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Abstract—Multisource data are captured from different sen-
sors or generated with different generation mechanisms. Ground
camera images (images taken from ground-based camera) and
rendered images (synthesized by the position information from
3-D image-based point cloud) are different-source geospatial data,
called cross-domain images. Particularly, in outdoor environments,
the registration relationship between the above cross-domain im-
ages is available to establish the spatial relationship between 2-
D and 3-D space, which is an indirect solution for virtual–real
registration of augmented reality (AR). However, the traditional
handcrafted feature descriptors cannot match the above cross-
domain images because of the low quality of rendered images
and the domain gap between cross-domain images. In this article,
inspired by the success achieved by deep learning in computer
vision, we first propose an end-to-end network, DIFD-Net, to learn
domain invariant feature descriptors (DIFDs) for cross-domain
image patches. The DIFDs are used for cross-domain image patch
retrieval to the registration of ground camera and rendered images.
Second, we construct a domain-kept consistent loss function, which
balances the feature descriptors for narrowing the gap in different
domains, to optimize DIFD-Net. Specially, the negative samples
are generated from positive during training, and the introduced
constraint of intermediate feature maps increases extra supervi-
sion information to learn feature descriptors. Finally, experiments
show the superiority of DIFDs for the retrieval of cross-domain
image patches, which achieves state-of-the-art retrieval perfor-
mance. Additionally, we use DIFDs to match ground camera images
and rendered images, and verify the feasibility of the derived AR
virtual–real registration in open outdoor environments.
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I. INTRODUCTION

MULTISOURCE remote sensing data, generated with
different sensors or different generation mechanisms,

have become the most popular geospatial data. Especially, the
coupling of different source data in the same scene can better
perceive the world. The different source data captured from the
same scene is called cross-domain data or heterogeneous data.
For example, the images of the same scene acquired by different
imaging mechanism provide cross-domain images [1].

Recently, unmanned aerial vehicles (UAVs) have gradually
become an essential role in acquiring near-ground remote sens-
ing images, because of the advantages of high efficiency and low
cost to capture vertical and oblique aerial photography. Through
the structure-from-motion (SfM) algorithm [2], [3], such aerial
photography images can be used for three-dimensional 3-D re-
construction of large-scale outdoor scenes to obtain 3-D image-
based point clouds, as shown in the upper half part of Fig. 1.
Based on the 3-D image-based point cloud, a 3-D image-based
point cloud rendered image can be synthesized by the position
information (GPS and orientation) of camera image captured
from ground. The rendering process is shown in Fig. 1. For
convenience, in the following, we will refer to them as ground
camera image and rendered image, respectively. The image
mechanisms of these two kinds of images are different and from
different sources, thus, we call them cross-domain images.

Essentially, suppose the ground camera images and the 3-D
image-based point cloud are registered. In that case, the 2-D and
3-D spatial relationship will be established, then the virtual–real
registration of augmented reality (AR) will be calculated [4].
However, directly registering images and a large-scale 3-D
image-based point cloud is extremely challenging, because
the data representation of 2-D images and 3-D point clouds
is cross-dimensionally inconsistent. Thus, in this article, we
consider inferring the spatial relationship between 2-D and
3-D space by indirectly matching ground camera images and
rendered images. The derivation schematic is shown in Fig. 1.
The 3-D image-based point cloud, ground camera image, and
rendered image are denoted as M , CI , RI , respectively, and
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Fig. 1. Different source geospatial data: ground camera image, 3-D image-
based point cloud and its rendered image. The pipeline schematic shows the
process of the synthetic rendered image and the spatial relationship between the
2-D and 3-D spaces based on the above three geospatial data.

the projection matrix is denoted as P , which obtained from the
position information. So, the transformation relationship from
M to RI is PM → RI . By supposing that the transformation
matrix from the rendered image to ground camera image is T ,
the transformation relationship from RI to CI is TRI → CI .
Combining the above derivation, the indirectly inferred spatial
relationship between 3-D image-based point cloud and ground
camera image is T (PM) → CI . Thus, the core problem of AR
virtual–real registration in outdoor environments, which based
on the multisource remote sensing data in this article, becomes
the matching problem of ground camera images and rendered
images.

It should be noted that the estimation of projection matrix P
is essential. However, due to the limitations of mobile devices
and experimental environments, it is difficult to estimate the
projection matrixP accurately. Essentially, the projection matrix
P , the spatial relationship from 3-D image-based point cloud to
rendered image, is obtained from the location information of
mobile devices. However, the location information from mobile
devices is coarse positioning, usually with deterioration in GPS
precision and distortion in the output of IMU. These errors
result in the rendered images not having the exact position and
orientation of the corresponding ground camera images. Thus,
there is location drift between corresponding ground camera
images and rendered images.

Furthermore, the motivation of this article is to explore a
promising solution to virtual–real registration in outdoor AR.
For the projection matrixP , we do not require it to be completely
accurate. We only need a rendered image, which the viewpoint
is roughly the same as the corresponding ground camera image,
is synthesized from the 3-D image-based point cloud by the
projection matrix P . Based on the above premises, we assume
that the projection matrix P is accurate, then according to the
above formula described in the third paragraph of Section I,
our work can be regarded as the matching problem between
the rendered images and the ground camera images, that is,
estimating the transformation matrix T . So, that the 2-D and

Fig. 2. Visualization of the low-quality details of rendered images.

3-D spatial relationship between the ground camera image and
the 3-D image-based point cloud can be calculated through the
T and P . Thus, the projection matrix P with a slight error can
be tolerated to obtain cross-domain image pairs in this article.

