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An Accurate Sparse SAR Imaging Method for
Enhancing Region-Based Features Via Nonconvex

and TV Regularization
Zhongqiu Xu , Mingqian Liu , Guoru Zhou, Zhonghao Wei , Bingchen Zhang, and Yirong Wu

Abstract—With the rapid development of compressed sensing
theories and applications, sparse signal processing has been widely
used in synthetic aperture radar (SAR) imaging during the recent
years. As an efficient tool for sparse reconstruction, �1 optimization
induces sparsity the most effectively, and the �1-norm penalty is
usually combined with the total variation norm (TV-norm) penalty
to construct a compound regularizer in order to enhance the point-
based features as well as the region-based features. However, as a
convex optimizer, the analytic solution of �1 regularization-based
sparse signal reconstruction is usually a biased estimation. Aiming
at this issue, in this article, we quantitatively analyzed the variation
of reconstruction bias with respect to the complex reflectivity of
targets, the undersampling ratio and the noise power. In order to
reduce the bias effect and improve the reconstruction accuracy, we
adopted the nonconvex regularization-based sparse SAR imaging
method with a nonconvex penalty family. Furthermore, we linearly
combined the nonconvex penalty and the TV-norm penalty to form
a compound regularizer in the imaging model, which can improve
the reconstruction accuracy of distributed targets and maintain
the continuity of the backscattering coefficient. Simulation results
showed that compared with �1 regularization, nonconvex regu-
larization can reduce the average relative bias from 10.88% to
0.25%; compared with the matched filtering method and �1 and
TV regularization, nonconvex & TV regularization can reduce the
variance of the uniformly distributed targets by 80% without losing
of reconstruction accuracy. Experiments on Gaofen-3 SAR data are
also exploited to verify the effectiveness of the proposed method.

Index Terms—Bias effect, nonconvex regularization, sparse SAR
imaging, synthetic aperture radar (SAR), total variation (TV)
regularization.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an active remote
sensing technology, which carries on a moving platform,
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transmits electromagnetic wave to the scene, receives radar echo,
and generates high-resolution microwave images via signal pro-
cessing. Due to the radar resolving theory and Nyquist–Shannon
sampling theorem, improvement of SAR system performance
usually comes with the remarkably increased sampling data
amount, and brings complexities to the system design and imple-
mentation [1]. In recent years, sparse signal processing is widely
used in SAR imaging with the development of compressed
sensing and related theories, which shows that a sparse signal
can be effectively reconstructed with much fewer samples than
that required by Nyquist–Shannon sampling theorem [2],[3].
In addition, for full sampling systems, sparse signal processing
is also beneficial in terms of improving reconstruction perfor-
mance. Sparse microwave imaging works effectively in multiple
SAR modes, including stripmap SAR, ScanSAR, spotlight SAR,
and TOPS SAR [4]–[6].

As an efficient tool for sparse reconstruction, �1 optimization
is the most effective method in terms of enforcing the sparsity
constraint. When adopted in SAR imaging, it can even suppress
the sidelobes and reduce the imaging noise level. Using the
�1 constraint, �1 optimization is often implemented via reg-
ularization and can be solved via several algorithms such as
iterative shrinkage and thresholding algorithm (ISTA), alternat-
ing direction method of multipliers (ADMM) [7], and complex
approximate message passing (CAMP) [8]. Point-based features
in SAR images can be enhanced via �1 regularization due to its
ability of reconstructing with good energy concentration. On the
other hand, region-based features are also important for many ap-
plications such as target classification and image segmentation.
As such, total variation norm (TV-norm) constraint of the image
magnitude is introduced into the SAR imaging model in order to
preserve the piecewise-constant features, which means that, the
TV-norm constraint is capable of maintaining the continuity of
the backscattering coefficients (σ0) of distributed targets within
a certain scene area [9], [10]. In real applications, we need to
enhance both point-based features and region-based features,
and as a result, we will linearly combine �1-norm penalty and the
TV-norm penalty to construct a compound regularizer [11]–[13].

However, the �1-norm penalty is convex, and the analytic so-
lution of the �1 regularization-based sparse signal reconstruction
algorithm is usually a biased estimation [14], [15]. Such issue
leads to the underestimation of targets’ reflectivity when applied
to sparse SAR imaging and results in bias effect of reconstruc-
tion, which finally affects the reconstruction accuracy [16], [17].
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In this article, we define absolute and relative biases for quantita-
tive analysis. Studies show that the bias effect is affected by these
three factors [16]: amplitude of targets’ complex reflectivity,
undersampling ratio, and noise power. Among the above three
factors, complex reflectivity of targets and undersampling ratio
affect the signal energy, and noise power affects the noise energy.
First, the relationship between �1 regularization reconstruction
results and the ground truth is nonlinear, and the bias effect of
the weak targets is more obvious than that of the strong targets.
Second, the bias increases significantly as the sampling ratio
decreases. Finally, as the noise power decreases, the quality of
SAR imaging deteriorates, and the bias effect becomes more
apparent. Therefore, estimation bias would have negative effects
on the SAR image applications, such as target detection and radar
cross section (RCS) estimation.

