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Abstract—On-board real-time anomaly detection has always
been a challenging task in hyperspectral imaging analysis as it re-
quires low computational complexity. Most of the existing anomaly
detection algorithms inevitably trade off intensive computational
complexity for high detection accuracy. This article presents a fast
spectral–spatial anomaly detection algorithm with low complexity
in hyperspectral images (HSIs) using morphological reconstruction
and a simplified guided filter (Fast-MGD). Since the simple filtering
techniques are applied, it is therefore feasible to achieve a field
programmable gate array (FPGA)-based hardware implementa-
tion. More precisely, an effective deeply pipelined acceleration
scheme is developed adopting high-level synthesis to support HSIs
that are acquired over different scenes with different sizes and
spectral bands. Experimental results show strong advantages of
the proposed FPGA-based Fast-MGD in processing speed and
resource consumption, while a high detection accuracy is remained.
Its applicability in on-board real-time processing is demonstrated
and verifie.

Index Terms—Anomaly detection, guided filtering, high-level
synthesis (HLS), hyperspectral image (HSI), morphological
reconstruction, real-time implementation.
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I. INTRODUCTION

OWING to the richness and abundance in spectral–spatial
information, hyperspectral images (HSIs) acquired by

hyperspectral imaging have been widely used in various ap-
plications including classification [1], target or anomaly detec-
tion [2], etc. Benefiting from the fact that anomaly detection
neither requires any prior information nor relies on the complex
preprocessing like atmospheric and radiometric correction, hy-
perspectral anomaly detection shows its high applicability for
real-time processing on satellites. It is expected as an effective
cutting-edge technology for military and civilian tasks, such
as precision agriculture [3] and civilian search–rescue opera-
tions [4].

Conducting real-time anomaly detection from satellites has
always been a challenging task. On-ground computing plat-
forms of high performance involving multicore processors and
GPUs generally display their inabilities of being applied on
satellites. In contrast, field programmable gate array (FPGA)
is a better alternative to be adopted in the harsh environment
of outer space for three reasons. First, FPGA can provide much
more competent levels of performance while sustaining lower
power consumption compared with GPUs [5]. Second, FPGA
offers high-level flexibility due to the inherent ability to change
functionality through partial or full reconfiguration. Third, the
increasing characteristics of ionizing-radiation tolerance make
FPGA the most extensive solution for on-board processing at
earth observation satellites. Unfortunately, the hardware imple-
mentations on FPGA for on-board anomaly detection are few so
far.

Aiming at solving problems of on-board real-time processing
of hyperspectral anomaly detection, the motivation of our work
is to develop an algorithm and hardware structure for both
high accuracy and low complexity. In this article, we propose
a fast spectral–spatial anomaly detection algorithm based on
morphological reconstruction and the simplified guided filtering
(Fast-MGD). The proposed Fast-MGD is a segmentation-based
method that can sequentially actuate operations of average fu-
sion, feature location, feature extraction, and feature clustering.
The whole process can ensure high detection accuracy while
avoiding complex matrix operations. Through studying the par-
allelism of Fast-MGD, FPGA-based hardware implementation
is, therefore, proposed. In particular, a relatively mature high-
level synthesis (HLS) [6] is especially utilized in obtaining better
portability, higher flexibility, and shorter development period
against the conventional register transfer level (RTL)-based
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design method, contributing a minor proportion to the above
method’s overall superiority.

The key contributions of this article can be recapitulated as
follows.

1) To satisfy low complexity while maintaining detection
performance, a simple but effective combination of the ad-
vantageous morphological reconstruction and self-guided
filtering is designed. Especially, self-guided filtering is
further optimized by removing redundant mean operations
on the intermediate coefficients to reduce memory require-
ments.

2) A novel and effective deep pipelined architecture is pre-
sented to accelerate our algorithm on FPGA by adopting
HLS, which can be easily reconstructed by modifying
several parameters for different scenes of various sizes
featured with different numbers of spectral bands, offering
strong feasibility for on-board real-time processing.

3) An efficient parametric configurable sharing architecture
is designed for both morphological reconstruction and
self-guided filtering.

The remainder of this article is organized as follows.
Section II conducts an overall review of related work. Section III
elaborates the principle of morphological filtering and guided
filtering as well as the difficulties of implementing these two
techniques. Section IV introduces the proposed Fast-MGD.
Section V presents the FPGA implementation of Fast-MGD.
Section VI provides experimental assessment on detection accu-
racy and processing performance of the proposed Fast-MGD and
its hardware implementation on FPGA. Section VII concludes
this article.

II. REVIEW OF RELATED WORK

Various anomaly detection algorithms have been proposed in
recent decades. The Reed–Xiaoli (RX) algorithm [7] proposed
by Reed and Yu is regarded as a milestone in hyperspectral
anomaly detection. Under the assumption that the background
follows a single Gaussian normal distribution, the RX detector
detects anomalies by calculating the Mahalanobis distance be-
tween the pixel to be tested and the background obtained through
estimating the sample mean and covariance matrix. Various
variants of RX algorithms have been investigated to realize better
detection performance [8], [9]. For instance, a concentric dual
sliding window around each image pixel is adopted to estimate
the background in the local RX (LRX) detector [10] proposed
by Molero et al. However, the RX-based algorithm does not
perform satisfactorily in complicated scenarios due to the linear
assumption of the background.

Despite a kernel RX proposed by Kwon and Nasrabadi
[11] further exploited the nonlinear characteristics of HSIs and
mapped the spectral information of the original hyperspectral
data to the high-dimensional feature space, yet the performance
of this method is not, therefore, improved noticeably, in which
the required computation of high-order Gram matrix and its
inverse matrix is far beyond affordability.

In addition, diverse methods of non-RX algorithms
in terms of representation-based, projection-based, and

segmentation-based have been proposed [12]–[16]. For in-
stance, collaborative-representation-based detector (CRD) [13]
employs the concept that each pixel in the background can be
approximately represented by its spatial neighborhoods whereas
anomalies cannot be. The collaboration of representation is re-
inforced by L2-norm minimization of the representation weight
vector, in which a Euclidean distance-weighted regularization
matrix is included to adjust the contribution of each neighboring
pixel. However, the configuration of bi-window size in the algo-
rithm is characterized with high sensitivity, posing detrimental
impacts on its detection performance and processing speed.

