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Deep Learning for Regular Change Detection in
Ukrainian Forest Ecosystem With Sentinel-2
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Abstract—The logging is the leading cause for the reduction in
the forest area in the world. At the same time, the number of
forest clearcuts continues to grow. However, despite the massive
scale, such incidents are difficult to track in time. As a result,
huge areas of forests are gradually being cut down. Therefore,
there is a need for regular and effective monitoring of changes
in forest cover. The multitemporal data sources like Copernicus
Sentinel-2 allow enhancing the potential of monitoring the Earth’s
surface and environmental dynamics including forest plantations.
In this article, we present a baseline U-Net model for deforestation
detection in the forest-steppe zone. Training and evaluation are
conducted on our own dataset created on Sentinel-2 imagery for
the Kharkiv region of Ukraine (31 400 km2). As a part of the
research, we present several models with the ability to work with
time-dependent imagery. The main contribution of this article is
to provide a baseline model for the forest change detection inside
Ukraine and improve it adding the ability to use several sequential
images as an input of the segmentation model.

Index Terms—Change detection, convolutional neural network
(CNN), deep learning, deforestation, logging, LSTM, optical
imagery, semantic segmentation, U-Net.

I. INTRODUCTION

FORESTS play a crucial role in climate regulation and car-
bon sequestration. Particularly, forests in Ukraine, covered

15% of territory, can fetch more than∼ 200× 106 tons of carbon
dioxide from the atmosphere and emit ∼ 180× 106 tons of
oxygen [11]. But woodlands in Ukraine similar to most forests
in other countries are at the risks associated with anthropogenic
pressure. Illegal deforestation is carried out with next main
objectives—for forestry and the sale of wood and for new farms
or construction projects. Some forest areas have the highest
conservation value as habitats of rare species of animals and
plants and are protected by the Berne Convention [44]. How-
ever, Ukrainian forestry in most cases is not able to follow the
requirements of the Berne Convention due to the imperfection
of the legislative framework.

Official statistics of illegal logging in Ukraine shows a de-
crease from 10 000 cases of illegal logging per year to 5000
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for the last 10 years’ period [43], but independent observations
indicate an increase in the number of violations [58]. At the
same time, according to state and civilian estimates, the amount
of illegal logging is increasing and, in 2019, amounted to more
than 100 000 m3. Moreover, the largest number of cases of illegal
logging and volumes of illegally harvested wood accounted for
just forest-steppe regions of Ukraine and not mountain.

One of the effective mechanisms to reduce illegal deforesta-
tion is the influence of civil activists and nonprofit environmental
organizations. To support their activity, systems of operational
monitoring of logging are actively developed (see, e.g., [4]).
Systems of this kind are aimed to obtain data by the date and
area of logging actually carried out, identifying inconsistencies,
and taking preventive measures for violators, and identify illegal
deforestation at the initial stages and use civil control capabilities
to suspend.

Today, deforestation systems are mostly based on remote
sensing, which established as an effective tool for forest change
detection. Most earlier works dedicated to the analysis of defor-
estation detection with the aid of remote sensing used imaging
data such as Landsat [41] and MODerate Resolution Imaging
Spectroradiometer [42]. For instance, [19] presented 30-m spa-
tial resolution maps of global forest change using data from
Landsat mission; [20] applied machine learning techniques to
the Landsat and MODIS data with the aim to map the forest cover
and the forest change in Congo Basin. The work [5] presented
a review of different approaches applied to the Landsat data for
forest change monitoring.

Although spatial and spectral resolution offered by Landsat
and MODIS is well-suited for analysis of the deforestation [13],
[27], [30], [60], its temporal resolution is not appropriate for
high-frequency forest change detection. While the Landsat data
were limited by annual and subannual frequency of observations,
the Sentinel-2 mission [15] may provide the high-resolution
(up to 10 m) images every 5 d. The potential of Sentinel-2 in
detecting small-scale deforestation regions was shown in [35]
and [38], where Sentinel-2 imagery showed better performance
than Landsat in detecting forest change in Amazon.

With remote sensing, deforestation monitoring systems use
a bunch of automatic methods based on the change detection
techniques[12], [21], [26], e.g., time-series analysis of veg-
etation indices [38], image preprocessing to detect changes
between a pair of images [49], machine learning classification
[24], [57], etc. But, recently, the deep learning has demon-
strated great potential in remote sensing due to its ability to
extract features from the spectral–spatial–temporal image data
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[40], providing state-of-the-art results in remote sensing change
detection.