In order to promote more sparsity amid reducing the bias
effect, this article focuses on nonconvex optimization. Popu-
lar examples of nonconvex optimization include the minimax
concave (MC) penalty [17]–[19], smoothly clipped absolute
deviation (SCAD) [20], log sum penalty (LSP), and �q-norm
penalty (where0 < q < 1) [21]. The geometric and optimization
properties of nonconvex penalties are more similar to that of
�0-norm penalty compared with �1-norm penalty. Therefore, the
nonconvex optimization algorithms are considered to be capable
of improving the reconstruction accuracy and suppressing the
bias effect. A commonly used approach of solving the nonconvex
optimization is the multi-stage convex relaxation or the so-called
difference of convex functions programming [22], which is
hardly used in large-scale problems due to its high computational
cost. Recent works have shown that some proximal methods
can be utilized to solve the nonconvex optimizations when a
simple closed-form solution of the proximal operators (with
respect to the specific nonconvex optimization) can be de-
rived [23]. Typical ones include the general iterative shrinkage-
thresholding algorithm (GIST) and the proximal gradient-based
ADMM [21], [23]. In this article, we choose the GIST algorithm
for its succinctness and effectiveness. Also, recall that TV-norm
optimization can enhance the region-based features [9], [10];
therefore, here we linearly combine the nonconvex penalty and
the TV-norm penalty to form a compound regularizer in the
imaging model, which can improve the reconstruction accu-
racy of distributed targets as well as maintain the continuity
of the backscattering coefficients. For solving the compound
regularization, this article adopts the variable splitting method,
supplemented by alternating minimization method [24].

In large-scale SAR imaging problems, the measurement ma-
trix is usually very huge. The storage and processing of such a
matrix could be very costly, and even intractable. Therefore, we
adopt the azimuth-range decouple scheme to the real data pro-
cessing, in which azimuth-range decouple operators are imple-
mented to substitute the measurement matrix and its Hermitian
transpose to accelerate the signal processing and reduce the data
amount [4].

In this article, we present an accurate SAR imaging algorithm
by combining the aforementioned nonconvex regularization,
TV-norm regularization, and azimuth-range decouple scheme.
The proposed method can reduce the bias effect, maintain

the continuity of distributed targets, and avoid the huge spa-
tial/temporal complexities in computation. Experiments on real
data of Gaofen-3 spaceborne SAR are also exploited to verify
the effectiveness of the proposed method.

The remainder of this article is organized as follows. Section II
introduces the sparse SAR imaging model, analyzes the bias
effect of �1 regularization, and proposes an accurate and feature
enhanced sparse SAR imaging method based on nonconvex &
TV regularization. Simulation and experiment results are given
in Section III. Discussions related to the variation of bias effect
with respect to the undersampling ratios and noise power, and
quantitative analysis of reconstruction continuity are provided
in Section IV. Section V summarizes the contribution of this
article.

II. SPARSE SAR IMAGING BASED ON NONCONVEX & TV
REGULARIZATION

A. Sparse SAR Imaging Formation

The relationship between the SAR measurements and the
reflectivity of the scene is expressed as [1]

y = Φα+ n (1)

wherey ∈ CM×1 is the vector form of the echo data,α ∈ CN×1

is the vector form of the SAR image, and n ∈ CM×1 is the
additive noise. Φ ∈ CM×N is the corresponding measurement
matrix of the imaging system which links the measurements y
and the target scene α.

The SAR imaging process can be considered as a linear
inverse problem (LIP), in which we try to solve α from y and
Φ. The most commonly used method for solving LIPs is to
minimize the regularized linear least squares (LS) cost function

min
α

‖y −Φα‖22 + λp(α) (2)

where p(·) is the constraint and we implemented it in the cost
function as a penalty term or regularizer, and λ is the regular-
ization parameter.

In order to promote sparsity in α, we need a regularization
term that increases when the number of active components
grows. The obvious choice is to use the �0-norm that returns
directly the number of nonzero coefficients in α. However, �0
regularization is a nondeterministic polynomial-time hard (NP-
hard) problem; therefore, we need to relax the penalty function to
make it mathematical solvable. According to [25], for k-sparse
signal, if the measurement matrix Φ satisfies δ2k <

√
2− 1

where δ2k is the 2k-order restricted isometry constant of Φ,
the solution of the �1 problem is guaranteed to match that of
the �0 problem. In other words, the convex relaxation is exact.
The relaxed �1 regularization-based SAR imaging model is
formulated as

minα ‖y −Φα‖22 + λ ‖α‖1 (3)

where

‖α‖1 =
N∑
i=1

(|αi|) (4)
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with αi as the ith element of α.
Sparsity-inducing regularizers are aimed at enhancing point-

based features of SAR images, while region-based features are
also important for many applications such as target classification
and image segmentation. We are thus interested in maintaining
the continuity of the backscattering coefficient (σ0) of dis-
tributed targets within a certain area, which can be implemented
via the TV-norm [9], [10]. For 2-D scenes, the discrete isotropic
TV-norm of image vector α is defined as follows:

TV (|α|) =
∑
i,j

∥∥∥∇(|A|i,j)
∥∥∥
2

(5)

where A is the 2-D complex-valued matrix corresponding to
image vector α, the operator | · | represents element-wise mag-
nitude calculation, and ∇(|A|i,j) is the gradient vector of pixel
in the ith row and jth column, which is defined as

∇(|A|i,j) = (Dh |A|i,j , Dv |A|i,j) (6)

with

Dh |A|i,j = |A [i+ 1, j]| − |A [i, j]| (7)

Dv |A|i,j = |A [i, j + 1]| − |A [i, j]| . (8)

Combining �1-norm penalty and the TV-norm penalty linearly
to form a compound regularizer, then the optimization problem
(3) becomes

min
α

‖y −Φα‖22 + λ1 ‖α‖1 + λ2TV (|α|). (9)

This expression is expected to enhance both point-based features
and region-based features of SAR images.

B. Analysis of Bias Effect Caused by �1 Regularization

The �1 regularization-based SAR imaging model is described
in formula (3). However, �1 regularization is known as a biased
estimator. Suppose α�1 is the result of �1 regularization and S
is its support set. The reference shows that for the nonzero part
of α�1 , the estimation is formulated as [14], [15]

α�1
S = (ΦH

S ΦS)
−1ΦH

S s− λ(ΦH
S ΦS)

−1sign(α�1
S )

= (ΦH
S ΦS)

−1(ΦH
S s− λsign(α�1

S ))
(10)

where ΦS is the column submatrix of Φ supported on S and
α�1
S is the subvector on S, and (·)H denotes the Hermitian

transpose. The first part of (10), (ΦH
S ΦS)

−1ΦH
S s, is the LS

estimation, which is the unbiased estimation, and the second
part, λ(ΦH

S ΦS)
−1, is the bias. Therefore, as described in (10),

the solution of (3) based on �1 regularization is the biased
estimation according to statistical signal processing.

The bias effect that was analyzed above shows a significant
effect on the reconstruction accuracy when applied to sparse
SAR imaging. In order to quantitatively analyze the bias effect,
we define two evaluation criteria: absolute bias (AB) and relative
bias (RB) as follows [16], [26]:

AB(σi) = |σ̂i − σ| , AB(σ) =
1

N

N∑
i=1

AB(σi), (11)

RB(σi) =
|σ̂i − σ|

|σ| , RB(σ) =
1

N

N∑
i=1

RB(σi), (12)

where σ is the the vector form of the SAR image and σ̂ is the
estimation of σ based on �1 regularization. �1 regularization
can be solved via ISTA [8]. Considering the properties of ISTA,
when a system is determined, the noise level and the threshold
function are two factors which influence the bias of the result. So
we analyze the influence of complex reflectivity on the bias effect
from the perspective of the threshold function. According to Elad
[8], the threshold function corresponding to �1 regularization is
the soft thresholding function soft() : R → R

soft(αi; λ) =

{
0, |αi| ≤ λ

(|αi| − λ)sign(αi), |αi| ≥ λ
. (13)

The absolute bias and relative bias between input and output of
soft(αi; λ) can be calculated as follows:

ABsoft(αi) =

{ |αi| , |αi| ≤ λ

λ, |αi| ≥ λ

RBsoft(αi) =

⎧⎪⎨
⎪⎩
1, |αi| ≤ λ

λ

|αi| , |αi| ≥ λ
.

(14)

As shown in Fig. 1, the relative bias of soft(αi, λ) increases as
the magnitude of αi decreases, which means that in sparse SAR
imaging based on �1 regularization, the bias effect has a greater
impact on targets with lower reflectivity.

C. Nonconvex & TV Regularization

�1-Norm penalty is convex and the analytical solution of the
�1 regularization-based sparse signal reconstruction algorithm
is a biased estimation. In order to promote more sparsity while
reducing the bias, several works have looked at nonconvex but
continuous regularization [27]. Popular examples include the
SCAD penalty [20], MC penalty [18], [19], LSP, and �q-norm
penalty with 0 < q < 1 [21]. The scalar mathematical expres-
sions of these commonly used nonconvex penalties are given
in the second column of Table I. We plot curves of �0-norm
penalty, �1-norm penalty, and typical nonconvex penalties listed
in Table I when α is a 1× 1 vector, as shown in Fig. 2. It can be
seen that the geometrical properties of nonconvex penalties are
more similar to that of �0-norm penalty compared with �1-norm
penalty. As a result, nonconvex regularization can promote
more sparsity while reducing the bias. Therefore, we propose
to utilize these advantages of nonconvex penalties to suppress
bias effect and achieve accurate reconstruction. The nonconvex
regularization-based SAR imaging model is formulated as

min
α

‖y −Φα‖22 + λpNC(α) (15)

where pNC(·) represents the nonconvex penalty. In the above
four nonconvex penalties, the 1-D curves of the SCAD penalty
and the MC penalty are closer to �0-norm penalty compared
with the LSP penalty and the �q-norm penalty, which means
that the reconstruction performance of SCAD or MC is more
approximate to �0 regularization.
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TABLE I
SCALAR EXPRESSIONS OF COMMONLY USED NONCONVEX PENALTIES WITH THEIR THRESHOLDING FUNCTIONS

For Image Vector α, the Penalty Function is the Sum of the Scalar Expressions Corresponding to Each Element: λp(α) = λ
∑N

i=1 p(αi).