To compensate the inadequate consideration of the spatial cor-
relation in the above algorithms, a tensor-based method was thus
proposed in [15] to describe the spectral information and spa-
tial information equivalently. In recent decades, morphological
filtering has been widely used as a novel HSI spatial descriptor
for spatial feature extraction [16]–[18]. Based on morphological
attribute filtering and domain transform recursive filtering, Kang
et al. [16] proposed a segmentation-based detector (AED) to
integrate spatial information throughout the feature extraction
process. The area-based attribute filtering is developed to ex-
tract anomalous candidates with specific area properties, yet the
gradient reversal cannot be thoroughly avoided by the domain
transform filtering conducted in the postprocessing operation.
To tackle with the aforementioned problems, Xie et al. [18]
proposed a more efficient strategy based on structure tensor
and guided filtering (STGF), but the preprocessing operation of
structure tensor-based band selection is relatively complicated.
It is worth emphasizing that the global tree-representation-based
strategy for morphological attribute filtering in these methods is
confronted with lots of obstacles in hardware implementation.

In recent years, theories of deep neural network attack detec-
tion have drawn much attention worldwide [19]–[23]. In [20],
the adaptive weight deep belief network (DBN) with an au-
toencoder structure is used to acquire high-level features and
reconstruction errors. Xie et al. [22] proposed an autoencoder
and adversarial-learning-based semisupervised background es-
timation model, which leverages the training spectral vectors
obtained by a specific searching method to learn the background
spectral characteristics. In [23], the generative adversarial net-
work is applied and developed to estimate the background by
means of two effective constraints (a continuity representation
constraint in the latent space and a discriminator-based authen-
ticity constraint). However, these methods need to recover and
store the reconstructed image by the same size as the origi-
nal HSI, thereby imposing enormous pressure on storage. A
spectral–spatial feature extraction method [21] was proposed
by Lei et al. through performing a linear combination of joint
spectral and spatial detection results. However, the designed
DBN extracting reduced number out of spectral features cannot
perform satisfactorily in all HSIs due to the shortage in training
samples.

Obviously, most of the aforementioned anomaly detectors im-
prove their detection accuracy by raising the intensity of compu-
tation complexity; in contrast, lowering the computational cost
is indeed taken into account by certain researchers, which has
so far met with limited success. A huge amount of complicated
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computational operations regarding covariance matrix, inverse
matrix, and eigenvalue decomposition are still unavoidable,
posing negative encumbrance for real-time onboard detection.

Furthermore, on-board anomaly detection has stringent re-
quirements on size, weight, power consumption, and radiation-
hardened of the computing platform, to which FPGA stands
out as a mainstream criterion for on-board hyperspectral data
processing among the existing high-performance computation
devices. For instance, Yang et al. [5] used a streaming back-
ground statistics approach for optimizing the constrained en-
ergy minimization and RX on FPGA. In [24], a lightweight
network based on the quantization and the structured pruning
(P-Q-AD) was proposed by utilizing the potential relationship
between detection accuracy and throughput. However, most of
the cutting-edge algorithms are not sufficiently implemented on
FPGAs due to their intrinsic computational complexity and low
parallelism.

To summarize, developing hyperspectral satellite remote
sensing detection via algorithm and hardware implementation
becomes an urgent must that focus on solving the key problem
about opportune acquisition of abnormal targets.

III. BACKGROUND

A. Morphological Filtering

Morphological filtering is defined between a group of image
points called object and kernel structuring element (SE) [25],
which can be used as a powerful tool for extracting useful
image components representing region shapes. Morphological
operations are developed and further extended based on two
basic operations, erosion, and dilation.

As one of the ingenious morphological operations, morpho-
logical reconstruction requires two input images, which consist
of a marker image functioning as the starting point for transfor-
mation and a mask image constraining the transformation.

In this work, we consider rectangular flat SE b of size r × r.
Let two grayscale images f and g denote the marker image and
the mask image, respectively, to which f is pointwise less than
or equal to g. The morphological dilation reconstruction (RD)
of g from f is denoted by

RD
g (f) = D (k)

g (f) (1)

whereD(1)
g (f) = (f ⊕ b) ∧ g,D(n)

g (f) = D
(1)
g (D

(n−1)
g (f)) for

2 ≤ n ≤ k, k, n ∈ N+ satisfies D
(k)
g (f) = D

(k−1)
g (f). The

symbol ⊕ stands for the morphological dilation, and ∧ denotes
the pointwise minimum at each pixel of two images.

Similarly, if f is pointwise greater than or equal to g, the mor-
phological erosion reconstruction (RE) of g from f is expressed
as

RE
g (f) = E (k)

g (f) (2)

where E
(1)
g (f) = (f � b) ∨ g, E(n)

g (f) = E
(1)
g (E

(n−1)
g (f)) for

2 ≤ n ≤ k, k, n ∈ N+ satisfies E
(k)
g (f) = E

(k−1)
g (f). The

symbol � stands for the morphological erosion, and ∨ denotes
the pointwise maximum at each pixel of two images.

The aforementioned operations can be combined into two
more complex operations used in our work following certain se-
quences: opening and closing reconstructions, which show their
better performance in extracting spatial features. The opening
reconstruction can be conducted through a series of successive
erosions followed by a dilation reconstruction. By duality, the
result of the dilation of the input image followed by an erosion
reconstruction is called closing reconstruction.

The erosion/dilation performed first in the opening/closing
reconstruction is a window-based operation, which aims to find
minimum/maximum among the pixels belonging to the SE that is
characterized by its size and shape. A common method requires
l − 1 comparisons if the SE is a local window containing l pixels,
which results in redundancy of comparison, thereby exposing
its extremely low computational efficiency. Van Herk [27] and
Gil and Werman [28] proposed a recursive algorithm (HGW)
whose complexity is size independent of the SE. However, we
emphasize that the optimal comparison number does not always
guarantee the best overall performance, to which latency and
memory also matters significantly. The parallel architecture [29]
proposed by Mukherjee et al. for rectangular elements reduces
the processing time by simultaneously processing pixels within
adjacent windows of SEs. The xfOpenCV library of Xilinx [30]
provides dilation/erosion kernel being capable of processing SEs
with various shapes, achieving good performance in terms of
memory utilization and processing time. In our work, the data
reuse structure based on SE decomposition is further designed,
which not only reduces the number of comparisons, but also
exhibits excellent performance in terms of latency and memory
through keeping and reusing partial results generated during the
computation process.