In [34], the authors demonstrate general principles of the
convolutional neural networks (CNNs) usage for the change
detection problem on satellite images. In the recent work of
[46], the authors introduce the integration of U-Net [50] model
with recurrent models for the urban changes detection on the
Sentinel-2 data. Scores obtained in the experiments show that
deep learning models can deal with the problem of change
detection based on the satellite data.

Another type of architecture developed to work with Sentinel-
2 imagery is present in [62]. Originally, it was used for land cover
classification but can be converted into a form suitable for the
change detection problem. The input for the neural network is a
3-D stack of sequential images that represent the time-dependent
series from the common location.

In the work [29], the instance segmentation models, namely
region-based CNN [23] and a variation of U-Net model, were
used to detect urban changes on the high resolution aerial
images. The models based on Siamese CNN to speed up the
change detection on satellite images were presented by [10].

Despite the fact that deep learning is a quite popular tool in
change detection from remote sensing, the number of studies
related to the application of CNNs to the deforestation detection
is relatively small. Most of these works are dedicated to the
Amazonian rainforests—most cut down forest in the world [2],
[3], [37]. In [13], the better performance of deep learning (Sharp-
Mask [47], U-Net, and ResUNet [61]) models with respect
to classic machine learning (random forest [7] and multilayer
perceptron [25]) algorithms to track the change detection of
deforestation in the Amazon using Landsat data are presented.
The work [45] reviewed several deep learning methods like
Early Fusion CNN model and Siamese CNN model [10] for
deforestation detection in Amazon forests.

In this work, we present the results of high-frequency forest
change monitoring within the Ukraine region using data from the
Copernicus Sentinel-2 mission. The aim of this study is to set first
result in remote sensing deforestation detection in Ukraine. To
do so, we constructed large dataset of deforestation within some
regions of Ukraine. We solved the image segmentation task,
which aims at classifying each pixel of entire image; in our case,
we tried to distinguish pixels corresponding to the forest change
from the background. By solving the segmentation task, we
investigate two set of CNNs—time-dependent and single-image
based models—to check the ability of deep learning models to
utilize the temporal information in segmenting forest changes.
Also, our work is the first research that compares different
variants of time-dependent CNNs to detect deforestation from
high-resolution and high-frequency data. Namely, we used and
evaluated seven models (based on the U-Net network) that
utilize the temporal information and predict the change of the
deforestation regions. The proposed models could detect the
forest change within extremely short timescales (up to temporal
resolution of satellite data, equal to 5 d) due to the construction
of the manually created training dataset.

The structure of rest of this article is as follows. The descrip-
tion of the dataset used for training of the models as well as the

description of models are presented in Section II. In Section III,
we describe the results of forest change detection based on
our datasets. In Section IV, we provide the discussion of our
results as well as the principal limitations of the models. The
conclusions are presented in Section V.

II. MATERIALS AND METHODS

As we note in Section I, there is a wide list of methods, able
to detect forest changes in remote sensing images. We solve
this task in a supervised learning manner—having some dataset
of training observations with known ground truth deforestation
regions, we build the model, which maps the remote sensing
images into the deforestation images. As such a model, we used
deep artificial network which is able to train on remote sensing
data to predict changes with a good quality (see references in
Section I for example). To train this model, we construct our own
dataset of deforestation regions in particular regions of Ukraine.
Further in this section, we describe the pipeline of our forest
change detection methodology.

A. Dataset Labeling

There is no large-scale public research in the field of forest
change detection inside Ukraine territory; therefore, it is hard
to find a good dataset to set experiments and to train models.
So we decided to collect our own dataset. We selected the most
typical forest types from Ukrainian territory. We work with only
the Kharkiv region for this purpose. The results are applicable
to the entire forest and steppe zone which makes up most of
the territory of Ukraine. The exception is only the Crimean and
Carpathian mountains which require additional labeling due to
their landscape and trees species. But it is out of the scope of this
article and we do not focus on it. We selected two neighboring
Sentinel-2 tiles (36UYA and 36UXA) within the period from
2016 to 2019. Each tile comprises ∼ 12 000 km2 in area. They
have a maximum forest area, including the most typical forests:
coniferous, broad-leaved and mixed the woods. On these tiles,
forest areas different by size (from small to large) are presented
(see Fig. 1).