When we focus on region-based features of the SAR image,
it is necessary to add TV-norm as a constraint in the model
considering that TV-norm optimization will emphasize more
on piecewise-constant features. Therefore, we linearly combine
the nonconvex penalty and the TV-norm penalty to construct a
compound regularizer, generating a new sparse SAR imaging
model as follows:

min
α

‖y −Φα‖22 + λ1pNC(α) + λ2TV (|α|) (16)

which is expected to improve the reconstruction accuracy and
maintain the continuity of the backscattering coefficient (σ0) of
distributed targets within a certain area in the same time.

D. Reconstruction Algorithms

1) LIPs With Nonconvex Penalties—Optimization Problem
(15): For convenience, we use f(α) to represent ‖y −Φα‖22,
then we consider solving the following optimization problem

min
α

f(α) + λpNC(α). (17)

According to the idea of GIST algorithm [23], we perform
a second-order Taylor expansion on f(α) at point αk. When
∇f(αk) satisfies L-Lipschitz continuous condition, f(α) can
be approximated into the following form:

f(α) =
L

2

∥∥∥∥α− (αk − 1

L
∇f(αk))

∥∥∥∥
2

2

+ C(αk) (18)

where C(αk) is a constant term that does not depend on α.
Therefore, the optimization problem (15) can be solved by
generating a sequence {αk} via

αk+1 =

argminα
L

2

∥∥∥∥α− (αk − 1

L
∇f(αk))

∥∥∥∥
2

2

+ λpNC(α) =

argminα
L

2

∥∥∥∥α− (αk +
1

L
ΦH(y −Φαk))

∥∥∥∥
2

2

+ λpNC(α).

(19)
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Fig. 1. The absolute bias and relative bias of soft(αi; λ) supposing λ = 1.
(a) ABsoft(αi). (b) RBsoft(αi).

Fig. 2. Curves of �0-norm penalty, �1-norm penalty, and typical nonconvex
penalties listed in Table I when α is a 1× 1 vector.

Observing the first term to the right of the equal sign in (19), it
is obvious that

zk+1 = αk − 1

L
∇f(αk) = αk +

1

L
ΦH(y −Φαk) (20)

is the optimal solution of argminαf(α) according to the prin-
ciple of gradient descent. Then, problem (15) is equivalent to

the following proximal operator problem:

αk+1 = argminα
L

2

∥∥α− zk+1
∥∥2
2
+ λpNC(α). (21)

Therefore, in GIST, we first perform a gradient descent along
the direction −∇f(αk) with step size 1/L and then solve a
proximal operator problem. According to [23], there exists a
simple closed-form solution to the proximal operator problem
in (21) if the penalty function pNC(α) satisfies the following
three assumptions.
� pNC(α) is a continuous function which is possibly nons-

mooth and nonconvex, and can be rewritten as the differ-
ence of two convex functions.

� pNC(α) can be written as λpNC(α) = λ
∑N

i=1 pNC(αi).
� The objective function is lower bounded.
The objective function in (21) can be written as the sum of

multiple subproblems

N∑
i=1

[
L

2
(αi − zk+1

i )2 + λpNC(αi)

]
(22)

then, the original problem can be solved by optimizing these N
subproblems. It can be easily verified that the four nonconvex
penalties mentioned in Section II-C all satisfy the above con-
ditions, so their proximal operators have closed-form solutions
and they are usually named as thresholding functions, as given
in the third column of Table I.

2) LIPs With Nonconvex and TV-Norm Penalties—
Optimization Problem (16): Under the guidance of variable
splitting methods [24], [28], [29], we convert unconstrained
problem (16) into the following equivalent constrained
optimization problem:

min
α,z1,z2

‖y −Φα‖22 + λ1pNC(z1) + λ2TV (|z2|)

subject to ‖α− z1‖22 = 0, ‖α− z2‖22 = 0

(23)

where z1, z2 are two auxiliary variables. According to the prin-
ciple of Lagrangian multiplier method, the above optimization
problem can be solved via minimizing the following formula:

L(α, z1, z2, l1, l2) = ‖y −Φα‖22 + λ1pNC(z1)

+ λ2TV (|z2|) + l1 ‖α− z1‖22 + l2 ‖α− z2‖22
(24)

with l1 and l2 as Lagrange multipliers. Correspondingly, the
optimal solution should have the following expression:

(α∗, z∗
1, z

∗
2) = argminα,z1,z2

L(α, z1, z2, l1, l2). (25)

To minimize L(α, z1, z2, l1, l2), we propose to use the alter-
nating minimization method with respect to variablesα, z1, z2,
while gradually increasing the values of the Lagrange multipliers
l1, l2 with iteration [24], and the iterative procedure is as follows:

α(t+1) = argminα ‖y −Φα‖22 +
2∑

i=1

li

∥∥∥α− zi
(t)
∥∥∥2
2

(26)

z1
(t+1) = argminz1

l1

∥∥∥z1 −α(t+1)
∥∥∥2
2
+ λ1pNC(z1)

(27)
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z2
(t+1) = argminz2

l2

∥∥∥z2 −α(t+1)
∥∥∥2
2
+ λ2TV (|z2|).