In addition, it is challenging to match ground camera images
and rendered images. First, the domain gap between ground
camera images and rendered images is difficult to eliminate.
Second, the rendered images are usually of low quality (such as
blur, occlusion, and distortion, etc.), as shown in Fig. 2, which
is caused by the following reasons: 1) Due to the inevitable
occlusion of ground objects, the aerial images captured by
UAVs cannot cover all the details of the terrain scene; 2) The
camera lens has distorted, and the aerial images are not captured
densely enough. Fig. 3 shows several failed matching results
of corresponding ground camera images and rendered images
by traditional handcrafted feature descriptors, such as SIFT [5],
SURF [6], DAISY [7], ORB [8], BRIEF [9]. Thus, the match-
ing problem of ground camera images and rendered images is
beyond the capability of the handcrafted feature descriptors.

In this article, because of the inferior quality of the rendered
image, the traditional keypoint detectors cannot detect the robust
keypoints, so we consider using the image patch matching
strategy to match ground camera images and rendered images.
Besides, with the deep neural networks (DNNs) have achieved
success in computer vision and have also become very attractive
to the geoscience and remote sensing communities, we adopt the
deep leaning strategy to learn invariant feature descriptors for
ground camera image patches and rendered image patches.

In detail, we first propose an end-to-end network, DIFD-Net,
to learn the 128-D domain invariant feature descriptors (DIFDs)
for ground camera image patches and rendered image patches.
The DIFD-Net is a Siamese network structure containing two
autoencoders, one of which is embedded with a spatial trans-
former network (STN) module [10]. The STN module makes
rendered images and ground camera images learning to adjust
similar postures adaptively, and facilitates the feature descriptor
extraction intuitively. Second, the DIFD-Net is optimized by
the constructed domain-kept consistent loss function, which
contains content loss, hard triplet margin loss, and feature map-
based consistency loss. The negative sample sampling strategy
based on hard triplet margin loss solves the interference between
similar samples on feature descriptor extraction, i.e., the positive



LIU et al.: GROUND CAMERA IMAGE AND LARGE-SCALE 3-D IMAGE-BASED POINT CLOUD REGISTRATION 999

Fig. 3. Failed matching results between the cross-domain images by using the
traditional handcrafted feature descriptors of SIFT [5], SURF [6], DAISY [7],
ORB [8] and BRIEF [9]. The left and right sides of each pair are ground camera
image and rendered image, respectively. The yellow lines represent the right
match and the red lines represent the wrong match.

samples and the closest negative samples can be distinguished.
The feature map-based consistency loss constraint the interme-
diate feature map to increase the extra supervision information
for learning feature descriptors. Finally, we match the corre-
sponding ground camera images and rendered images by using
the learned DIFDs, so that the spatial relationship of ground
camera images and 3-D image-based point cloud are indirectly
established. Then, we verify the virtual–real registration of AR
in outdoor environments by several applications.

In summary, our proposed DIFD-Net aims to learn the DIFDs
for cross-domain image patches. As described in Section I, there
are errors in the projection matrix P obtained by the mobile
device, which result in the corresponding ground camera images
and rendered images has bias and viewpoint errors. So that
our collected cross-domain image patch dataset also with bias
and viewpoint errors. The experimental results show that based
on the above collected cross-domain image patch dataset for
training, DIFD-Net still extracts the DIFDs of the cross-domain
image patch pairs with bias and viewpoint errors. Therefore,
DIFD-Net has generalization for cross-domain image patch pairs
acquired by the projection matrix P with errors.

The main contributions of this article are as follows.
1) We propose a novel end-to-end network, DIFD-Net, to

learn the DIFDs for multisource remote sensing data
of ground camera image patches and rendered image
patches. The ground camera images and rendered images
are matched by retrieval strategy according to the learned
DIFDs, then, indirectly establishing the 2-D and 3-D space

relationship for virtual–real registration of AR in outdoor
environments.

2) The constructed domain-kept consistent loss balances the
image feature descriptors between two different domains,
and narrows the domain gap between ground camera
images and rendered images.

3) The learned DIFDs achieve the state-of-art retrieval per-
formance on the retrieval benchmarks of ground camera
image patches and rendered image patches.

II. RELATED WORK

The traditional handcrafted feature descriptors cannot reach
the matching between ground camera images and rendered
images, and in this article, our work is to learn the DIFDs for
cross-domain image matching by using the DNNs. Therefore,
in this section, we only review the related feature descriptors of
image patches and the image patch matching learned by DNNs.
The reviews of handcrafted feature descriptors please refer
to [11] and [12], which are also the comparison of handcrafted
feature descriptors and learning feature descriptors.

Most image patch matching based on DNNs are retrieved
according to the learned feature descriptors. Siamese networks
and triplet networks are the mainstream DNNs for learning
image patch feature descriptors.

Siamese network is composed of two branches of convolu-
tional neural networks, which are divided into two categories
according to whether there is a metric network. Siamese net-
works with or without the metric networks are usually used for
binary judgment and feature descriptor extraction, respectively.

Since the high computational complexity of the metric net-
work, the Siamese networks with the metric network consume
a lot of computation, and the binary judgment output cannot
provide feature descriptors that can be retrieved. Therefore, it is
difficult for Siamese networks with metric network to be applied
to image retrieval in real time, such as MatchNet [13] and Deep-
compare [14]. On the contrary, the Siamese networks without
the metric network learn the feature descriptors which can be
retrieve by nearest neighbor search, such as DeepDesc [15],
DeepCD [16], L2-Net [17], etc. However, the margin in the
loss function that used to optimize these network is usually
determined by a lot of experiments.

Triplet network, which is the improved form of the Siamese
network, are optimized by the triplet loss to learn more robust
feature descriptors [18]–[22]. However, the triplet networks
converge slowly, or even do not converge, and the margin in
triplet loss also usually empirically set by a large experiments.

It should be noted that the above Siamese networks and
triplet networks have achieved excellent image patch matching
performance on the Brown [23], Oxford [24], and Hpatches [25]
datasets, whereas have the unsatisfactory results on the cross-
domain image patching of ground camera images and rendered
images (as shown in Section IV-B).