Labeling was performed using the entire sequence of Sentinel-
2 [15] images from selected tiles, with cloud cover up to 20%.
We used ArcGIS Pro and QGIS for this purpose [48]. The
initial data sources are Sentinel-2 image services [1] and locally
stored images in the combination of natural color channels.
For the refinement, the additional composites and indices [like
infrared bands, normalized difference vegetation index (NDVI),
and normalized difference moisture index (NDMI)] were used.1

The labeling was carried out manually by analyzing a series of
three or more sequential images. Each new section of increasing
a clearcut was marked as a separate polygon; the output for the
masks were geoJSON files. If the clearcut fell on a tile with
clouds, this image was not used to mark the clearcut. Clouds
labeling was not performed since it is available in Sentinel-2
Level A products, as well as could be done automatically with

1Some of these channels are used for deep learning segmentation; for more
details see Table I.
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Fig. 1. Location of the study areas (tiles 36UXA, blue, and 36UYA, red) within the region of Ukraine (dashed area). Names of countries are provided within
corresponding regions. The map is in the WGS-84 UTM zone 36N projection.

Fig. 2. Example of images from the dataset. The figure consists of two images
with neighbor dates and a corresponding mask with clearcutting changes for this
period.

using Sentinel-2 cloud detector [52]. The example of labeling
procedure output is available in Fig. 2, where we show the two
serial images of the region with clearcuttings and the corre-
sponding masking of deforestation dynamics.

During the labeling, the main types of inconsistencies that we
faced were the following:

1) missed clearcutting (main reason: small area);
2) clearcutting is marked on a similar object that is not

logging (meadow or haymaking);
3) the clearcut of less than the threshold area is marked

(within the precision of georeferencing of images);
4) insufficient positional accuracy of borders (less precision

of georeferencing of images); and
5) the date for clearcutting was incidentally determined in-

correctly.
The quality of the labeling is controlled by the following

methods:
1) repeated selective verification;
2) cross-check of the labeling by different annotators; and

3) verification of the results of segmentation errors after
training the model.

As a result of the labeling procedure, we obtained a dataset
with a general area of ∼50 000 hectares. The total time spent
on the whole labeling procedure is ∼800 h. During the labeling,
we found out that the number and area of felling are evenly
distributed over all seasons of the year, with a slight dominance
of clearcuttings in spring and summer.

B. Data Preprocessing

In our research to probe the possibility of deep learning forest
change detection, we used about 4000 polygons, with an area
of ∼30 000 hectares. The reason for using a subsample of
the labeled region only is the availability of high-frequency
monitored clearcuts within it, while other regions are labeled
rarely. Selected subsamples of the regions contain a large cumu-
lative number of clearcuts, most of which were monitored every
5–10 d, which gives an advantage in training time-dependent
models. As we describe below, we analyze two sets of models
(baseline and time-dependent), and these sets use the following
labeling results:

1) baseline: 2318 polygons, tile 36UYA and tile 36UXA,
2016–2019 years, 26 images in total; and

2) time-dependent: tile 36UYA (two samples of separated
annotations—for spring and summer, with number of
polygons equal to 278 and 123 respectively, 2019 year)
and tile 36UXA (1404 polygons, 2017–2018 years), 36
images in total.

As the input images for the segmentation models we use (see
Table I ) the following:

1) True color images;
2) B8, B8A, B11, and B12 bands;



ISAIENKOV et al.: DEEP LEARNING FOR REGULAR CHANGE DETECTION IN UKRAINIAN FOREST ECOSYSTEM WITH SENTINEL-2 367

TABLE I
CHANNELS PRESENT IN THE DATASET

3) NDVI and NDMI.
The description of the Sentinel-2 bands is available in [56,

Section 3.10].
All images are Level C products2 and have the same

resolution—10 m per pixel. The same resolution of the entire
channels was provided by the resampling of low-resolution
channels to the target resolution.

After downloading images, which correspond to the dates of
the entire dataset polygons, we converted polygons from the
vector representation into the raster one. During conversion,
we made separate masks of deforestation, each of which is
corresponding to the one image (in the sense of spatial and
temporal information).

To prepare data for the baseline model we need to crop each
Sentinel-2 image (∼10 000 pixels per axis) with the correspond-
ing clearcuts and cloud masks into 224 × 224 fragments. The
chosen size of the fragments is a most common size of the
input images for the deep learning models. After we remove
the fragments, which are covered by clouds (coverage > 70%,
which was determined directly with sentinel2-cloud-
detector) and contain no masks (except the pieces, contain-
ing field crops), it is important to save them due to the visual
similarity of fields with cutting areas.