The subsequent dilation/erosion reconstruction in the open-
ing/closing reconstruction can be essentially explained as con-
strained dilation and erosion operations. Vincent [31] proposed
four effective strategies in 1993 involving standard technique,
sequential reconstruction (SR), reconstruction using a queue of
pixels, and hybrid reconstruction. Furthermore, a single pass
reconstruction algorithm was proposed by Robinson and Whelan
[32], i.e., downhill filtering strategy. Anacona-Mosquera et al.
[33], [34] proposed effective hardware architectures based on SR
and hybrid reconstruction, respectively. In [35], the morpholog-
ical coprocessor unit is proposed for reconstruction operations
based on the standard technique by using large SE pipelines
and interconnective architecture of the pipelines. We choose
the simplest standard technique that can be directly obtained
according to the definitions of (1) and (2). However, this method
is inapplicable for hardware implementation due to uncertainty
of the iterations under idempotence [17]. Specifically, for the
certain missions in hyperspectral anomaly detection, we adopt
fixed iterations through conducting a large number of experi-
ments to avoid the above problem.

B. Guided Filtering

The guided filter [36] computes the filtering output by con-
sidering the content of a guidance image. Here, we will briefly
describe the rationale of guided filters.
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Algorithm 1: Pseudocode of the Guided Filter.
Input: p : input image O : the guidance image
Parameters: r, ε

meanp = fmean(p) (1)
meanO = fmean(O) (2)
CorrO = fmean(O. ∗O) (3)
CorrpO = fmean(p. ∗O) (4)
VarO = CorrO − meanO. ∗ meanO (5)
CovpO = CorrpO − meanp. ∗ meanO (6)
a = CovpO./(VarO + ε) (7)
b = meanp − a. ∗ meanO (8)
meana = fmean(a) (9)
meanb = fmean(b) (10)
q = meana. ∗O+ meanb (11)

Output: q

Assuming that the output image q is a linear transformation
of the guidance image O in a local window ωj centered at the
pixel j:

qi = ajOi + bj ∀i ∈ ωj (3)

where (aj , bj) are the linear coefficients and ωj is a square win-
dow of a radius r. To determine the linear coefficients (aj , bj),
we need to seek a solution that minimizes the difference between
the input image p and the output image q while maintaining the
linear model (3). Specifically, we minimize the following cost
function in the window ωj :

E(aj , bj) =
∑
i∈ωj

((ajOi + bj − pi)
2 + εa2j ) (4)

where ε is a regularization parameter penalizing large aj . (4) is
the linear ridge regression model, and its solution is given by

aj =

1
|ω|

∑
i∈ωj

Oipi − μjpj

σ2
j + ε

(5)

bj = pj − ajμj (6)

where μj and σ2
j are the mean and variance of O in ωj , and |ω|

is the number of pixels in ωj . pj =
1
|ω|

∑
i∈ωj

pi is the mean of
p in ωj .

After computing (aj , bj) for all window ωj in the image, we
compute the filtering output by

qi = aiOi + bi (7)

where ai = 1
|ω|

∑
j∈ωi

aj and bi =
1
|ω|

∑
j∈ωi

bj are the average
coefficients of all windows overlapping i. We compute the filter
output q from its definition (5)–(7) according to Algorithm 1.

In addition to the edge-preserving property without gradient
reversal artifacts, guided filtering naturally has a fast and non-
approximate linear time algorithm that can be decomposed into
a series of mean filters (fmean in Algorithm 1) with windows
radius r.

It is obvious to note that the mean filter is also a window-based
operation that is similar to the aforementioned erosion/dilation in

Fig. 1. Mean filtering processing in [26].

the previous subsection. At present, one of the widely used tech-
niques utilizes a custom mean filter derived from the approach
in [26], [37], and [38], of whose main idea lies in maintaining
a sum for each column in the image to be filtered. The detailed
process of mean filtering is shown in Fig. 1. In specific, through
subtracting its topmost old pixel and adding the bottom new
pixel, the column sum is updated first. Then, through subtracting
its leftmost column sum and adding the updated column sum,
the window, therefore, moves to the right and its sum is updated.
In our work, we further optimize the above architecture by
studying the commonness between erosion/dilation and mean
filter and design a general frame, which can be available for
erosion/dilation and mean filter simultaneously.

According to Algorithm 1, it can be observed that there is
strong data dependence in guided filtering, which limits the
improvement of processing speed. Consequently, we design a
high-throughput hardware architecture that eliminates data de-
pendence, imposes reasonable simplification and segmentation
for matrix operations.

IV. PROPOSED APPROACH

In this section, the proposed algorithm is described in detail.
As shown in Fig. 2, the proposed Fast-MGD approach consists of
four steps. First, average fusion is adopted to reduce dimension
of the HSIs. Second, morphological opening and closing recon-
struction are utilized for feature location. Third, a differential
operation is conducted to extract anomalies in the HSIs. Finally,
the final detection map is, therefore, obtained by means of the
simplified self-guided filtering for feature clustering.

A. Average Fusion

The high dimensionality of the original HSIs will undoubtedly
and inevitably incur extremely high computational complexity,
throughout which massive storage capability is, therefore, re-
quired. The map of correlation coefficients of spectral bands
in Fig. 3(a) shows that the adjacent bands are usually highly



LEI et al.: LOW-COMPLEXITY HYPERSPECTRAL ANOMALY DETECTION ALGORITHM AND ITS FPGA IMPLEMENTATION 911

Fig. 2. Schematic of the proposed Fast-MGD anomaly detection in HSI.