The most relevant works with cross-domain image (ground
camera image and rendered image) patch matching is H-
Net [26], H-Net++ [26], SiamAM-Net [1], and AE-GAN-
Net [27]. H-Net only performs the binary matching judgments
of cross-domain image patches. The structure of H-Net++ and
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Fig. 4. Network structure of DIFD-Net and the sampling strategy of negative samples.

SiamAM-Net are similar, which embeds autoencoder into the
Siamese network. However, the accuracy of image patch re-
trieval through the feature descriptors learned by H-Net++ and
SiamAM-Net is not enough, resulting in mismatches of cross-
domain image matching. AE-GAN-Net combine the generative
adversarial network (GAN) [28] and autoencoder to learn the
invariant feature descriptors of cross-domain image patches.
Although the feature descriptors learned by AE-GAN-Net are
robust, the existence of GAN makes the training process of
AE-AN-Net unstable and slow convergence. Therefore, AE-
GAN-Net is difficult to train and requires multiple attempts to
determine suitable parameters. In addition, the negative sam-
ples of H-Net, H-Net++, SiamAM-Net, and AE-GAN-Net are
randomly constructed, and the margins in the loss also are
empirically set, which makes them difficult to separate the
positive samples and the closest negative samples. To overcome
this drawback, we adaptively obtain negative samples, which
the distance is the closest, from positive samples through hard
triplet loss during training.

III. METHODOLOGY

To match ground camera images and rendered images, we use
the proposed DIDF-Net to learn the DIFDs of image patches,
then use the image patch retrieval strategy. In this section, we
introduce the proposed DIFD-Net, the constructed domain-kept
consistent loss function and the training strategy.

A. Difd-Net

The framework of proposed DIFD-Net is shown in Fig. 4.
DIFD-Net consists of two identical autoencoder branches, one
is used to learn the feature descriptors of ground camera image
patches, and the other one is used to learn the feature descriptors
of rendered image patches. Specially, the branch whose input
is rendered image patches has an embedded STN module [10]
before autoencoder. It should be noted that the inputs of DIFD-
Net are the matching patch pairs of ground camera image and
rendered image, whereas the nonmatching image patch pairs
used in training step are generated during the training process.

The size of the input image patches is resized to 256× 256×
3. The outputs of the DIFD-Net are the learned 128-D feature
descriptors. The STN module is used to adaptively learn to adjust
the spatial transformation of two inputs, so that their postures
are as similar as possible. The details of encoder and decoder
are described as follows:

1) Encoder: The components of encoder are the convolu-
tion layers with zero padding and maxpooling layer without
zero padding. The batch normalization (BN) [29] and nonlin-
ear activate function SeLU [30] follow each convolution layer
successively, i.e., Conv-BN-SeLU. The detailed architecture of
encoder is shown in Table I. The input and the output of the
encoder are image patches of size 256× 256× 3 and 128-D
feature descriptors, respectively.

2) Decoder: The 128-D feature descriptor outputed by en-
coder is first mapped to a 1024-D vector, which is used as the
input of decoder, through a fully connected layer. The output
of decoder is the reconstructed image patches with size of
256 × 256 × 3. Decoder is composed of the deconvolution
layers. The nonlinear activate function is SeLU for each decon-
volution layers except the last one, and the nonlinear activate
function for the last deconvolution layer is Sigmoid. The detailed
architecture of decoder is shown in Table II.

B. Loss Function

To optimize the proposed DIFD-Net, we construct a domain-
kept consistent loss function, which is composed of content loss,
hard triplet margin loss, and feature map-based loss, to balance
the image feature descriptors between two different domains.
In detail, 1) The content loss retains the image domain infor-
mation into the feature while learning the feature descriptors of
cross-domain images through the constraint of autoencoder; 2)
The hard triplet loss constructs the nonmatching cross-domain
image patche pairs from the matching cross-domain image patch
pairs during training, which makes it possible to distinguish
the matching cross-domain image patch pairs and the closest
nonmatching cross-domain image patch pairs; 3) The feature
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TABLE I
ARCHITECTURE OF ENCODER OF DIFD-NET

TABLE II
ARCHITECTURE OF DECODER OF DIFD-NET

map-based loss introduces additional supervision for learning
feature descriptors.

1) Content Loss: To make the learned feature descriptors
contain both the essential features and the domain information
of the cross-domain images, the pixel-wise mean squared error
is used to conduct the content loss for the two branches of
DIFD-Net. On the one hand, the branch, which is to learn
the feature descriptors of ground camera image patches, is a
traditional autoencoder. On the other hand, the STN and encoder
module can be regarded as a combined encoder, so that the
branch of learning rendered image patch feature descriptors is
also a traditional autoencoder. Thus, the content loss is defined
as follows:

LC−Content =
1

NWH

N∑
n=1

W∑
x=1

H∑
y=1

(Cn,x,y − C ′
n,x,y)

2 (1)

LR−Content =
1

NWH

N∑
n=1

W∑
x=1

H∑
y=1

(Rn,x,y −R′
n,x,y)

2 (2)

LContent = α1LC−Content + α2LR−Content (3)

whereα1 andα2 are the weights,C andR are the ground camera
image patch and rendered image patch, respectively; C ′ and R′

are the reconstructed image patches of C and R, respectively;
N and W ×H are the channels of image and the size of image
patch, respectively.

In fact, the extracted feature descriptors embed the domain
information of the image, and we expect the following hard
triplet margin loss constrain the original domain information
between cross-domain images, so that reducing the domain gap
between cross-domain images. From the experiments, we found
thatα1 : α2 = 1 : 1 are the most suitable weights for the content
loss.