For the models with time dependency, we crop each Sentinel-2
image with the corresponding clearcuts and cloud masks into
56 × 56 pixel fragments. We decided to use smaller size of
images for the time-dependent models in respect to the size of
images for the baseline model due to the relatively small area
of forest changes. During our experiments, we noted that such
small masks of forest changes on the 224 × 224 images resulted
in the very small training dataset (in order of 100 images) and
forced our models with time dependency to predict empty masks.
Also due to the small masks of clearcut changes, we artificially

2[Online]. Available: https://sentinel.esa.int/web/sentinel/missions/sentinel-
2/data-products

increase the size of masks to about one pixel from each border,
to help the models converge faster and neatly. As in the case
of the baseline, we drop fragments with clouds such that we
include in the one particular sequence cloudless images only,
until completing the sequence.

To ensure the preservation of time dependence, we form the
input datasets as sequences of images which are separated by
time at 30 d in maximum. Sequences of images are transformed
using histogram matching for each particular channel to make
the images in a group most similar. This transformation provides
an opportunity to detect changes in clearcuts easier, ignoring
seasonal changes which are important in subannual clearcut
detection [18].

Due to the high cloud cover and the small number of clear-
ings in the winter, we removed winter fragments from the
dataset.

The described data preprocessing pipeline is represented as
a flowchart in Fig. 3. After all manipulations, we got datasets
that consist of 4700 fragments for the baseline models, 6500
samples for models accepting sequence of two images, and
1500 samples for UNet-LSTM, which require the sequence of
five images as the input. For the training procedure, we split
data into the train-valid-test parts, and got 3812, 559, 383/4825,
1098, and 681 fragments in training, validation, and testing splits
respectively for baseline and time-dependent models. The data
were split by using the spatial coordinates rather than random
splitting, meaning that the region, which occur, for example, in
the training sample, will not be included in test and validation
datasets. Each fragment consists of 1) one image in nine channels
for the baseline models and 2) the sequence of images, where
images are separated by 5–30 d in time, in nine channels for
the time-dependent models. The dataset was constructed in this
way to train our models to detect clearcuts within extremely
short time scales. This is quite a natural way to provide the
certain ability for the model via training sample because the deep
learning models are very sensitive to the training data points.

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products
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Fig. 3. Workflow of the data preparation for segmentation with baseline and time-dependent models.

Thus, we believe that our models could deal with detecting forest
change regions every 5–30 d.

C. Quality Assessment

The segmentation quality metric is Dice coefficient [14]:

Dice(y, p) =
2
∑

i yipi∑
i y

2
i + p2i

(1)

which represent the similarity between two binary images (the
mask of clearcuts y, and the predicted regions of deforestation
p in our case). The summation

∑
i is occurred over all pixels of

images. In the case of ideal alignment between these two binary
images, we will get Dice(y, p) = 1; otherwise, in the worst case
(if two binary images are in mismatch), the Dice score will be
equal to zero.3

Although the Dice coefficient is a popular metric for segmen-
tation models evaluation, it could not deeply describe the situa-
tion with the segmentation of images without clearcut changes.
In the case if it is not critical to obtain exactly the full area
of the clearcut but important to get the approximate location
of the problematic zone, we have to implement another quality
metric. This metric has to be focused on calculating the number
of clearcuts, detected correctly and incorrectly.

In general, we expect the following four types of detections:
1) true positive (TP)—the clearcut instance was detected

successfully;
2) true negative (TN)—there is no actual clearcut instance

on the mask and the clearcut was not detected;

3We note that with such a definition, Dice metric degenerates when both
images contain zero pixels only. Practically, we implemented a slightly different
equation of the Dice score, considering this degenerate case: (2

∑
i
yipi +

ε)/(
∑

i
y2i + p2i + ε), where ε is a small additive (ε � 1). This representation

results in Dice(y, p) = 1 if
∑

i
yi = 0 and

∑
i
pi = 0.

3) false positive (FP)—there is no actual clearcut instance on
the mask but it was detected by model;

4) false negative (FN)—there is an actual clearcut instance
on the mask, but it was not detected.

The next combination of the numbers of these detections
defines the F1-score:

F1 =
2TP

2TP + FP + FN
. (2)

The Dice score is the same as F1-score in terms of detections
types, but, in the first case, we compare the predicted and ground
truth values in each pixel of images, and, in the second case, we
work with numbers of instance detections of different types.

D. Neural Network Models Description

To understand the possibility of forest change detection and
evaluate the accuracy, we prepared the two sets of models. We
include in the first set the models, which work with images
in spectral–spatial dimensions, and do not accept temporal
information; these models were trained to find clearcuts on
each image. The second set is composed of the time-dependent
models, which were trained to find the changes of deforestation
regions in sequence of images. We name these sets “baseline
models” and “time-dependent models,” respectively.