Fig. 3. (a) Maps of correlation coefficients of spectral bands. (b) Curve of
correlation coefficients of adjacent spectral bands.

correlated with each other and contain redundant information.
Besides, the correlation coefficient between adjacent bands can
be calculated by the following equation:

ρi,j =
Cov(gi ,gj )√
Var(gi)Var(gj )

(8)

where cov and var are the covariance and variance. gi and gj

refer to the ith and jth hyperspectral bands. i = 1, 2, . . ., R−
1. As shown in Fig. 3(b), the highest correlation coefficient is
0.99996 and the lowest is 0.89014. Therefore, it is preferable to
exploit specific methods for feature reduction.

Based on this observation, the original HSI is, therefore, first
partitioned into Q subsets of adjacent bands as follows:

C q =

{(
g
R/Q�(q−1)+1, . . . ,g
R/Q�q

)
1 ≤ q ≤ Q− 1(

g
R/Q�(q−1)+1, . . . ,gR

)
q = Q

.

(9)
In the above expression, C q (q = 1, 2, . . ., Q) indicates the qth
hyperspectral subset. g = (g1,g2,g3, . . .,gR) denotes an HSI
with R spectral bands and M ×N pixels in the spatial domain.

R/Q� represents the smallest integer greater than or equal to
R/Q.

Then, a simple and effective average fusion method [39]
is adopted to reduce spectral dimension by combining the

Fig. 4. Visualization of intermediate results on the San Diego dataset (using
ra = 3 and k = 20). (a) HSI. (b) First fused image S1. (c) and (d) are the
intermediate results of the opening reconstruction. (e) and (f) are the intermediate
results of the closing reconstruction. (g) and (h) are the result of |φ1 − S1| and
|S1 − γ1|, respectively.

complementary information of adjacent bands in each subset.
Specifically, the fused band Sq is obtained by the following
equation:

Sq =

∑Nq

i=1 C q
i

Nq
(10)

whereC q
i represents the ith band in the qth hyperspectral subset,

and Nq is the total number of spectral bands in the qth subset.
As shown in Fig. 4(b), the fused image retains the anomalies
while effectively removing noise and redundant information to
some extent.

B. Feature Location

In this stage, the opening and closing reconstruction are
applied for feature localization, in which a basic operand, a rect-
angular SE b, of size ra × ra is therefore defined. The erosion
and dilation of S by b are first calculated as the marker images
for dilation and erosion reconstruction, respectively. Let γ and
φ denote the opening and closing reconstruction, respectively.
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Fig. 5. (a) Results of the differential operation (φ1 − γ1). (b) Results of the
self-guided filtering (V1). (c) Reference map.

The operations performed at this stage can be expressed by the
following equations:

γq = RD
Sq (eq) = D

(k)
Sq (S

q � b)

= D
(1)
Sq (D

(k−1)
Sq (Sq � b))

φq = RE
Sq (dq) = E

(k)
Sq (S

q ⊕ b)

= E
(1)
Sq (E

(k−1)
Sq (Sq ⊕ b))

(11)

where q = 1, . . ., Q and SE b is also used to perform erosion
and dilation reconstruction. However, the morphological recon-
struction following its definition [see (1) and (2)] is an iterative
procedure that is performed until reaching idempotence, which
results in unpredictable time performance on hardware imple-
mentation. Fortunately, we experimentally proved that fixed iter-
ations (k) can guarantee high accuracy in Section VI. Compared
with the area-based attribute filtering applied in STGF [18] and
AED [16], the morphological opening and closing reconstruc-
tion are easier to implement.

As shown in Fig. 4(c)–(f), the intermediate results on the San
Diego dataset are visual, and the number of iterations in both
opening reconstruction and closing reconstruction is set to 20.
Taking the opening reconstruction operation as an example, the
erosion operation [see Fig. 4(c)] is first performed to remove
bright features smaller than the size of SE. However, the size of
the dark feature is increased and the background is darkened.
Subsequently, the reprocessing of the dilation reconstruction
[see Fig. 4(d)] removes the bright features while reducing its
impacts imposed on dark features and background. In other
words, opening reconstruction only removes bright features on
a constant background. Conversely, the closing reconstruction
only removes dark features within a constant background.

C. Feature Extraction

Considering that anomaly objects in HSIs usually appear
as small-area objects compared with the background [16], the
anomaly objects [see Fig. 5(a)] are extracted through the differ-
ential operation, which merges the dark [see Fig. 4(g)] and light
[see Fig. 4(h)] features from the above stage. For q = 1, . . ., Q,
the process can be expressed as the following equation:

Iq = |φq − Sq |+ |Sq − γq | = φq − γq. (12)

Algorithm 2: Pseudocode of the Self-Guided Filter.
Input: I
Parameters: rb, ε

meanI = fmean(I)(1)
CorrI = fmean(I. ∗ I) (2)
VarI = CorrI − meanI. ∗ meanI (3)
a = VarI./(VarI + ε) (4)
b = meanI − a. ∗ meanI (5)
V = a. ∗ I+ b (6)

Output: V

D. Feature Clustering

Although morphological reconstruction can effectively ex-
tract small-sized bright and dark objects in the image, it is
difficult for the reconstruction to filter out some background
interference and random noise, which may increase the false
alarm rate of anomaly detection. However, as a local linear
model that sufficiently utilizes the local spatial information of
the image, guided filtering is a better alternative in solving the
aforementioned problems.

The guided filter computes the filtering output by considering
the content of a guidance image, which can be the input image
itself or another different image. In this article, we consider the
special case in which the input image is used as the guide. The
results of self-guided filtering can be defined as follows:

Vq
i = aqjI

q
i + bqj ∀i ∈ ωq

j . (13)

The coefficients can be calculated as

aqj =

1
|ωq |

∑
i∈ωq

j
(Iqi )

2 − (μq
j)

2

(σq
j )

2
+ ε

bqj = μq
j − aqjμ

q
j

(14)

where μq
j and σq

j
2 are the mean and variance of Iq in the local

window ωq
j of size (2rb + 1)× (2rb + 1), ε is a parameter

that controls the smoothness of the filtering, and q = 1, . . ., Q.
Inspired by [40], we eliminate two redundant mean filters (steps
(9) and (10) in Algorithm 1). In order to prove the effectiveness
of this method, we conducted a lot of experiments in MATLAB
using a and b instead of their mean. Our experimental results in
Section VI showed that this modification imposes small impact
on accuracy while greatly reducing the memory consumption.
The self-guided filter applied in this article is described in Algo-
rithm 2. As shown in Fig. 5(b), it can be observed that the local
spatial strong intercorrelation amidst adjacent pixels is utilized
efficiently in feature clustering. Moreover, the background noise
is removed in contrast to Fig. 5(a).