(28)

The minimization in (26), since the objective function is
quadratic, yields a linear system of equations with solution

α(t+1)

=
[
ΦHΦ+ (l1 + l2)I

]−1
[
ΦHy + l1z1

(t) + l2z2
(t)
]
.

(29)
The optimization problem in (27) is the same as (21) in

Section II-D.1, which belongs to the proximal operator problem,
and there exists a simple closed-form solution to it if the penalty
function pNC(α) satisfies some specific conditions. Therefore,
problem (27) has the optimal solution as follows:

z1
(t+1) = thresholdNC(α

(t+1), λNC)

with λNC = λ1/(2l1)
(30)

where thresholdNC represents the thresholding function cor-
responding to the nonconvex penalty as shown in Table I.

For TV regularization shown in (28), we borrow the Cham-
bolle algorithm [9], which obtains the solution by solving the
dual problem of TV regularization. After parameter transforma-
tion, (28) is equivalent to the following standard TV regulariza-
tion problem:

z2
(t+1) = argminz2

1

2

∥∥∥z2 −α(t+1)
∥∥∥2
2
+ λTV TV (|z2|)

with λTV = λ2/(2l2).
(31)

The solution to the above optimization problem is

z2
(t+1) = sign(α(t+1))(

∣∣∣α(t+1)
∣∣∣− λTV div(p

(t+1))) (32)

where p = (p1,p2) ∈ Y is the dual variable of z2 ∈ X and can
be solved by the projected gradient descent method

p
(t+1)
i,j =

p
(t)
i,j + τ(∇(divp(t) − ∣∣α(t+1)

∣∣ /λTV ))i,j

max
{
1,
∣∣∣p(t)i,j + τ(∇(divp(t) − ∣∣α(t+1)

∣∣ /λTV ))i,j

∣∣∣} .
(33)

Symbol div = −∇∗ is the discrete divergence operator (div :
Y → X,∇ : X → Y )

(divp)i,j =

⎧⎪⎪⎨
⎪⎪⎩
p1i,j − p1i−1,j , 1 < i < N

p1i,j , i = 1

− p1i−1,j , i = N

+

⎧⎪⎪⎨
⎪⎪⎩
p2i,j − p2i,j−1, 1 < i < N

p2i,j , i = 1

− p2i,j−1, i = N

.

(34)

In (33), τ represents the iteration step size, which needs to meet
the following condition: 0 < τ < 1/4, and we generally take τ
equal to the constant 0.248 [10].

3) Azimuth-Range Decouple Scheme: As described in
Sections II-D.1 and II-D.2, the nonconvex regularization-based
SAR imaging method and the nonconvex & TV regularization-
based SAR imaging method all have to store and process the
large-scale measurement matrix, which would bring huge mem-
ory and computational cost. Thus, we adopt the azimuth-range
decouple scheme in the real data processing [4]. Azimuth-range
decouple operators can be implemented to substitute the mea-
surement matrix and its Hermitian transpose. Supposing that
G(·) is the raw data generation operator and I(·) is the imaging
operator (their detailed expression can be found in [4]), the
azimuth-range decouple scheme is formulated as

Φα ∼= G(α), ΦHy ∼= I(y). (35)

Applying these two operators to iterations, the two algorithms
described in Sections II-D.1 and II-D.2 are replaced by the
azimuth-range decouple versions, which can avoid the huge
memory and computational costs, as shown in Figs. 3 and 4.
Azimuth-range decouple operators can directly process the 2-D
echo data; therefore, α in the above algorithm represents the
raw SAR image that is not vectorized. And ‖ · ‖2 is defined as

‖α‖2 =
√∑

i,j α
2
i,j .

Suppose that there are Na points in the direction of azimuth
and Nr points in the direction of range for the raw echo data,
N = Na ×Nr, the computational complexity of the matched
filtering method can be expressed as O(Nlog(N)). When the
number of iterations is I , the computational complexity of
the measurement matrix-based sparse SAR imaging method
will reach O(IN2), while the computational complexity of
the azimuth-range decouple-based sparse SAR imaging method
is only O(INlog(N)). Therefore, the speedup ratio of the
azimuth-range decouple-based sparse SAR imaging method is
rC = O(N/log(N)).

III. EXPERIMENTAL RESULTS

A. Simulations

The simulation experiment is divided into two parts. First,
we construct a 1-D scene and reconstruct it using �1 regular-
ization in order to observe the variation of bias with respect
to targets’ amplitude. Under the same experimental conditions,
we reconstruct the scene with nonconvex regularization, and
compare the result with that of �1 regularization to verify the
effectiveness of the method. Then, we construct a 2-D scene and
reconstruct it with the chirp scaling algorithm (CSA) as well as
the azimuth-range decouple operator-based �1/nonconvex & TV
regularizations. The experimental results are compared to verify
the effectiveness of TV regularization in enhancing region-based
features, and the ability of nonconvex regularization to improve
the reconstruction accuracy of distributed targets.