2) Hard Triplet Margin Loss: Inspired by the Hard-Net [31],
to overcome the problem of poor setting of margin in the loss
function of Siamese and triplet networks, we embed the sam-
pling strategy of nonmatching image patches into the training
process of DIFD-Net. The sampling strategy of nonmatching
image patches and the construction of hard triplet are detailed
described as follows:

As shown in Fig. 4, denoting a batch of the training data as B

B = (Ri, Ci)
n
i=1 (4)

where n is the number of paired samples in the batch; R
represents the anchor sample of rendered image patches, and
C is the positive sample of the ground camera image patches,
Ri and Ci are matching cross-domain image patch pairs.

Then, the 2n image patches in B are fed into the proposed
DIFD-Net (see Fig. 4) to extract the feature descriptors (128-D
vectors). So that a L2 pairwise distance matrix D is constructed
by the above 2n calculated feature descriptors

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1,1 d1,2 · · · d1,j · · · d1,n
d2,1 d2,2 · · · d2,j · · · d2,n

...
...

...
...

di,1 di,2 · · · di,j · · · di,n
...

...
...

...
dn,1 dn,2 · · · dn,j · · · dn,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where dij = d(ri, cj) =
√

2− 2ricj , i = 1, . . . , n, j =
1, . . . , n; ri and cj are the learned feature descriptors of
Ri and Ci.

With the distance matrix D, n matching cross-domain image
pairs ((Ri, Cj), i = j) and n2 − n nonmatching cross-domain
image pairs are constructed ((Ri, Cj), i �= j), respectively. Next,
we aim to construct n nonmatching cross-domain image pairs,
which are closest to the n matching cross-domain image pairs,
from the n2 − n nonmatching cross-domain image pairs.

For each matching cross-domain image patch pairs (Ri, Ci),
the distance of feature descriptors ri and ci are the closest.
Denoting ri as anchor feature descriptors and ci as positive
feature descriptors. Then, the closest nonmatching feature de-
scriptors, i.e., the second nearest neighbor for ri and ci are
defined, respectively, as follows.

1) Supposing cjmin as the closest nonmatching descriptor to
ri, where jmin = arg minj=1,...,n,j �=id(ri, cj).

2) Supposing rkmin as the closest non-matching descriptor to
ci, where kmin = arg mink=1,...,n,k �=id(rk, ci).

Then, for each quadruplet of the feature descriptors set
(ri, ci, pjmin , akmin), the triplet, i.e., the matching cross-domain
image patch pair with the second nearest neighbor for ri or ci is
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formed as follows:

(ri, ci, cjmin), if d(ri, cjmin) < d(rkmin , ci)) (6)

(ci, ri, rkmin), if d(ci, rkmin) < d(cjmin , ri)). (7)

Thus, from thenpaired matching cross-domain image patches
in each batchB, we construct the correspondingn paired match-
ing cross-domain image patches with the closest distance.

Finally, we aim to exactly distinguish the matching and
nonmatching cross-domain image patches. So, if the distance
between the matching feature descriptors and the closest non-
matching feature descriptors of cross-domain image patches can
be maximized, the matching and nonmatching cross-domain im-
age patches will be distinguished. Thus, the hard triplet margin
loss is defined as

LHard =
1

n

n∑
i=1

max{0, 1 + d(ri, ci)

− min[d(ri, cjmin), d(rkmin , ci)]}. (8)

In detail, the blue bounding boxes and blue arrow flows
in Fig. 4 show the process of negative sampling strategy. It
takes four pairs of matching cross-domain image patches in
the Batch B as the example, including the extraction of feature
descriptor, the construction of distance matrix, the selection of
the closest nonmatching cross-domain image patch pairs, and
the construction of final triplet samples.

3) Feature Map-Based Consistency Loss: Most of the exist-
ing Siamese and triplet networks only focus on the constraints
of the final output feature descriptors, and ignore the influence
of the intermediate feature maps on the final output feature
descriptors. In fact, the information of the intermediate feature
maps is richer than the final output feature descriptors, which
also improves the receptive field of the final output feature
descriptors. Thus, the extra supervision of intermediate feature
maps increases the constraints to the final output feature descrip-
tors, so that increases the performance of DIFD-Net.

In the proposed DIFD-Net, the last feature maps of the encoder
in the two branches are used as the constrained intermediate
feature maps, as shown by the green cuboid in the encoder in
Fig. 4. In detail, first, the last feature map of the encoder in DIFD-
Net, which size is 15× 15× 256, is resized to a 1-D feature
vector. Second, the two resized feature vectors are constrained
with the margin-based contrastive loss, as follows:

LFeatureMap =
1

2
lD2

f +
1

2
(1− l){max(0,m−Df )}2 (9)

where l is the label of the original inputs, l = 1 denotes the
matching inputs, and l = 0 denotes the nonmatching inputs;
Df = ‖fC − fR‖ is the Euclidean distance between the two
resized feature vectors fC and fR. The role of margin m is to
encourages the feature maps of matching pairs to be close and
nonmatching pairs to be separated by a distance of at least m.
In this article, the margin m is set as 0.2.

4) Domain-Kept Consistent Loss Function: The domain-
kept consistent loss function is defined as the weighted sum

of the above three sublosses

L = λ1LContent + λ2LHard + λ3LFeatureMap (10)

where λ1, λ2, and λ3 are the weights of content, hard triplet
margin, and feature map-based consistency losses, respectively.
From the experiments, λ1 : λ2 : λ3 = 1 : 1 : 1 are the most suit-
able weights of DIFD-Net.

C. Training Strategy

The proposed DIFD-Net, trained with a Nvidia 2080 Ti GPU,
is implemented by PyTorch framework. The RMSprop optimizer
is used to optimize the DIFD-Net. The initial learning rates of
the DIFD-Net are set as 0.001, and then decreases by 0.99 for
every 4 epochs. The batch size is set as 50, DIFD-Net converges
after 70 epochs, and the training time of each epoch is about 15
min. All the weights of DIFD-Net is initialized by the standard
normal distribution.