Necessity of introducing these two sets is, in our aim, to
investigate the possibility of deep learning models performing
with additional temporary information to detect deforestation.
Also, assuming a wide range of available deep learning models,
we can find the best model within a set of baseline models and
use it for the subsequent analysis, adding the dependency on
time.

To analyze a set of baseline models, we implemented several
experiments. We use ResNet-50 and ResNet-101 [22] networks
wrapped into the U-Net and feature pyramid network (FPN,
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TABLE II
LEARNING TIME AND NUMBER OF BEST EPOCH FOR

TIME-DEPENDENT MODELS

[36]) architectures to obtain scores for the baseline. The chosen
architectures are drawn from the one family of neural networks,
which is called autoencoders. Autoencoders compact through
convolutional filters and downsampling the input images into
the latent space (the so-called encoder network) to learn the
low-level features and then upsample these latent features to
the new image with an original shape (via decoder network).
For the segmentation task, autoencoder should have additional
classification layer, which transforms output image of decoder
into the mask, which should be restored from input image.
The main advantage of the U-Net and FPN is that these ar-
chitectures use connections between encoder and decoder—not
only through the layer, which form the latent features, but also
between corresponding layers at each level of sampling (for
example, see schematic representations of the time-dependent
models). These connections combine low-level and high-level
features to infer the mask details more accurately and to take into
account learnt latent features as well as the high-level features
of image. This property is a principal reason for the picking up
these architectures for our analysis.

Wrapping the chosen ResNet CNNs into architectures, we
also use different initial learning rates and optimizers (see Ta-
ble II in Section III for more details, [31]).

The baseline models do not take into account the time depen-
dence in the clearcuts. In the next experiments, we use several ap-
proaches for the training of neural networks considering the time
dependence. All of the networks described below are wrapped
into the U-Net model. These networks use Adam optimizer (200
epochs of training in total, starting learning rate equal to 10−2,
and further learning rate decreasing on the factor of 0.1 at 10,
40, 80, and 150 epochs), with balanced batches (with regard to
number of images with empty masks and without), size of which
is equal to 64.

To increase the generalization ability of all of the models, we
used data augmentation procedures, applied to the images from
training sample:

1) random crop of images (70% of image size in each axis with
further rescaling to the initial size), random brightness, and
contrast changing;

2) elastic and grid transformations (for more details, see [9]
and [54]); and

3) mask dropout (zeroing out mask/image regions corre-
sponding to instance at mask),

which were applied with some predefined probability for each
training image.

Fig. 4. Schematic representation of UNet-diff model.

As we noted in the previous section, we use Dice score to
measure the quality of our deep learning segmentation. But,
in addition to the monitoring of the Dice score with the aim
to analyze the quality of CNNs, we can optimize the model
with respect to this score. We can use the Dice score as the
loss function, but instead of maximizing it, the model should
minimize the “inverse” Dice score: 1− Dice(y, p). So, for the
loss function for our models, we used the weighted sum of binary
cross-entropy and Dice losses [39]:

LBCE(y, p) = −
∑

i

(yi log(pi) + (1− yi) log(1− pi)) (3)

LDice(y, p) = 1− 2
∑

i yipi∑
i y

2
i + p2i

(4)

L(w1, w2) = w1LBCE + w2LDice (5)

where y, p are ground truth and predicted masks, respectively,
and summing is held over all pixels. Hereafter, for all models,
which use the weighted sum of binary cross-entropy and Dice
losses, we assume w1 = 0.2 and w2 = 0.8.

We assume that segmentation quality of the model is the best
when the loss on the validation dataset is the highest. We also
note that we used a full validation dataset for the first two models
from the list below, and the remaining models were validated
with using images with nonempty masks only. This specific
selection of validation data allowed us to obtain satisfactory
evaluation results on the test sample for all of the models. The
list of models is presented in the following.

1) U-Net model trained on image difference and concate-
nation (UNet-diff). The model is based on the ResNet-18
architecture. The depth of the encoder and decoder is equal
to 3 (see Fig. 4).
The input for the UNet-diff model is a pair of consec-
utive images and their difference. The output is a mask
of differences in clearcuts between two images from a
sequence. All input fragments are concatenated by the
channel axis, resulting in the 27-channel data-in. To train
the UNet-diff network, we use Adam optimizer which
minimizes the weighted sum of BCE and Dice losses
[see (5)]. The advantage of this network is that it uses
as the input not only the sequence of images but also the
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Fig. 5. Schematic representation of UNet-CH model.