In the 1-D model, there are 1000 points in azimuth direction.
We place a target every 50 points, a total of 20 targets with
different reflectivity in the scene. A 1000× 1000 Gaussian
orthogonal matrix is chosen as the measurement matrix. First, at
SNR = 20dB and full sampling conditions, we reconstruct the
scene with �1 and nonconvex regularization. For convenience,
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Fig. 3. Azimuth-range decouple based nonconvex regularization for SAR imaging.

Fig. 4. Azimuth-range decouple-based nonconvex and TV regularization for SAR imaging.
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Fig. 5. Reconstruction results of targets with different reflectivity. (a) Amplitude image. (b) Intensity image with logarithmic scale. (c) The relative relationship
with the ground truth.

Fig. 6. Relative bias of targets with different reflectivity.

we choose two typical nonconvex penalty functions: MC and
SCAD rather than all examples listed in Table I. As shown in
Fig. 5, the red circle indicates the result of �1 regularization,
the blue upper triangle indicates the result of MC, and the
cyan lower triangle indicates the result of SCAD. Obviously,
�1 regularization underestimates the amplitude of the targets,
while SCAD and MC can reconstruct the target more accurately.
In Fig. 5(c), the ground truth is shown in the horizontal axis, and
the figure shows the relative relationship between the recon-
struction results of �1 regularization, nonconvex regularization,
and the ground truth. It is obvious that the results of MC- and
SCAD-based nonconvex regularization can preserve the linear
relationship with the ground truth, while �1 regularization can-
not. Therefore, the radiometric calibration using known external
targets after the image reconstruction cannot eliminate the bias
effect caused by �1 regularization. In order to quantitatively
analyze the bias effect, we calculate the relative bias of results
corresponding to these three sparse reconstruction algorithms,
and the results are shown in Fig. 6. It can be seen that the relative
bias of targets becomes larger as the amplitude of reflectivity
decreases for �1 regularization, which means that the bias effect
has a greater impact on weak targets. In contrast, nonconvex
regularization can control the relative bias at a low level.

Fig. 7. Reconstruction results (amplitude) of the distributed target. (a) Chirp
Scaling. (b) �1+TV. (c) MC+TV. (d) SCAD+TV.

In the 2-D model, we place a distributed target that occupies
60× 60 pixels at the center of the scene. In each pixel cell,
there are normally many scatters whose amplitudes and phases
are unobservable because the individual scatters are on much
smaller scales than the resolution of the SAR. According to
Oliver and Quegan [30], we set an equivalent phase center in
each pixel cell, whose amplitudes are i.i.d. Rayleigh distributed
μ =

√
πσ0/2, σ

2 =
√

(1− π/4)σ0 and phases are i.i.d. uni-
formly distributedU(−π,+π). First, CSA is used to reconstruct
the scene and the result is shown in Fig. 7(a) [31]. As analyzed
above, the resulting complex image will be Rayleigh distributed
in amplitude and uniformly distributed in phase, suffering from
speckles. Then, we use the azimuth-range decouple operators-
based �1 & TV regularization to reconstruct the scene. As shown
in Fig. 7(b), the compound regularizer composed of the sparsity-
inducing penalty and TV-norm penalty can maintain the conti-
nuity of the backscattering coefficient (σ0) of distributed targets
within a certain area. Finally, we use the azimuth-range decouple
operators-based nonconvex & TV regularization proposed in
this article to reconstruct the scene, with the result shown in
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Fig. 8. The experimental scene and selected point targets.

TABLE II
THE MEAN AND VARIANCE OF THE COMPLEX IMAGE AMPLITUDE

Fig. 7(c) and (d). Based on the above results, we calculate the
mean and variance of the complex image amplitude, with the
numerical results listed in Table II. Comparing the statistical
result, it is easy to find that �1 & TV regularization causes a
large bias in pixel mean compared with the CSA. In contrast,
nonconvex & TV regularization not only reduces the variance
of the pixel amplitude, but also reduces the bias of the mean.
Therefore, we can conclude that the azimuth-range decouple
operators-based nonconvex & TV regularization method can
improve the reconstruction accuracy as well as maintain the
continuity of the backscattering coefficient (σ0) of distributed
targets within a certain area, which is of great significance for
the estimation of the backscattering coefficient of distributed
targets.

B. Real Data Processing

In order to show the influence of bias effect on practical appli-
cation and validate the effectiveness of nonconvex penalty-based
sparse SAR imaging algorithm in reducing the bias effect, we
conduct the experiments using the data of Gaofen-3. Gaofen-3
is the first C-band multipolarization SAR in China; in this ex-
periment, the stripmap mode data with HH polarization is used.
The main parameters of this data are as follows: the bandwidth
of the signal is 60 MHz, the sampling frequency in the range
direction is 66.66 MHz, the Doppler bandwidth is 741.45 Hz,
and the pulse repetition rate is 1149.45 Hz.