Finally, we perform the following operation to obtain the
detection map:

O =

Q∑
q=1

ωqV
q (15)
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Fig. 6. Overall hardware structure of Fast-MGD.

where ωq = 1/Q (q = 1, . . .Q) is the set, meaning that the pro-
cessed result of each fused band contributes equally to finding
anomaly objects.

V. FPGA IMPLEMENTATION

This section discusses the detailed implementation of
our proposed algorithm. An overall hardware structure of
Fast-MGD is given in Section V-A. Section V-B describes
the microscopic hardware architecture of Fast-MGD in detail.
Section V-C explains our design optimization strategies in
FPGA implementation.

A. Overall Hardware Architecture of Fast-MGD

As shown in Fig. 6, the framework of Fast-MGD is mainly
composed of two components including an off-chip memory
(DDR3 SDRAM) for caching the HSI data and a processor core,
which can be directly used for on-board real-time processing.
The processor core that encompasses three modules is used for
the major purpose of data processing. The first module is the av-
erage fusion unit (AFU), which is in charge of reducing the spec-
tral dimensions of a given HSI. The second module is the feature
location and extraction unit (FLEU), which is designed to extract
anomalies based on morphological reconstruction. The last mod-
ule is the feature clustering unit (FCU) being applied to further
rectify the detection map through the self-guided filtering. Each
module contains Q identical processing elements (PEs) that
work in parallel. It is emphasized that only deep pipelined design
highlighted by GRAY in the figure is concerned, while the rest
of the figure only helps us to verify the function and performance
of the proposed Fast-MGD hardware implementation.

B. Microscopic Hardware Architecture of Fast-MGD

1) AFU: The Data Loader and Distributor reads HSIs from
the DDR3 SDRAM through the AXI interconnect bus and loads
pixel vectors by bands for AFU. The data width of DDR3
SDRAM is set to 512 bit, which is the maximum available

bit width of the device. Considering the case of an HSI with
a pixel width by 16 bits, each address can store 32 successive
bands of a pixel vector. The pixel derived from the Data Loader
and Distributor is first stored in FIFO performing with 512 bit
width, and then, the high-bit data are transferred to theQSpectral
Integration units, thereby reducing processing time through full
use of the bandwidth of DDR3 SDRAM.

The Spectral Integration conducts sum and average operations
along the spectral dimension during the data-width conversion
(512-bit data are split into 16-bit data). The final result is stored
in the FIFO and is delivered to the next module.

2) FLEU: As shown in Fig. 6, the opening and closing re-
construction (the erosion/dilation followed by dilation/erosion
reconstruction) first work in parallel, and then, the differential
operation is executed for feature extraction. The two stages
transmit the data stream through a memory buffer, whereby a
task-level pipeline architecture is, therefore, designed.

As can be seen from (11) in Section IV, the two basic image
processing pipelines, referred to as erosion and dilation, are the
core of the morphological reconstruction. Specifically, the two
pipelines can be configured with registers and memory buffers
to design more complex dilation/erosion reconstruction utilizing
standard techniques.

The dilation/erosion computes the maximum/minimum for
each pixel within a customizable rectangular SE. As depicted
in Fig. 8, the dilation/erosion can be further subdivided into the
row processing unit (RPU) and column processing unit (COPU).

The RPU reads the pixel in sequence from the FIFO as the
dilation is initiated. Within each cycle, the new pixel and the
pixels involved in the current shift registers of size ra − 1 are first
compared in the row diversity unit (RDU); then, the pixels in the
registers are updated via reading the new pixel and removing the
old one. We point out that the array_partition directive in HLS
is utilized to completely decompose the array into individual
elements. The comparison result is passed to COPU through the
shift register.

When the COPU starts to work, the new result pixel from
RPU is first compared with a column of pixels (ra − 1 pixels)
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Fig. 7. Sample code used for implementing morphological closing operation.

Fig. 8. Sharing architecture for dilation, erosion, and mean filter.

being read from the BRAMs of size (ra − 1)×N . The width
of the image is represented by N . Then, the pixels of the current
column in BRAM are updated via reading the new pixel and
removing the old one. The array_reshape directive we use
can reduce the consumption of BRAMs while accessing data
in parallel. It should be emphasized that a result pixel can be
obtained by 2× (ra − 1) comparisons for the optimized struc-
ture of dilation/erosion, throughout which the computational
efficiency is, therefore, improved.

With respect to its definition, the optimized dilation recon-
struction consists of k identical stages, where k is set to 20.
The i stage uses the output of the i− 1 stage as the marker
input together with the buffered mask image, in which dilation
and pointwise minimum (Min in Fig. 6) are performed at each
stage. Similarly, erosion reconstruction is, therefore, designed
with the same structure. Fig. 7 shows the sample code used to
implement morphological closing operation in HLS. The ori,
ori_1, ori_2, and ori_3 in the figure is mainly used to cache the
mask image that is used for morphological closing operation.
HLS_UNROLL directive is added to implement k instances
of erosion reconstruction.

Finally, the subtraction is performed on the results of the
opening and closing reconstruction, by which the final results
are stored in the FIFO for the FCU.

3) FCU: This section describes how to effectively imple-
ment the self-guided filter used for feature clustering in hard-
ware, of whose pseudocode is shown in Algorithm 2. As the
fundamental operation of the self-guided filter, the mean filter is
a windowed operation with radius rb, which undertakes the main
computational burden. Particularly, the sharing architecture of
erosion and dilation is also applicable for the mean filter, in
which only the RED color highlighted RDU and CDU need to

Fig. 9. Hardware structure of self-guided filter (the mean filter is represented
by mean).

be redesigned. Specifically, the RDU and CDU in mean filter
perform sum operation instead of comparison. Consequently,
the mean value is computed by multiplying the window sum
(column sum) by the value of 1/(2rb + 1)2.