Fig. 6. Schematic representation of UNet2D model.

difference between them, which directly represents the
changes in images.

2) U-Net model with classification head trained on concate-
nation of two images from sequence and image difference
(UNet-CH). This model has the construction similar to
the UNet-diff, excepting the auxiliary classification head
(Fig. 5). Classification branch is placed at the top of the
encoder and consists of the max-pooling layer followed
by the flattening and the dense layer with one output,
expressed via sigmoid activation function. Classification
head predicts if an input stacked image contains forest
changes or not. The network is trained with the same
loss function as the UNet-diff model [see (5)]. UNet-CH
requires the same input images that are presented for
UNet-diff model and predicts the forest change difference
between two images from the sequence. All input frag-
ments are concatenated by the channel axis, resulting in
the 27-channel images.

3) U-Net model trained on concatenation of two images by
channels axis (UNet2D, [10]). UNet2D model contains
three max-pooling and three upsampling layers. Also the
Dropout [55] technique is adapted to this network after
each convolutional layer with the dropout rate equaling
20% (Fig. 6). UNet2D is trained with a weighted sum
of BCE and Dice losses [see (5)]. The input is a pair
of consecutive 9-channel images, concatenated with each

Fig. 7. Schematic representation of UNet3D model.

Fig. 8. Schematic representation of SiamConc model.

other by channel axis (producing 18-channel images) and
the prediction is the difference of masks of two images.

4) 3-D U-Net model (UNet3D). It takes as the input pair
of images, concatenated in the new depth axis. UNet3D
model is the model same as UNet2D, excepting the re-
placement of 2-D operations (convolution, pooling, etc.)
with their 3-D equivalents (with using no pooling across
the new depth axis, Fig. 7). This network was trained with
Adam optimizer, minimizing the Dice loss function [see
(4)]. The UNet3D requires as the input two nine-channels
images, which are stacked into a single 2×9× 56×56
image.

5) Siamese U-Net network with concatenating the skip con-
nections (SiamConc). It consists of two encoders and one
decoder, depth of which is equal to four layers (Fig. 8).
Encoders have shared weights, as in the usual Siamese
network. The skip connections in SiamConc are organized
such that the concatenation of the layers of encoders feeds
to the decoder layers. SiamConc was trained with the Dice
loss function [see (4)]. The input for each encoder is a
nine-channel image from a consecutive pair. The output is
the difference of masks of two images.
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Fig. 9. Schematic representation of SiamDiff model.

Fig. 10. Schematic representation of UNet-LSTM model.

6) Siamese U-Net network with concatenating the absolute
values of difference from two encoders at skip connec-
tions (SiamDiff). This network has the same architecture
as SiamConc but with the absolute differences between
connections of both encoders before stacking with the
decoder parts. We used the Dice loss function [see (4)]
to train the SiamDiff model (Fig. 9).

7) U-Net LSTM model (UNet-LSTM). Presented as a model
similar to UNet2D with addition of a convolutional LSTM
unit [53] to the decoder’s output (Fig. 10). The input
is a sequence of 5 nine-channel images, and the output,
unlike other time-dependent models, is the last mask from
the sequence. Due to the higher length of input images
sequence regarding other models, UNet-LSTM has the
smallest training dataset. This model also was trained with
a weighted sum of BCE and Dice losses [see (5)].

All these models are different in the sense of used archi-
tecture and input data. Namely, UNet2D is very similar to the
UNet-diff and UNet-CH models, excepting the physical sense

of the input data. While UNet2D is forced to find the forest
changes itself, UNet-diff and UNet-CH models are able to use
information about the difference of two sequenced images in
predicting the mask. UNet-CH also has auxiliary classification
branch, which, as we assumed, should help in creating more
reliable latent feature space and, as a result, in generating more
accurate predictions. UNet3D, in its turn, should try to find forest
changes in the manner different from the UNet2D due to the
specific construction of spectral–spatial–temporal convolutions.
The advantage of the Siamese models is manipulating with
images in different branches but with shared weights; it means
that these networks should try to find forest changes comparing
latent and downsampled features from these two branches. And
the last model, namely UNet-LSTM, is drawn from the family
of recurrent models; these models have been established as a
great tool to process sequence of signals.

Neural networks were implemented withPyTorch.4 To train
the models, we used GPU GeForce GTX 1080Ti. The princi-
pal characteristics of learning time-dependent models (time of
learning per epoch, and the number of the best epoch) are given
in Table II.

