral distortion,
especially around the car. The roof of the building in the SRCNN
output looks a little darker, while the roof of the building in the
improved SRCNN output looks closer to an up-sampled MS
image. This is because some spectral features are not fully pre-
served and enhanced, while the training data of (d) is enhanced.
(e) maintains good spectral information and improves spatial
resolution Fig. 6(c) is based on the degraded simulation training
data and (e) is based on the original training data. Compared with
the original PAN image visually, there is a little bit of difficulty to
measure which one has better spatial details, but from Table IV,
we can find that the Dy of the improved SRCNN output is less
than the SRCNN output, this means that the improved SRCNN
has better spatial detail retention ability than the SRCNN. The
D, of the improved SRCNN output is much less than that of

the SRCNN output, which indicates that the spectral retention
ability of the improved SRCNN is much better than the SRCNN.
After using our designed loss function on the improved SRCNN,
Dy and D, decrease further.

To sum up, the visual analysis and the evaluation index could
prove that our improved SRCNN with no-reference loss function
works very useful.

III. EXPERIMENTS AND ANALYSIS

A. Methods for Comparison and Objective
Evaluation Metrics

In this article, seven state-of-the-art fusion methods are
adopted for comparison, including the additive wavelet lumi-
nance proportional (AWLP) [12], the band-dependent spatial-
detail with physical constraints (BDSD_PC) [6], the Gram
Schmidt adaptive approach (GSA) [4], the MTF-based gener-
alized Laplacian pyramid (MTEF_GLP) [17], PanNet: A deep
network architecture for pan-sharpening [33], the PNN [28],
and the partial replacement adaptive component substitution
(PRACS) [40]. For performance assessment, seven widely rec-
ognized objective fusion metrics including full-reference (low
resolution) and no-reference (full resolution) are applied in our
experiments as shown in Table V. where SSIM is defined as

Curpms +c1) * (20rpms + c2)
(1% + p3gs + 1) * (0F + 035 + C2)

SSIM (F,MS) =

Where pp and ppsg denote the mean value of fused image
F and M S image, respectively. 0% and 0%, represents the
variance of fused image F' and M S image, respectively. The
covariance of images is represented by orrg, ¢ is a constant.
SSIM reflects the structural similarity of two image. The bigger
the SSIM, the more similarities between the images. The best
value of SSIM is 1.

CC is defined as, (7) shown at bottom of the next page,
where F' and M S denote the mean value of fused and MS
images, respectively. CC(F, M S) reflects the correlation of
the fused and MS images. CC is often used to measure how
much spectrum information is preserved. The bigger CC is, the
higher the similarity between the two images. The best value of
CCis 1.

ERGAS is defined as

_h [~k [RMSE()]?
ERGAS = 1001\/ T2, [u(z)} ®)

RMSE (F, MS)

1
- \/M N le ZL [F (u,v) = MS (u,0)]*  (9)

where h and [ are the spatial resolutions of the PAN image and
MS image, respectively. k is the number of bands of the fused
image. RMSE is the root mean squared error. RMSE gives the
standard measure of the difference between F and MS. p(7)
denotes the mean of ith band of reference MS image. The
smaller the ERGAS, the better the fusion result. The best value
of ERGAS is 0.
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TABLE V
FULL-REFERENCE (LOW RESOLUTION) AND NO-REFERENCE (FULL RESOLUTION) PERFORMANCE METRICS

SSIM Structural similarity index [41]
full cc Correlation coefficient [42]
reference ERGAS Erreur Relative Globale Adimensionnelle de Synthése [43]
SAM Spectral Angle Mapper [44]
ONR Quality with no-reference index [39,45]
e D, Spatial distortion index
reference
D, Spectral distortion index
TABLE VI
OBJECTIVE EVALUATION OF FUSION RESULTS USING THE FIRST GROUP GAOFEN-1 DATA
AWLP BDSD PC GS MTF_GLP PanNet PNN PRACS Proposed
SSIM 0.6805 0.8509 0.4800 0.6466 0.7569 0.7469 0.9269 0.7223
cc 0.9226 0.9808 0.8244 0.9156 0.9517 0.9572 0.9603 0.9704
ERGAS 2.1650 1.0715 3.0075 2.2911 1.1092 1.5560 0.7535 0.9152
SAM 0.5386 0.4912 1.5330 0.5781 0.5699 0.6576 0.8230 0.4644
ONR 0.8560 0.8910 0.6754 0.8300 0.9323 0.9342 0.7005 0.9500
D, 0.0524 0.0516 0.2268 0.0572 0.1003 0.0381 0.2377 0.0247
D, 0.0967 0.0606 0.1265 0.1197 0.0752 0.0288 0.0811 0.0259

SAM is defined as

SAM (v,0) = arccos (M) . (10)
[oll2 * [|9]l2

SAM denotes the absolute value of the spectral angle between
two vectors. In the formula, v is the original spectral pixel vector,
0 is the distorted vector obtained by applying fusion to the
coarser resolution MS data. The zero value of SAM denotes
the absence of spectral distortion. SAM is measured in either
degree or radian, which is usually averaged over the whole image
to yield a global measurement of the spectral distortion.