As shown in Algorithm 2, the simplified self-guided filtering
in each PE only includes two mean filters, which compute the
values ofmeanI andCorrI . The remaining values described in
Algorithm 2 are computed using a set of arithmetic units, such
as fixed-point multipliers, adders, subtractors, etc. We perform
reasonable segmentation and sorting adjustments on complex
coefficient operations and propose a deep pipelined design to
make the entire module with higher throughput. As shown in
Fig. 9, the entire module is divided into eight pipeline stages.
Seven memory buffers of depth 1 are configured to resolve data
dependencies amidst operations.

C. Highlight

First, it is worth noting that different optimization strategies
concerning arrays, loops, latency, and throughput are utilized to
achieve a tradeoff between area and processing speed through
adding directives provided in HLS. For instance, the entire hard-
ware implementation employs global deep pipelining, which
takes advantage of the dataflow directive to raise the con-
currency of the RTL implementation and overall throughput.
The three units are connected by FIFO memories with a depth
of 1. The C++ template class hls :: stream <> is adopted for
mapping these data to FIFOs.

Second, we design a sharing architecture for the core units of
FCU and FLEU (erosion, dilation, and mean filter), as shown in
Fig. 8, which only requires reconfiguration of the RDU and CDU
highlighted by RED. The general pipelined architecture based
on row and column decomposition further simplifies the overall
hardware implementation, thereby achieving high throughput
performance.

Third, the type of the input data is 16-bit unsigned fixed-point
(15-bit fractional part), and the type of intermediate data needs
to be taken into account seriously due to its significant impact
on detection accuracy and resource consumption. In particular,
a large number of arithmetic units are designed in the FCU.
As listed out in Table I, the appropriate data types provided
by HLS are applied to different intermediate data by balancing
detection accuracy and resource consumption. W and I in the
table represent the word length in bits and the number of bits
above the decimal point. ap_ufixed<> refers to the unsigned
fixed point.
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TABLE I
DATA STRUCTURE FOR FAST-MGD IN FPGA IMPLEMENTATIONS

Fourth, it needs to be emphasized that the proposed FPGA-
based hardware architecture does not depend on any specific
underlying physical devices of FPGA and vendor-provided IP
cores. In addition, the framework supports HSIs with different
bands and sizes. The parameters of each unit, the number of
fused bands Q, the size of SE ra, the radius of mean filter rb,
the iteration k, and the smoothness of the guided filtering ε in
HLS can be adjusted to adapt to various complicated scenarios.
This parameter-configurable architecture improves scalability
and portability of the whole structure.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

This section is organized as follows. The hyperspectral
datasets used for different scenes in the experiments are first
introduced in Section VI-A. Section VI-B describes the param-
eter settings of the detection algorithms used for comparison and
the proposed Fast-MGD. Section VI-C evaluates the detection
accuracy of the software version using MATLAB of the pro-
posed Fast-MGD by comparing the widely used detectors men-
tioned above. The effects of morphological reconstruction on
feature localization and self-guided filter for feature clustering
in Fast-MGD are further analyzed in Section VI-D. Section VI-E
shows a comparison of the proposed hardware implementation
evaluated on a Xilinx Virtex7 FPGA with the corresponding
software version.

A. HSI Dataset

1) San Diego Dataset: The first dataset used in the exper-
iments has been widely applied for target detection, which is
captured by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor over the San Diego airport area, CA, USA.
The original image contains 100 × 100 pixels with 224 bands,
ranging from 400 to 2500 nm. Due to dense water vapor and
atmospheric influence, 189 bands are retained after removing the
noise bands (1–6, 33–35, 97, 107–113, 153–166, and 221–224).
Three aircraft are treated as the anomaly objects that need to
be detected in the image. The sample image and the reference
detection map is shown in Fig. 10(a), respectively.

2) Urban-Beach Dataset: The Urban-Beach database col-
lected by the AVIRIS Sensor was accessible on the website
(http://xudongkang.weebly.com). The visualization images and
corresponding maps are shown in Fig. 10(b)–(e), respectively.
These scenes consist of 100 × 100 [see Fig. 10(b)–(d)] or 150
× 150 [see Fig. 10(e)] pixels with different bands, in which the
noise bands have been removed. The different spatial resolutions
of these scenes are described in Table IV.

3) EI Segundo DataSet: The third dataset collected by the
AVIRIS Sensor describes an area that is composed of oil refinery,
several residential areas, parks, and a school zone in EI Segundo,
CA, USA, which includes 224 spectral channels in the range of
366–2469 nm. The picture contains 2048 anomalous pixels with
a spatial size of 250 × 300 and a ground resolution of 7.1 m.
The visualization images and corresponding maps are shown in
Fig. 10(f), respectively.

B. Comparison of Methods and Parameter Settings

The detection accuracy of different algorithms can be eval-
uated by the receiver operating characteristic (ROC) through
commonly used measurement [41]. Meanwhile, in order to fur-
ther quantify the magnitude of the detectors’ accuracy, the area
under a ROC curve is adopted, being referred to as the area under
the curve (AUC) [42]. As shown in Fig. 11, the true positive rate
(TPR) on the vertical axis is defined as the proportion of correct
positive results in all positive samples when a set of threshold (T)
for the detection map is determined. Similarly, the false positive
rate (FPR) on the horizontal axis indicates the proportion of
false positive results in all negative samples. When the values
of FPR are identical, the increase in the TPR value makes the
AUC scores of TPR and FPR approaching the unity value,
indicating that the detection accuracy is positively correlated
with the performance of the algorithm. In this article, the AUC
score of FPR and T also functions as a critical indicator to reflect
the false alarm rate of the detection algorithm. Conversely, the
AUC score of FPR and T approaching to zero implies lower
false alarm rate, with which the detection accuracy is negatively
correlated.