We can see that the most optimal learning time was reached
with UNet-diff and UNet-CH models, which show relatively low
(< 30 s epoch−1) learning time and fast convergence (< 100
epochs).

III. RESULTS

In this section, we discuss the results of forest change detec-
tion algorithms in use. We summarize the results in the terms
of segmentation quality metrics on the training, validation, and
testing samples.

We have analyzed the segmentation results with the Dice
coefficient. According to Table III, the best baseline network
on the test score is U-Net model with the ResNet-50 backbone
with learning rate equal to 10−3 and SGD as optimizer. We
can see that the second best model according test score and the
best model according to the validation score is also UNet-50
with learning rate equal to 10−3 but with Adam optimizer. From
this, we can see that the UNet-50 model is the most suitable
architecture for this task. The best Dice score is equal to 0.46 on
the test sample and 0.52 on the validation one.

In the analysis of models with time dependency, we separate
two cases of analyzed data: nonempty masks (corresponding
images of which have signs of changing clearcuts) and all masks
(empty and nonempty). This was done in order to analyze the
segmentation quality, looking from the two sides of the problem:
segmentation of actual clearcuts and ability of the model to
differentiate between images with and without clearcuts.

Table IV shows that the best validation/test Dice score on
nonempty masks can be achieved by the UNet-diff model, while
the UNet-CH model introduces the highest Dice score on all
masks. It means that by adding the classification head to the
UNet-diff model, we have lost some segmentation quality of
clearcuts, but, at the same time, we have won in differing images

4[Online]. Available: https://pytorch.org/

https://pytorch.org/
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TABLE III
SCORES FOR THE BASELINE MODEL SELECTION (SET BY MODEL TYPE,

OPTIMIZER, AND LEARNING RATE). THE SCORE FOR THE TRAIN, VALIDATION,
AND TEST DATASETS IS DICE.

The Best Result on Validation and Testing is Highlighted in Bold.

TABLE IV
DICE SCORES FOR ALL MODELS WITH TIME DEPENDENCY, SEPARATELY FOR

ALL MASKS AND NONEMPTY MASKS

with and without changing clearcuts. We note that UNet-diff
and UNet-CH models performed better than baseline models
described in the previous section. This could be explained by
the fact that these models receive as the input not only the
images at each date but also their difference, which directly
represent the changed regions. Other networks, which work with
the sequences of images without auxiliary image differences,
could not infer the regions of the forest changes as better as
UNet-diff and UNet-CH and, thus, have a lower segmentation
quality. Possibly, we do not have enough training data to train
our models in finding the changes without difference images.

Another notable result is that UNet-LSTM estimates the
clearcutting regions with lower quality, despite the fact that
output of this model is the whole clearcut, not its change.
Possibly, this fact could be explained by the smaller amount
of the training data in use.

Fig. 11. Dependence of Dice score on the number of masked pixels for the
training (top), validation (middle), and testing (bottom) samples for all of the
models.

We also analyzed the Dice score as a function of clearcut
size in pixels for the nonempty masks, and we noted that the
Dice score increases with the number of masked pixels. For
the best-performed models (UNet-diff and UNet-CH), the Dice
score could reach values 0.4÷ 0.5 for the smallest (∼20 pixels)
and0.8÷ 0.9 for the largest (∼180 pixels) clearcuts in the testing
dataset (see Fig. 11).

To measure the F1-score, we have calculated the number of de-
tections of all types for each predicted or ground truth instance.
We assume that a single detection is TP if the corresponding
intersection over the union (IoU) score between predicted and
ground truth instances is higher than some predefined thresholds.
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Fig. 12. Dependence of F1-score on IoU threshold (right) for the training
(top), validation (middle), and testing (bottom) samples for all of the models.

We have collected such statistics for different IoU thresholds
that were ranging between 0.1 and 0.9 with a step equal to 0.1. As
we can see in Fig. 12, the F1-score for all of the models is strongly
dependent on IoU threshold, reaching relatively high values
at low IoU thresholds. This could be explained by accidental
segmentation of the full clearcut on image rather than its masked
changing possibly due to the artificial increase of the mask size.

Also we observe the overfitting of UNet-CH and UNet-diff
models, which show a great performance on the training data
but have worse results on the test dataset. But despite these
facts, we conclude that UNet-CH and UNet-diff models, which
show highest Dice score F1-score values, are able to provide

a high-frequency monitoring of forest changes with relatively
high quality. The representative comparison of models output
is shown in Fig. 13 for randomly selected images. With this
comparison, we can see the relative segmentation quality of the
models in use and observe the good enough segmentation with
UNet-diff and UNet-CH, which, unlike other ones, were caught
in all logging regions.