IV. EXPERIMENTS AND ANALYSIS

In this section, we first introduce the cross-domain image
patch dataset (ground camera and render image patches) used
by the proposed DIFD-Net and the comparative networks. Sec-
ond, we demonstrate the performance of the feature descriptors
learned by DIFD-Net. Third, we further explore ablation studies
to show the superiority and generalization of DIFD-Net. Fourth,
based on the DIFDs learned by DIFD-Net, we match the corre-
sponding ground camera images and rendered images, and verify
the capability of outdoor AR virtual–real registration based on
the cross-domain image matching results. Finally, we conduct
analysis and discussion.

A. Dataset

The cross-domain image patch dataset, which located in Xi-
angan campus, Xiamen University, China, used in this article is
the same as the dataset used in SiamAM-Net [1]. Fig. 5 shows the
examples of 3-D image-based point cloud, corresponding cross-
domain images, and matching cross-domain image patches. In
the cross-domain image patch dataset of SiamAM-Net, there are
45 000 pairs of matching cross-domain image patches, 45000
pairs of randomly generated nonmatching cross-domain image
patches, and extra 2000 matching cross-domain image patch
pairs as the testing data (retrieval benchmark). The size of the
cross-domain image patches in the dataset is between 256× 256
and 512× 512 pixels.

It should be noted that to obtain the better corresponding
rendered image and ground image pair through the projection
matrixP , we choose the open outdoor scene as the experimental
scene to reduce the positioning error caused by the obstruction to
the mobile device. When capturing camera images, we set up the
mobile phone on a handheld gimbal to acquire a more accurate
camera pose, which reduces the camera jitter, to capture images.
In addition, the same as described in the literature [1] and [27],
to better obtain the cross-domain image patch dataset, we have
carried out manual supervision, which the ground camera image
and rendered image pairs with obvious deviations are discarded.
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Fig. 5. Examples of cross-domain image patch dataset used in this article.
(a) 3D image-based point cloud of Xiangan campus of Xiamen University.
(b) Corresponding ground camera images (top) and rendered images (bot-
tom). (c) Matching ground camera image patches (top) and rendered im-
agepatches(bottom).

In addition, because of the low quality of the rendered images
(mentioned in Fig. 2), it is challenging to extract meaning-
ful handcrafted keypoints. Therefore, it is impossible to use
the existing handcrafted keypoints to create the cross-domain
image patch dataset automatically. Thus, when creating the
cross-domain image patch dataset, the manual intervention is
inevitably required, which is the same as the dataset collection
method described by [1].

In detail, on the one hand, the training data of the proposed
DIFD-Net is only the above 45 000 pairs of matching cross-
domain image patches, whereas the nonmatching cross-domain
image patches are constructed by the sampling strategy de-
scribed in Section III-B2. On the other hand, the training data of
the comparative networks are the above 45 000 paired matching
cross-domain image patches and 45 000 paired randomly gener-
ated nonmatching cross-domain image patches. The testing data
of the proposed DIFD-Net and the comparative networks are the
above extra 2000 matching cross-domain image patch pairs.

B. Performances of DIFDs

1) Retrieval Performance of DIFDs: The TOP1 and TOP5
retrieval accuracy on the 2000 pairs retrieval benchmark by the
learned feature descriptors is used as the measure of DIFD-Net
and all comparative networks. Considering using the feature
descriptor of each query ground camera image patch to retrieve
in the repository of rendered image patch feature descriptors.
The successful TOP1 retrieval is defined as the ground camera
image patch correctly matches the corresponding rendered im-
age patch. Similarly, the successful TOP5 retrieval is defined
as one of the top five retrieved results is correct. It should be

noted that, for a fair comparison, all the comparative networks
are strictly reimplemented according to their respective paper,
including the size of the input image patches, the details of
network and the optimization methods, etc. All the comparative
networks are retrained on the cross-domain image patch dataset
of this article until converge.

On the extra collected 2000 pairs of cross-domain image patch
retrieval benchmark, the TOP1 and TOP5 retrieval accuracy
results of DIFD-Net and comparative networks are shown in
Table III, which shows that our proposed DIFD-Net achieves the
state-of-art retrieval performance. The structure of AE-GAN-
Net [27], SiamAM-Net [1], and H-Net++ [26] are similar to the
proposed DIFD-Net, but the sampling strategy of nonmatching
cross-domain image patches is different. Thus, demonstrating
the superiority of the embedded sampling strategy, which is to
find the closest nonmatching cross-domain image patch pairs.
DeepDesc [15] and Siam_l2 [14] are the traditional Siamese
network without a metric network; DeepCD [16] is a Siamese
network with two asymmetric branches without the metric net-
work; L2-Net [17] is the Siamese network with a novel data
sampling strategy without the metric network. DOAP [21],
DDSAT [20], and DescNet [22] are the triplet networks to
learn feature descriptors. However, the feature descriptors of
cross-domain image patches learned by such these Siamese
networks without metric network and triplet networks are not
robust, because the low TOP1 and TOP5 retrieval accuracy
results.

In addition, we also show the processing speed time of the
DIFD-Net and the compared networks, as shown in Table III. In
fact, a comparison of the training time is meaningless, because
the convergence time is different for different network models.
Thus, our comparison is that of the time to extract feature
descriptors from the trained networks. As is seen, because the
computational time of the feature extraction of the networks is
related to the depth, width, and complexity of the networks, the
computational time of the feature extraction on our proposed
DIFD-Net is not the fastest. Although the computational time
of the feature extraction of our proposed DIFD-Net is not the
fastest, the performance of DIFDs are better than the learned
feature descriptors learned by other compared networks. This
article aims to learn robust and invariant feature descriptors of
cross-domain image patches without considering the processing
speed time. In future work, we plan to accelerate the compu-
tational time of feature extraction under the premise that the
learned feature descriptors are robust and invariant.