To verify the advantageous performance of Fast-MGD in
hyperspectral anomaly detection, various detectors are involved
concerning the AED [16], RX [7], LRX [10], and CRD [13]
for comparison. In this case, we select the optimal parameters
for the specific sample image with regard to the corresponding
AUC scores of FPR and TPR. For the LRX algorithm, the proper
size of the sliding window should be selected under scrutiny to
achieve its optimal performance. For the CRD algorithm, Li and
Du confirmed that the regularization parameter λ being set to
106 can achieve the optimal detection accuracy. For the AED
algorithm, the specific parameter settings involved in the AED
algorithm have been described by its authors in detail.

For our proposed algorithm, the parameters Q, ra, k, and rb
used in the operations of feature location and feature clustering
can be adjustably configured to adapt different scenes, thereby
achieving optimal detection results. The AUC score of TPR
and FPR is applied to evaluate the objective performance of the
proposed algorithm by systematically varying the parameter set-
tings one by one. Fig. 12 reports the effects of parameter settings
on six real datasets, respectively. Q = 2 is adopted by finding a
tradeoff between detection accuracy and resource consumption.
While such a setting cannot achieve the best performance for
individual sample images, it is designed for ensuring stable and
acceptable performance for most of the tested HSIs. The size
of SE ra is set to 3 in Fig. 10(a) and (c), to 5 in Fig. 10(b),
(d), and (e), and to 9 in Fig. 10(f). A reasonably large value of

http://xudongkang.weebly.com
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Fig. 10. (a)–(f) Color composites of HSIs and detection maps of the compared methods. The last column shows the reference detection maps, which are obtained
by human labeling.

ra may enable the detection of certain false anomalous objects.
Similarly, a relatively small ra may result in failures to detect
a large area of anomalous information, imposing detrimental
impacts on the performance of the detection accuracy. Both of
the above cases attribute to the low detection accuracy and AUC
scores. However, a default setting k = 20 is applicable for all
sample images. The influence of k can be analyzed with more
detailed descriptions in Section VI-D. rb = 1 is set for most of
the sample images. Exceptionally, rb is adjusted to 5 for the San
Diego dataset to achieve better performance [see Fig. 10(a)].

C. Detection Results

For the San Diego dataset, the AUC score of TPR and FPR
is listed in Table II. The AUC score is 0.98432, which is much
higher than RX (0.94094), CRD (0.96263), and LRX (0.91430).
Compared with the AED method in which the AUC score of TPR
and FPR is ranked the first, the detection map of the Fast-MGD
method contains less background information in Fig. 10(a).

For Urban-Beach datasets, the proposed method in Table II
shows the best AUC scores of TPR and FPR in all scenes.
Compared with the RX, LRX, CRD, and AED, the detection
results obtained by Fast-MGD achieve better visual inspection,

as shown in Fig. 10(b)–(e). Most of the anomalies in urban
scenes [see Fig. 10(b)–(d)] are unable to be detected by the
LRX and CRD methods, and the lousy AUC scores of TPR and
FPR also support this observation. Nevertheless, these two meth-
ods display inadequate performance throughout with respect to
computing time, not to mention the inconvenience induced in
optimal settings of the inner and outer window. As shown in
Fig. 11(e), LRX performs well on the ROC curve of this dataset,
yet it is worth noting that this method cannot have satisfying
detection results on all HSIs. The RX method is merely suitable
for sample images with simple background distribution and for
large area anomalies, which is unsuitable for complex HSIs, as
shown in Fig. 10(c).

For the EI Segundo dataset, the detection maps are shown in
Fig. 10(f). By visualizing the final detection maps, we notice
that the proposed Fast-MGD shows excellent performance on
anomaly detection compared to other methods, whereby most
of the anomalies in the sample image can be clearly observed.
The AUC score of TPR and FPR shown in Table II further
demonstrates the superiority our approach. Although the AUC
score of TPR and FPR of RX is considerable, it does not perform
well on visual effects. In addition, we also compare the ROC
curves of different methods on the EI Segundo dataset. As
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Fig. 11. ROC curves of the compared methods.

Fig. 12. Parameter sensitivity analysis for parameter ra, rb, and Q.

TABLE II
EVALUATION AUC SCORES OF (TPR AND FPR) OBTAINED BY THE FAST-MGD

(MATLAB), FAST-MGD (FPGA), RX, AED, CRD, AND LRX

TABLE III
EVALUATION AUC SCORES OF FPR AND T OBTAINED BY THE

FAST-MGD (MATLAB), FAST-MGD (FPGA), AND AED

shown in Fig. 11(f), the proposed method exhibits higher TPRs
regardless of the FPR fluctuating between 0 and 1.

The AED method comes the second out of the proposed
methods in terms of the average AUC scores of TPR and FPR.
As shown in Fig. 11(a), (c), and (d), the ROC curves of AED
are close to that of the Fast-MGD in these three scenarios. In
order to further compare the performance of AED with that of
Fast-MGD, AUC scores of FPR and T are shown in Table III.
It can be noticed that our algorithm has a lower false alarm
rate while remaining higher detection accuracy. Furthermore, we
emphasize that the proposed Fast-MGD is a hardware-friendly
algorithm featured with lower complexity.

D. Component Analysis

The opening/closing reconstruction performed in feature lo-
calization can effectively describe the spatial information of
HSIs, which requires repeated combining of dilation/erosion and
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Fig. 13. Effect of the number of iterations on each dataset.

pointwise minimum/maximum operations until idempotency is
reached. However, a great many of uncontrollable iterations
sometimes may reach hundreds of times, of whose intricacies
not only require a lot of time to tackle with, but also bring unbe-
lievably high computational costs in hardware implementations.