The quality with no reference (QNR) is defined as

QNR = (1— D)% (1—D,)” an

where o and 3 are the trade off coefficients, usuallyae = § = 1.
Dy and D; are defined in formula (2) and (1). Therefore, the
maximum theoretical value of ONR is 1 and is obtained when
the spatial distortion index D, and spectral distortion index D),
are both 0.

B.  Experimental Result and Analysis

Figs. 7(a), 8(a), and 9(a) show the up-sampled low-
resolution MS images of Gaofen-1, Pleiades, and WorldView-2,

respectively. The high-resolution PAN images of Gaofen-1,
Pleiades, and WorldView-2 are shown in Figs. 7(b), 8(b), and
9(b). The fusion results of AWLP, BDSD_PC, GS, MTF_GLP,
PanNet, PNN, PRACS, and the proposed method are illustrated
in Figs. 7(c)—(), 8(c)—(), 9(c)—(j), respectively. Tables VI-VIII
list those quality indicators of objective evaluations of Figs. 7-9,
respectively. All the figures are displayed R (red), G (green), B
(blue) bands for natural color composition. All of the objective
evaluation metrics are the average values of all test scenes and
the best performance is marked in bold font.

1)  Result Analysis for Gaofen-1 Data: In Fig. 7, from a
visual point of view, the fused image of the GSA approach
happens a very serious spectral distortion whose color looks
significantly different from that of the MS image. From the local
enlarged image, we can see that the spatial details of the fused
images of the BDSD_PC method and the PNN method are not
rich, it is not as good as that of the AWLP, the MTF_GLP, the
PanNet and the proposed methods, and the edge of the PRACS
method is not obvious. Compared with the local enlarged image
of PAN, there seems to be some noise in the AWLP, the GSA,
the MTF_GLP, and the PanNet methods. From Table VI, we can
see that our proposed method performs best in term of indicators
SAM, QNR, Dy, and D;. CC and ERGAS rank second which
are only a little worse than the optimal ones.

CC (F,MS) =

23[:1 11)\/:1 [F (u,v) — F] [MS (u,v) —m

)

\/224:1 sz)vzl [F (u,v) — F]Q * 224:1 Zq];vzl [MS (u,v) — m

2
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Fig. 7. Fused images by different methods of the first group Gaofen-1 data. (a) MS. (b) PAN. (c) AWLP. (d) BDSD_PC. (e) GSA. (f) MTF_GLP. (g) PanNet.
(h) PNN. (i) PRACS. (j) Proposed.

Fig. 8. Fused images by different methods of the second group pleiades data. (a) MS. (b) PAN. (c¢) AWLP. (d) BDSD_PC. (e) GSA. (f) MTF_GLP. (g) PanNet.
(h) PNN. (i) PRACS. (j) Proposed.

TABLE VII

OBJECTIVE EVALUATION OF FUSION RESULTS USING THE SECOND GROUP PLEIADES DATA

AWLP BDSD_PC GS MTF_GLP PanNet PNN PRACS Proposed
SSIM 0.6570 0.7264 0.4971 0.5915 0.7341 0.6305 0.6121 0.6873
cc 0.8920 0.9353 0.8288 0.8685 0.9032 0.8937 0.9440 0.8813
ERGAS 3.8394 2.9837 4.4262 2.4324 2.7565 3.8331 4.7257 2.6127
SAM 0.7944 1.8693 1.2838 0.9296 0.9061 1.5945 2.8187 0.5995
ONR 0.8048 09171 0.8299 0.7569 0.8938 0.8166 0.8777 0.9337
D, 0.0929 0.0533 0.1098 0.1185 0.0672 0.1130 0.0532 0.0323
D, 0.1127 0.0315 0.0678 0.1414 0.0418 0.0794 0.0730 0.0351
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Fig. 9.
(h) PNN. (i) PRACS. (j) Proposed.

Fused images by different methods of the third group WorldView-2 data. (a) MS. (b) PAN. (c) AWLP. (d) BDSD_PC. (e) GSA. (f) MTF_GLP. (g) PanNet.