2) Visualization of the Generated Image Patches: Fig. 6
shows the visualization of the paired input cross-domain image
patches and the corresponding image patches generated by the
autoencoder through the learned DIFDs. It can be observed that
the generated image patches have the same domain information
as the corresponding input image patches, which demonstrates
that the DIFDs learned by DIFD-Net embedded the domain
information of the image. This conclusion is the result of the
interaction of the three subitems [see (3), (8), and (9)] of the
proposed domain-kept consistent loss function (see (10)]. The
reason is that 1) the hard triplet margin loss [see (8)] and feature
map-based loss [see (9)] make the learned feature descriptors
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TABLE III
TOP1, TOP5 RETRIEVAL ACCURACY AND PROCESSING SPEED TIME RESULTS OF LEARNED FEATURE DESCRIPTORS BY DIFD-NET AND COMPARATIVE NETWORKS

The bold values represent the result of our method and highlights the superiority of our method.

Fig. 6. Visualization of the generated image patches. Top: original input image
patches; Bottom: generated image patches; Left: ground camera image patches;
right: rendered image patches.

Fig. 7. Histogram visualization of the learned DIFDs of cross-domain image
patch pairs.

invariant; 2) the content loss [see (3)] makes the learned feature
descriptors not only possess the essential feature of the image
patches, but also possess the domain information to restore the
image patches with different domains. In addition, the generated
image patches are blur, and the reason is the balanced result
between the feature consistency constrained and the similarity
of generated image patches.

3) Histogram Visualization of DIFDs: Fig. 7 shows the his-
togram visualization of the 128-D DIFDs learned by DIFD-Net.
The x-axis and the y-axis are the dimension and the value of
the learned DIFDs, respectively. For the matching cross-domain
image patch pairs, it can be viewed that the distribution of the

Fig. 8. TOP5 ranking results. The query image patches are ground camera
image patches, and the ground truths and correct retrieval results of rendered
image patches are labeled with the red bounding boxes.

DIFDs is similar, and most of the values of each dimension of
DIFDs are extremely similar. Thus, the histogram visualization
of the matching cross-domain image patch pairs demonstrates
the invariance of learned DIFDs.

4) TOP5 Retrieval Results of DIFDs: Based on the DIFDs
learned by DIFD-Net, on the retrieval cross-domain image patch
benchmark, Fig. 8 shows the TOP5 retrieval results of rendered
image patches by using the ground image patches as the query
image patches. The ground truths and correct retrieval results of
rendered image patches are labeled with the red bounding boxes.
It can be viewed that the most of TOP5 retrieved rendered image
patches have the similar structure to the corresponding query
ground camera image patches, which demonstrate the invariance
of DIFDs.

5) Cross-Domain Image Patch Matching: To match the
ground camera images and rendered images, we first randomly
select 2000 points on the corresponding ground camera images
and rendered images, which are used as the center point to
collect the image patches, respectively. Second, we use the
trained DIFD-Net to extract the DIFDs of the above selected
cross-domain image patches. Finally, we only retain the TOP1
results retrieved based on DIFDs and use RANSAC to filter out
the mismatches. Fig. 9 shows the cross-domain image patch
matching results of two pairs of ground camera images and
rendered images on Xiangan campus of Xiamen University.
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Fig. 9. Cross-domain image patch matching and center points connection
results between ground camera image patches and rendered image patches on
Xiangan campus of Xiamen University.

TABLE IV
ABLATION STUDIES OF DIFD-NET WITHOUT KEY MODULES

The bold values represent the result of our method and highlight the superiority of
our method.

The results of connecting the center points of the matched
cross-domain image patches are also shown in Fig. 9.

C. Ablation Study

To demonstrate the superiority and generalization of the pro-
posed DIFD-Net, we conduct several ablation studies.

1) DIFD-Net Without Key Modules: To quantify the benefits
of the introduced STN module, feature map constraint, and
the sampling strategy of constructing the closest nonmatching
cross-domain image patches, we conduct several experiments
to demonstrate. The experimental network structure for com-
parison contains DIFD-Net without STN module (w/o STN),
without feature map constraint (w/o FeaMap), without hard
triplet margin loss (w/o HardTrip). The TOP1 and TOP5 retrieval
accuracy of above three ablation studies are shown in Table IV.

With the results of Table IV, we can conclude that the above
key modules all play a role in improving the invariance and
robustness for DIFD-Net to learn feature descriptors. In partic-
ular, it is obvious that the sampling strategy of constructing the
closest nonmatching cross-domain image patches, that is, hard
triplet margin loss, has played an extremely important role in
improving the performance of DIFD-Net.

In addition, we also use the McNemar Test to demonstrate
the performance of DIFD-Net with or without key modules:
STN module, FeaMap module, and hard triplet margin loss. The
details are as follows:

We first randomly sampled 200 pairs of cross-domain image
patch pairs from the 2000 testing dataset as the validation data
of the McNemar Test. Second, we performed the McNemar Test
for the DIFD-Net with or without key modules: STN module,
FeaMap module, and hard triplet margin loss. The results are
shown in Table V– VII.

In fact, the χ2 value follows a chi-squared distribution with
one degree of freedom in our McNemar Test. We choose the
confidence coefficient of 0.95, and the distribution table of the
chi-square test shows that the corresponding critical value is

TABLE V
MCNEMAR TEST OF DIFD-NET WITH OR WITHOUT STN MODULE

TABLE VI
MCNEMAR TEST OF DIFD-NET WITH OR WITHOUT FEAMAP MODULE

TABLE VII
MCNEMAR TEST OF DIFD-NET WITH OR WITHOUT HARD

TRIPLET MARGIN LOSS

3.84. Theχ2 values calculated in Table V–VII are 4.00, 5.83, and
25.00, respectively, which are all greater than 3.84. Therefore,
we conclude that STN module, FeaMap module, and hard triplet
margin loss have a significant improvement in the performance
of DIFD-Net.