In the first part, we will analyze the reconstruction accuracy
of the point target. We choose three strong scattering points in
the red rectangle in Fig. 8 as the experimental objects. First, we
reconstruct the experimental scene using CSA, �1 regularization,
and nonconvex regularization separately under the full sampling
condition. The reconstruction results are shown in Fig. 9, in

Fig. 9. Reconstruction results of selected targets under the full sampling
condition (normalized using the maximum amplitude in the result of chirp
scaling algorithm under the full sampling condition). (a) Chirp Scaling. (b) �1.
(c) MC. (d) SCAD.

which we can see that Fig. 9(b)–(d) has less noise and clutters
compared with Fig. 9(a). Then we slice Target 1 labeled in
Fig. 9(a) along the range direction in the result of chirp scaling,
�1, MC, and SCAD. As shown in Fig. 10, �1 regularization
does underestimate the amplitude of targets’ complex reflectivity
compared with the reconstruction result of CSA while noncon-
vex regularization can reconstruct the reflectivity of targets more
accurately. In addition, we calculate the reflectivity of the three
targets identified in Fig. 9(a) obtained by different reconstruction
methods, and generate Table III. The statistical results listed in
Table III can further verify the above conclusions.

Finally, we perform point target-experiments with undersam-
pling ratio= 60% to observe the bias when the data is undersam-
pled. Since there is no direct undersampling data, we simulate
the undersampling process by randomly undersampling the full
sampled data. Same as the full sampled data, we use chirp scaling
algorithm, �1 regularization, and nonconvex regularization to
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Fig. 10. Slices of Tar1 along the range direction in the result of Chirp Scaling,
�1, MC, and SCAD (normalized using the maximum amplitude in the result of
chirp scaling algorithm under the full sampling condition).

TABLE III
AMPLITUDE OF TARGETS UNDER THE FULL SAMPLING CONDITION FOR CHIRP

SCALING ALGORITHM, �1 REGULARIZATION, AND NONCONVEX

REGULARIZATION

TABLE IV
AMPLITUDE OF TARGETS UNDER UNDERSAMPLING RATIO = 60% FOR CHIRP

SCALING ALGORITHM, �1 REGULARIZATION, AND NONCONVEX

REGULARIZATION

reconstruct the target scene. As shown in Fig. 11(a), the recon-
struction result of CSA will appear blurred phenomena along the
azimuth direction when undersampling. In contrast, �1 regular-
ization and nonconvex regularization can remove blurring and
smearing in images. We also perform a slice analysis on Target
1 and calculate the reflectivity of the three targets, as shown
in Fig. 12 and Table IV. According to the experimental results
and statistical data, we can find that under the same sampling
conditions, the reconstruction result of nonconvex regularization
is more similar to that of CSA compared with �1 regularization.

In the second part, we will analyze the reconstruction accu-
racy and uniformity of the distributed target. Here, we select
an approximately uniform island as the research object in the
complete scene. The experimental scene is shown in Fig. 13,
where the target island is identified by a red rectangular frame.

First, we use CSA to reconstruct the target scene. As shown
in Fig. 14(a), there are many speckles in the image which cause
the island to no longer be continuous and uniform. Then, we use

Fig. 11. Reconstruction results of selected targets with undersampling ratio
= 60% (normalized using the maximum amplitude in the result of chirp scaling
algorithm under undersampling ratio = 60%). (a) Chirp scaling. (b) �1. (c) MC.
(d) SCAD.

Fig. 12. Slices of Tar1 along the range direction in the result of chirp scaling,
�1, MC, and SCAD with undersampling ratio = 60% (normalized using the
maximum amplitude in the result of chirp scaling algorithm under the full
sampling condition).

�1 & TV regularization to reconstruct the scene, and the result
is shown in Fig. 14(b). Compared with Fig. 14(a), the results in
Fig. 14(b) are significantly more uniform and continuous, and
the clutters and noise in the image are also lower, which validates
the effectiveness of the method. Since �1 regularization will
bring bias effects, we also use nonconvex & TV regularization
to reconstruct the scene, in which we select MC and SCAD
as penalty functions, with the result shown in Fig. 14(c) and
(d). For further quantitative analysis of bias and uniformity, we
select three areas surrounded by the red rectangle on the island
and calculate their mean and variance separately based on the
above imaging results. The numerical results for areas 1, 2, and
3 correspond to Tables V–VII, respectively.
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Fig. 13. The experimental scene and the target island.

Fig. 14. Reconstruction results of the target island (normalized using the
maximum amplitude in the result of chirp scaling algorithm). (a) Chirp scaling.
(b) �1+TV. (c) MC+TV. (d) SCAD+TV.

Based on the imaging results shown in Fig. 14 and the
statistical results in Tables V–VII, we can find that compared
with the traditional CSA, the nonconvex & TV regularization
method proposed in this article can suppress noise and clutter,
as well as reduce variance of reconstruction results to maintain
the uniformity and continuity of the distributed target. More
importantly, compared with the �1 & TV regularization, the
mean value of the reconstruction results using this method
is closer to the result of CSA, which shows that the method
can effectively reduce bias and achieve higher reconstruction
accuracy.