As shown in Fig. 13, we analyze the impact of the number
of iterations imposed on the AUC scores of TPR and FPR on
each dataset while keeping other parameters remain optimal.
It is surprising that the continuous increase in the number of
iterations did not induce correlated rise in the curve of AUC;
instead, it continued to rise first and then tended to stabilize. For
example, the AUC score obtained through the proposed Fast-
MGD is 0.99776 in Fig. 10(e) when the number of iterations
increases to 20. Subsequently, the continuous increase in the
iterations does not bring any evident improvements in the AUC
scores, upon which the number of iterations can be set to a
fixed value for all images without considering idempotency. This
operation can significantly reduce the computational costs and
memory consumption at the expense of a merely small loss in
detection accuracy. However, we can observe that the AUC score
of a dataset [see Fig. 10(a)] is the highest (0.98762) when the
iterations is 5. It is worth noting that too small iterations will
lead to a high false alarm rate. For example, when k = 5, the
AUC score of FPR and T is as high as 0.0410 for a dataset. A
large number of experiments have found that a default setting
k = 20 can enable most tested HSIs to perform well in false
alarm rate and detection accuracy.

We also analyze the influence of the simplified self-guided
filtering over additional experiments on each dataset. As shown
in Fig. 14, we calculated the AUC scores of TPR and FPR on
Fast-MGD with simplified self-guided filtering, with self-guided
filtering, and without self-guided filtering, respectively. The
third column clearly shows that self-guided filtering significantly
improves the detection accuracy. Moreover, the beneficial ad-
vantages of using the spatial correlation amidst adjacent pixels
of HSIs for anomaly detection are, therefore, validated. By
observing the first and second columns of the histogram, it can
be concluded that the negative impact of the mean of a and b
on detection performance can be almost ignored compared with
the reduction of memory consumption.

Fig. 14. AUC scores of FPR and TPR on Fast-MGD with simplified self-
guided filtering, with self-guided filtering, and without the self-guided filtering.

E. FPGA Implementation

1) Comparison of Detection Accuracy Performance: It
should be pointed out that the parameter settings in the FPGA
implementation of Fast-MGD are identical with that in the soft-
ware. As shown in Fig. 10, the proposed FPGA implementation
shares almost the same visual effects with the software version.
In Fig. 11, the ROC curves of hardware implementation are
depicted. It is noticeable that the ROC curves of all scenes are
very close to that of the software, which is attributed to the
reasonably sound setting of intermediate data types in the FCU.
Hence, the proposed deep pipelined hardware architecture is
proven to be far more than satisfactory.

2) Performance Evaluation: A Virtex7 XC7VX690 T FPGA
used to evaluate the proposed Fast-MGD hardware architecture
contains 433 200 LUTs, 174 200 LUTRAMs, 866 400 FFs, 1470
Block RAMs, and 3600 DSPs. Table IV shows the resource
utilization corresponding to Fast-MGD for diverse images with
different sizes and resolutions using Vivado 2018.3. Optimal
configurable parameters are set for different HSIs to ensure
excellent detection accuracy.

As illustrated in Table IV, a constant number of DSPs are
mainly used to implement the multiplication of Stage 2, Stage
3, and Stage 6 in FCU. Most FIFOs of depth 1 are inferred
as LUTs and FFs. The consumption of BRAMs is mainly due
to COPU in the sharing architecture. The number of LUTs,
LUTRAMs, FFs, and BRAMs is related to the image size and
the setting of configurable parameters. Also, Table V lists out the
resource summary of dilation using Vivado HLS for fixed image
size (100 ×100) and varied ra to further quantitatively evaluate
the designed sharing architecture. The estimation of the fastest
achievable clock frequency is 3.310 ns. The number of LUTs,
FFs, and BRAMs increases linearly with ra. In summary, our
cost-effective hardware designing philosophy using HLS aims at
supporting HSIs with different sizes and spectral bands through
adjustment of several configurable parameters, including Q, k,
ra, and rb.

Three different platforms, including C++ using OpenMP,
MATLAB, and FPGA for the above six datasets, are adopted in
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TABLE IV
SUMMARY OF RESOURCE UTILIZATION FOR THE FPGA-BASED IMPLEMENTATION IN HSIS WITH DIFFERENT SPATIAL RESOLUTIONS AND SPECTRAL BANDS

TABLE V
MEASURED PERFORMANCE OF DILATION USING 100 × 100 IMAGES

TABLE VI
PROCESSING TIME MEASURED FOR FAST-MGD METHODS IN MATLAB, C++,

AND FPGA IMPLEMENTATIONS

our experiments. The code of software version using MATLAB
R2017b and Visual studio 2017 is executed on the Window 10
operation system equipped with the Intel Core (TM) quad CPU
@2.50 GHz and 8-GB main memory. The hardware architec-
ture is implemented by using Vivado HLS 2018.3. The clock
frequency of the Virtex7 FPGA is set at 200 MHz. As shown in
Table VI, the processing time of FPGA-based implementation
achieved a speedup of more than 161 times higher than that of
the MATLAB and more than 72 times higher than that of C++.

It must be emphasized that the processing time achieved by the
FPGA implementation of Fast-MGD is strictly in real time for all
the above scenarios. In specific, the scanning time of cross-track
line in AVIRIS being referred to as a push-broom instrument
is quite fast (8.3 ms to collect 512 full-pixel vectors) [43],
indicating that the processing time of the scene must be limited
within 0.16 s (in Fig. 10(e) and (f), the values are the exceptional
0.36 and 1.216) to achieve real-time performance thoroughly.
From Table VI, it can be observed that the processing times are
lower than 8 ms, including the load time and the data transfer
time from the CPU to FPGA device.

In summary, the proposed hardware implementation char-
acterized by low resource utilization and real-time process-
ing speed displays its great advantages in on-board anomaly
detection.

VII. CONCLUSION

Most of the existing hyperspectral anomaly detection methods
have so far met with limited success due to high computational
complexity, to which their inability in on-board implementation
is, therefore, proven. In this article, a low-complexity anomaly
detection algorithm and its corresponding cost-effective hard-
ware architecture on FPGA are proposed. Experimental results
on several real HSIs further verified the superiority of the
Fast-MGD and its implementation with respect to computa-
tional complexity, processing speed, detection accuracy, as well
as resource consumption, thereby validating its suitability for
on-board application.

Despite the aforementioned advantages of our method, certain
shortcomings should be pointed out concerning related parame-
ter settings, which may impose encumbrance on its application.
Our future research interests will focus on the adaptive parameter
determination techniques, paving way for the improvement in
the generality and robustness of our model.
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