2) Generalization on Brown Dataset: To verify the general-
ization of DIFD-Net, we tested it on the Brown dataset [23],
which is a more than 400 000 grayscale image patches with size
of 64× 64 pixels. The Brown dataset is similar to our dataset,
both are image patches, but the image patches of the Brown
dataset are in the same domain. Brown dataset contains three
subsets of different scenarios, which are the Statue of Liberty
(New York), Notre Dame (Paris), and Half Dome (Yosemite).
The proposed DIFD-Net and all comparative approaches are
trained on one subset and tested on the other two. Following
with the standard evaluation protocol of [23], the false positive
rate at 95% recall (FPR95) is used to measure of matching
performance. In fact, the smaller the value of FPR95, the better
the performance of the network in image patch matching. The
comparative results are shown in Table VIII.

It should be noted that, for the fairness of comparison,
the size of the input image patch by DIFD-Net is resized
to be consistent with the methods of comparison, which is
64× 64 pixels. In addition, in order to adapt to the input
of DIFD-Net, we superimpose the input grayimage patches
into three channels, i.e., 64× 64× 3. At the same time, we
also fine-tune the network details of DIFD-Net according
to the input changes. Then, the encoder of the modified
DIFD-Net is as follows: C(32, 4, 2)−BN − ReLU −
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TABLE VIII
PATCH VERIFICATION PERFORMANCE ON THE BROWN DATASET [23] WITH PROPOSED DIFD-NET AND COMPARATIVE NETWORKS

The bold values represent the result of our method and highlight the superiority of our method.

Fig. 10. The 3-D image-based point cloud of Zhangzhou Port.

C(64, 4, 2)−BN − ReLU − C(128, 4, 2)−BN − ReLU −
C(256, 4, 2)−BN − ReLU − C(256, 128, 4)− 128-D feature
descriptor, where C(n, k, s) denote a convolution layer with n
filters of kernel size k × k having stride s, ReLU is the nonlinear
activate function. The decoder of the modified DIFD-Net is
as follows: 128-D vector −TC(256, 4, 4)−BN−ReLU−
TC(128, 4, 2)−BN−ReLU−TC(64, 4, 2)−BN− ReLU−
TC(32, 4, 2)−BN − ReLU − TC(3, 4, 2)− Sigmoid, where
TC(n, k, s) is the deconvolution with n output channels of size
k × k and stride s, Sigmoid is the nonlinear activate function.
The loss function and training strategy are the same to the
original DIFD-Net.

From the FPR95 results in Table VIII, compared with the
existing image patch matching networks, our proposed DIFD-
Net does not achieve state-of-the-art performance on the brown
dataset, but it also reaches a top-ranked result, which also
demonstrates the generalization of the DIFD-Net.

3) Generalization on Other Scene: To further verify the prac-
ticability and generalization of DIFD-Net, we choose another
scene, Zhangzhou Port, for verification. The Zhangzhou Port is
located in Fujian Province, China, about 40 square kilometers,
which is reconstructed as the 3-D image-based point cloud by
SfM algorithm through aerial images, as shown in Fig. 10.

In detail, we first collect 5000 paired cross-domain image
patches (ground camera image patches and rendered image
patches from the Zhangzhou Port) to fine tune the DIFD-Net,
which has been trained on the cross-domain image patch dataset
(see section IV-A). Second, we collected an additional 1000

TABLE IX
TOP1 AND TOP5 RETRIEVAL ACCURACY RESULTS OF LEARNED DIFDS BY

DIFD-NET WITH OR WITHOUT FINE-TUNE IN ZHANGZHOU PORT

Fig. 11. Cross-domain image patch matching and center points connection
results between ground camera image patches and rendered image patches on
Zhangzhou Port.

paired cross-domain image patches from the Zhangzhou Port
as testing dataset, the results are shown in Table IX. It can be
viewed that the performance of DIFDs, learned by the fine-tuned
DIFD-NET, has a significant improvement in the new environ-
ment.

Based on the latest learned DIFDs, we match the correspond-
ing ground camera images and rendered image in the new scene
(Zhangzhou Port), the matching strategy is the same to the
matching strategy in Section IV-B5, the matching results are
shown in Fig. 11.

D. AR Applications

The ground camera images and rendered image are matched
by the learned DIFDs with retrieval strategy. Then, the spatial
relationship between 2-D and 3-D space are indirectly estab-
lished according to the derivation process in Section I, i.e., the
virtual–real registration of AR is established.
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Fig. 12. AR applications applied by the virtual–real registration which indi-
rectly established through the cross-domain image patch matching.

In the open outdoor environments, we implement several AR
applications based on the established virtual and real registration
relationship, as shown in Fig. 12, including registering the
Welcome label, real-time bank, and library information to the
building facade. First, we use the proposed DIFD-Net to learn the
DIFDs of cross-domain image patches to match ground camera
images and rendered images. Second, we use the derived spatial
relationship (see the formula derivation in the third paragraph
of Section I) to establish the spatial relationship between the
ground camera image and the 3-D image-based point cloud, that
is, the spatial relationship between 2-D and 3-D space. Third,
when performing AR applications, we first specify the location
of the virtual label in the 3-D space (3-D image-based point
cloud), then project the above specified 3-D position to the 2-D
ground camera image through the calculated spatial relationship
to obtain the virtual label position in the 2-D ground camera
image. Finally, the virtual labels are registered to the specified
position of the ground camera images to realize the application
of AR.

Such these AR applications demonstrate the feasibility of the
virtual–real registration, which derived in Section I.