TABLE VIII
OBJECTIVE EVALUATION OF FUSION RESULTS USING THE THIRD GROUP WORLDVIEW-2 DATA

AWLP BDSD_PC GS MTF_GLP PanNet PNN PRACS Proposed
SSIM 0.8543 0.8676 0.7580 0.8847 0.7886 0.8529 0.8473 0.8393
cC 0.9246 0.8743 0.9317 0.9292 0.9341 0.9274 0.9433 0.9477
ERGAS 6.4266 8.2625 6.0038 6.3834 5.5097 6.6096 5.5810 4.6935
SAM 4.8623 6.1009 4.4342 4.9789 4.5578 4.4706 4.2950 4.3043
ONR 0.7863 0.7980 0.8048 0.7610 0.8643 0.7695 0.8125 0.9305
D, 0.1668 0.1608 0.1660 0.1833 0.0663 0.1704 0.1599 0.0376
D, 0.0563 0.0491 0.0349 0.0682 0.0743 0.0725 0.0329 0.0331

2)  Result Analysis for Pleiades Data: Compared with the
MS image by visually in Fig. 8, the roof on the right side of
the image of the GS method is darker, it has a serious spectral
distortion. Compared with the PAN image, the spatial texture
part of the BDSD_PC method is not very clear, which can be
seen from the local enlarged image that the capital character H
on the ground looks a little fuzzy. The PNN method happens
in some spectral distortion. In the middle of the image, the part
of the roof is red but it looks like yellow in the fused image of
the PNN method. From Table VII, we can see that our proposed
method performs best in term of indicators SAM, QNR, and
D,. ERGAS and D, rank second which are only a little worse
than the optimal ones. The BDSD_PC method performs best in
term of indicator D, but its spatial details do not look as rich
as the proposed method. The MTF_GLP method performs best
in terms of indicators ERGAS and the PanNet performs best in
terms of indicators SSIM.

3)  Result Analysis for WorldView-2 Data: In Fig. 9, from
a visual point of view, the fused images of the AWLP, the
BDSD_PC, the MTF_GLP, the PanNet, and the PNN methods
happen a little spectral distortion. For example, the color of the
building looks a little darker than that of the MS. From the local

enlarged image, we can see that there are some oblique lines on
the edge of the image of the PRACS method. From Table VIII,
we can see that our proposed method performs best in term of
indicators CC, ERGAS, QNR, and D,. The SAM and D), rank
second. The values of SAM and D, in the proposed method
are 4.3043 and 0.0331, while the best are 4.2950 and 0.0329.
The difference is only a little bit. Although the PARCS method
performs best in term of indicators SAM and D, it still happens
a little spectral distortion in the local enlarged image.

C. Experimental Discuss

Combining the visual fusion results and the quality evaluation
indexes, we can consider that the proposed method in this article
is better than the most used methods. In the aspect of spatial
details, it is well known that the CS-based methods are very
effective in spatial enhancement. However, the results of the
three groups of experiments proposed by us achieve better spatial
enhancement, this is because the spatial distortion index D is
employed to control the spatial distortion of network output.
That is why the proposed method D is minimum in the three
groups of experiments.
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TABLE IX
RUNTIME, PARAMETERS, FLOPS OF THE PROPOSED METHOD

Input type Runtime Parameters FLOPs
WorldView-2 3.75s 161080 1.450G
Pleiades/Gaofen-1 3.24s 139764 1.256G

In the aspect of spectral distortion, both the methods based on
MRA and the method based on CNN can keep good spectra to
some extent, and the spectral retention ability depends on the
fusion framework and parameter settings. At the same time,
since MRA based methods usually up-sampling the original
MS to the size of PAN, and the CNN-based methods produce
simulation training data, which is difficult to make the spectra
of the fused image close to the original MS. But in the proposed
method, no reference evaluation index D, is adopted to control
the spectral distortion between the original MS and the fused
image. As can be seen from the above-mentioned experiments,
the proposed method in this article have an excellent effect on
spectral retention.

D. Time Cost and Computational Complexity

All the experiments conducted in this work are performed
by using the computer with CPU Corei7/2.20 GHz and 8 GB
RAM. The runtime is the average time of predicting 100 images
with size 1024 x 1024. The 64 x 64 x n image, which has the
same size as the training data is adopted to calculate the floating
point operations (FLOPs), where the is the number of bands.
Table IX shows the runtime, parameters, and FLOPs of our
proposed method.

IV. CONCLUSION

Considering the superior performance of the CNN architec-
ture with high learning capacity to form a highly nonlinear trans-
formation, in this article, we improve the SRCNN architecture
to get a new pan-sharpening method. In the proposed method,
we add a feature enhancement layer which could enhance the
obtained features from the feature extraction layer. Moreover,
we design a new loss function with no-reference image to
simultaneously monitor the spectral loss and spatial loss, which
is different from the current loss function used in common
in the remote sensing image fusion filed. Thus, the simulated
training data in the current deep learning fusion method is not
needed. Contrarily, the original MS and PAN are direct as the
reference and the training data. Different Gaofen-1, Pleiades,
and WorldView-2 remote sensing satellite data with different
land covers in different time phases are used to verify the
effectiveness of the proposed pan-sharpening method. Seven
representative fusion methods and seven evaluation metrics are
applied for comparison and evaluation, respectively. The results
demonstrate that the proposed method achieves the state-of-art
performance in terms of both the visual perception and the
objective assessment. The proposed way with no-reference loss

function and with no-labeled-fused image pan-sharpening net-
work is probably a new promising starting point in the remote
sensing image fusion field.
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