TABLE V
THE MEAN AND VARIANCE OF AREA 1 SURROUNDED BY THE RED RECTANGLE

ON THE ISLAND

TABLE VI
THE MEAN AND VARIANCE OF AREA 2 SURROUNDED BY THE RED RECTANGLE

ON THE ISLAND

TABLE VII
THE MEAN AND VARIANCE OF AREA 3 SURROUNDED BY THE RED RECTANGLE

ON THE ISLAND

IV. DISCUSSION

A. Bias Effect Under Different Undersampling Ratios
and SNRs

In order to study the variation of bias effect with undersam-
pling ratios and SNRs, we repeat the 1-D simulation described
in Section III-A under different conditions.
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Fig. 15. Relative bias under different undersampling ratios.

First, we perform experiments under different undersampling
ratios to explore the effect of undersampling ratios on bias. In
this experiment,the SNR is set to 20 dB, the range of under-
sampling ratio is [20%, 100%], and the interval is 10%. Under
each undersampling ratio condition, we use the Monte–Carlo
method to perform 500 repeated experiments, and generate the
undersampling matrix randomly in each experiment. Finally,
we average the experimental results to obtain the bias. From
the experimental results shown in Fig. 15, we can find that a
low undersampling ratio leads to an increase in bias. At the
same time, we can observe that under the same experimental
conditions, the bias of nonconvex regularization is much smaller
than �1 regularization.

Then, experiments are carried out under different SNR con-
ditions in order to study the influence of SNR on bias effect as
well as test the adaptability of the proposed method in this article
to different noise environments. This experiment is carried out
under the full sampling condition, the variation range of SNR is
[10, 25] dB and the interval is 1 dB. Under each SNR condition,
we use the Monte–Carlo method to perform 500 repeated exper-
iments, and generate random noise in each experiment. Finally,
we average the experimental results to obtain the bias. As shown
in Fig. 16, the relative bias increases with the increasing of the
noise level for all these three algorithms. However, under the
same SNR condition, nonconvex regularization performs better
than �1 regularization, which implies the method has a certain
ability to adapt to the harsh noise environment.

B. Equivalent Number of Looks for Reconstruction Results

Equivalent number of looks (ENL) is commonly used to mea-
sure the speckle suppression of different SAR image filters [32].
When the ENL value is bigger, it indicates the image is smoothed
well. The definition of ENL is as follows:

ENL =
μ(I)2

σ(I)2
(36)

where I = Amplitude2 denotes the intensity of SAR image,
μ(I) is the mean of I , and σ(I) is the standard deviation of I .

Fig. 16. Relative bias of targets under different SNR conditions.

TABLE VIII
ENL FOR RECONSTRUCTION RESULTS

As described in (36), ENL contains both mean and variance of
the image, so it is more reasonable to measure the continuity of
the reconstruction results with ENL.

As in the second part of Section III-B, we calculate ENL of
the target island in Fig. 14, with the results shown in Table VIII.
The data in this article has not been multilook processed, so the
ENL of the reconstruction results based on the traditional CSA
are approximately equal to 1. In contrast, �1 & TV regularization
and nonconvex & TV regularization can effectively improve the
ENL. Meanwhile, due to the bias effect of �1 regularization,
the μ(I) of reconstruction results based on nonconvex & TV
regularization is larger than that of �1 & TV regularization, for
which the proposed method in this article can increase the ENL
more effectively. Therefore, nonconvex & TV regularization can
maintain the continuity of targets while improving the recon-
struction accuracy.

V. CONCLUSION

The analytic solution of �1 regularization-based sparse signal
reconstruction algorithm is a biased estimation, which leads
to the underestimation of targets’ reflectivity when applied to
sparse SAR imaging. In order to reduce the bias effect and
improve the reconstruction accuracy, we adopt the nonconvex
regularization-based sparse SAR imaging method with noncon-
vex penalty family. In this article, we quantitatively analyze the
variation of reconstruction bias with respect to complex reflec-
tivity of targets, undersampling ratio, and noise power. After
simulations and experiments with real data, we get the following
conclusions. First, the relative bias of targets becomes larger
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as the amplitude of reflectivity decreases for �1 regularization,
which means that the bias effect has a greater impact on weak
targets. In contrast, nonconvex regularization can control the
relative bias at a low level. Second, a low undersampling ratio
leads to an increase in bias. At the same time, we can observe that
under the same experimental conditions, the bias of nonconvex
regularization is much smaller than �1 regularization. Finally,
the relative bias increases with the increase of the noise level for
�1 regularization as well as nonconvex regularization. However,
under the same SNR condition, nonconvex regularization per-
forms better than �1 regularization, which implies the method
has a certain ability to adapt to the harsh noise environment.

In order to enhance point-based features as well as region-
based features, this article linearly combines the nonconvex
penalty and the TV-norm penalty as a compound regularizer
in the imaging model, which can improve the reconstruction ac-
curacy of distributed targets as well as maintain the continuity of
the backscattering coefficient in uniform regions. In large-scale
SAR imaging, storage and processing of measurement matrix
would bring huge memory and computational cost. Therefore,
we adopt the azimuth-range decouple scheme in the real data
processing. Experiments based on real data from Gaofen-3
satellites verify that the nonconvex & TV regularization method
proposed in this article can suppress noise and clutter, as well
as reduce variance of reconstruction results to maintain the
uniformity and continuity of the distributed target, which implies
the huge potential and advantages of the proposed method in
RCS estimation, target classification, and image segmentation.
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