IV. DISCUSSION

A. Limitations of the Models

Some restrictions to our models are apparently caused by
our training sample that does not fully reflect the actual out-of-
sample data. Such limitations are in spatial sampling, temporal
properties of the tracked changes, and seasonal effects.

As we mentioned in Section II, the data which were sampled
for our investigations cover only the type of forests inherent to
the forest-steppe zone; thus, the utilization of the trained models
to detect the clearcuts within other forest types could be doubtful.

The next important limitation of our models is a seasonal
one. We note the strong inconsistency between Dice scores of
the models with different seasons: The score, in average, tends to
be the lowest in spring and the highest in summer for the testing
and validation samples (see Fig. 14). Also, our data include
no images from the winter season that could result in insecure
segmentation of winter forest changes.

Another limitation of our models was spotted during observ-
ing the clearcuts predictions on the whole tiles. We noted that
models are not able to ignore some types of changes on images
(e.g., ripening crop fields, shadows of the clouds, or changes
caused by geographical misalignment of two tile frames) and
segmentation output of the models for such cases was nonempty.
Therefore, the utilization of the models trained with our dataset
should be done with sophisticated postprocessing, such as fil-
tering predictions with the maps of land cover (see, e.g., [8]),
cloud shadows detections, etc.

One more limitation of trained models is the timing of forest
changes. Our sampling of images was constructed in such a way
that a maximum time interval between a pair of images does
not exceed ∼30 d. But due to the different conditions (overcast
mostly), the pair of images of the investigated forest area could
be obtained within a larger period of time that was not presented
for our models. And thus the quality of change segmentation over
the large time intervals between images in sequence might be
inconsistent with testing results obtained in this work mostly due
to the different seasonal effects which we described in Section II.

B. Perspectives and Monitoring System Deployment

Importance of the deforestation detection problem could not
be understated. But, at the same time, the community is limited
in developing forest change monitoring systems and methods
due to the lack of enough training data. Thus, we make publicly
available the dataset with annotated deforestation regions, which
was presented in this article. In future, we plan to increase the
number of annotated forest changes within Ukrainian territory,
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Fig. 13. Predicted masks produced for several images from the testing sample. First three columns represent time-separated images of some region and
corresponding changing mask (third columns), and other columns correspond to the predictions of different models.

Fig. 14. Dice score seasonal distribution for the training (top), validation
(middle), and testing (bottom) samples for all of the change-detection models.
Each bar plot represents one season, and descriptions are available at the top
plot. Error bars represent the 95% confidence interval.

covering as forest-steppe regions, as well as mountain ones, and
improve the models used in our research.

Also, we deployed the open-source online monitoring
service.5 The app processes Sentinel-2 data with the highest
frequency once every 5 d; the platform performs segmentation of
clearcuts, converts results to the polygons, and stores the results.
Users have the opportunity to check the clearcutting regions and
track the forest changes during the specified period of time.
The image data and deforestation regions are displayed on the
OpenStreetMap,6 currently for 13 image tiles, covered part of
Ukraine.

V. CONCLUSION

In this article, we investigated deep learning approaches to
probe the possibility of detecting clearcuts on Ukraine territory
from Sentinel-2 imagery. For this purpose, we collected and
developed our own dataset that contains annotations of defor-
estation regions for several Sentinel-2 tiles.

We conducted a set of experiments to get a baseline model
according to the dataset without time dependency. To understand
how time dependency can improve the process of clearcuts
detection, we choose several models and some different tech-
niques to work with images in the time axis. The results of
these experiments provided the information that usage pairs of
images with close dates can improve the score. We have obtained
the highest Dice score and F1-score values for UNet-diff and

5[Online] Available: https://clearcut.quantumobile.com/
6[Online] Available: https://www.openstreetmap.org/

https://clearcut.quantumobile.com/
https://www.openstreetmap.org/
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UNet-CH models both based on the difference of images in pairs.
Also we found out that not all models with time dependency are
able to provide improvements. In some cases, the reason is the
small amount of data required to train the model.

Our future steps include the extension of the existing dataset
by new tiles within Ukrainian territory and developing and
testing new architectures of neural networks to improve accuracy
of clearcut detection.

The results of our research are available in the github
repository: https://github.com/QuantuMobileSoftware/forest_
change_detection.
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