E. Discussions and Analysis

The benefits and limitations of the proposed DIFD-Net and
virtual–real registration of AR in open outdoor environments are
discussed as follows:

1) Benefit of the Embedded STN Module: There is a posture
deviation between the paired cross-domain image patches. By
introducing the STN module into the branch of the rendered
image, it can adaptively learn to adjust the spatial transforma-
tion of the input paired cross-domain image patches, so that
their postures are adjusted as similar as possible. Thus, after
such prelearning posture adjustment, the similar postures of the
input paired cross-domain image patches are more conducive to
DIFD-Net to learn their consistent features.

2) Benefit of the Intermediate Feature Map Constraint: The
intermediate feature maps have richer information than the
final output feature descriptors, so that the constraint on the
intermediate feature maps increases the receptive field of the
final output feature descriptors, i.e., the more information, the
easier to obtain deeper connections between the cross-domain
image patches. Thus, the constraint on the intermediate feature

maps is beneficial for DIFD-Net to learn more invariant feature
descriptors for cross-domain image patch pairs.

3) Benefit of the Hard Triplet Margin Loss: The hard triplet
margin loss embeds the sampling strategy of paired nonmatching
cross-domain image patches, which constructs the closest non-
matching cross-domain image patch pairs from the matching
cross-domain image patch pairs during training. This sampling
strategy avoids the poor margin settings due to the fact that
paired non-matching cross-domain image patches are randomly
generated.

In fact, if the matching cross-domain image patch pairs and
the closest nonmatching cross-domain image patch pairs can
be distinguished by using the hard triplet margin loss, and then
obviously, all nonmatching cross-domain image patch pairs also
can be distinguished from matching cross-domain image patch
pairs. Thus, the constraint of hard triplet margin loss makes
the DIFDs learned by DIFD-Net have the ability to distinguish
similar cross-domain image patch pairs.

4) Limitations: Although the DIFDs learned by proposed
DIFD-Net are invariant, it is also affected by occlusion and
distortion. When the occlusion and distortion are too large, the
information contained in the image patch will be severely dis-
turbed, and the learned DIFDs will be invalid. In fact, extremely
serious occlusion and distortion are also beyond the scope of
human visual recognition.

Meanwhile, there is a bias between the cross-domain image
matching based on the image patch matching strategy, because
of the center points of the two image patches may not be selected
to be the same. So, the final cross-domain image matching will
be biased, for example, the lines in Figs. 9 and 11 are not
entirely parallel. In turn, the accuracy of virtual–real registration
of AR is insufficient based on the bias of the cross-domain image
matching.

In addition, it should be noted that due to the limited posi-
tioning accuracy of mobile devices, the virtual–real registration
of AR in this article has only been verified in the open outdoor
environments.

5) Applicability of the Scene: In fact, the proposed virtual–
real registration of AR in outdoor environments relies on the
image patch matching between ground camera image and ren-
dered images, i.e., the performance of DIFDs, which is learned
by our proposed DIFD-Net. If the learned DIFDs are robust,
then the cross-domain images can be better matched based on
the DIFDs to establish the spatial relationship of 2-D and 3-D
space. In this article, the training dataset of matching cross-
domain image patch pairs is collected from buildings as much as
possible. The proposed DIFD-Net is trained with cross-domain
image patch dataset collected on the Xiangan campus of Xiamen
University, and the performance of DIFD-Net is verified in this
environment. In addition, we have also tested the DIFD-Net in
another scenario of Zhangzhou Port in Figs. 10 and 11. However,
because the building styles of the two scenes are different, if the
DIFD-Net, which trained only at Xiangan campus of Xiamen
University, is applied to the Zhangzhou Port, the performance of
cross-domain image patch matching is limited (see the Table IX).
So that, we selected some cross-domain image patch pairs in
Zhangzhou Port to fine tune the trained DIFD-Net. Therefore,
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if the cross-domain image patch training dataset of DIFD-Net
contains enough building data of various styles, then DIFD-Net
will have stronger generalization in a new environment, and
the extracted DIFDs will be more robust. On the contrary, if
the amount of training data is limited, for the application of
DIFD-Net in a new scene, it is necessary to collect additional
data in the new environment to fine-tune the trained DIFD-Net.

V. CONCLUSION

In this article, we explored the matching problem of multi-
source geospatial data, which are ground camera images and
3-D image-based point cloud rendered images (called as cross-
domain images). Meanwhile, based on the cross-domain image
matching, an virtual–real registration scheme of AR is indirectly
derived in outdoor environments.

The image patch matching strategy based on deep learning is
used for cross-domain image matching. Therefore, we propose
an end-to-end network, DIFD-Net, to learn the DIFDs for ground
camera image patches and rendered image patches. The STN
module embedded in a branch of DIFD is used to adaptively
learn to adjust the spatial transformation of the input paired
cross-domain image patches. Then, we construct a domain-kept
consistent loss function, contained content, hard triplet mar-
gin, and feature map-based consistency losses, to optimize the
DIFD-Net. Essentially, the learned image feature descriptors
between two different domains are balanced by the proposed
domain-kept consistent loss function. The constraint on the
intermediate feature maps increases the receptive field of the
final output feature descriptors. Specifically, the negative sample
sampling strategy through hard triplet margin loss solves the
interference of similar samples on feature descriptor extraction,
i.e., the positive samples and the closet negative samples can be
distinguished.

Experiments show that the learned DIFDs achieve the state-
of-art retrieval performance on the retrieval benchmarks of
ground camera image patches and rendered image patches.
Finally, several AR applications demonstrate the feasibility of
the virtual–real registration which indirectly derived by the
cross-domain image matching.

In future work, we will focus on applying DIFD-Net to other
cross-domain data matching problems and exploring the cross-
domain image matching based on point-to-point matching.
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