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Abstract—The traditional superresolution methods based on
image patches often ignore the consistency between the overlapped
patches, causing block effects in produced images. The convolu-
tional sparse coding based superresolution method uses the transla-
tion invariance of the convolution filter to directly encode the entire
image, maintaining consistency and good performance. In this ar-
ticle, we propose a novel approach to single-image superresolution
reconstruction based on hybrid nonlocal similarity constrained
convolution sparse coding. We first decompose the input image into
a smooth part and a texture part. The Bayesian nonparametric
model can use more prior information of the original image, so
we replace the previous bicubic interpolation with this method to
better reconstruct the residual high-frequency information in the
smooth part. When reconstructing the texture part, this article
proposes a nonlocal similarity constrained convolutional sparse
coding method, which transforms the reconstruction of the tex-
ture part to minimize the convolution sparse coding noise of the
feature maps and classifies the image patches in the search space
by using the correlation coefficients as the structural information,
avoiding unnecessary weight calculation. Several methods were
tested on satellite images extensively. Both visual inspection and
quantitative analysis results demonstrate that our method outper-
forms other state-of-the-art methods and increases noise immunity
effectively.

Index Terms—Bayesian nonparametric model, convolution
sparse coding, correlation coefficient, nonlocal (NL) similarity
structure, superresolution (SR) reconstruction.

NOMENCLATURE

Y Input LR images for testing.
Y ∗ Final reconstructed HR image.
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Yl, Yh Smooth/texture part of Y .
f l
i , fh

i LR/HR filters.
W Mapping function of feature maps.
fs Low-pass filter.
fh, fv Horizontal and vertical gradient opera-

tors.
D(l) D(h) LR/HR dictionary.
x(l) x(h) LR/HR sample images.
K Dictionary size.
sik Sparse-valued weights.
zik Binary-valued.
A Sparse coefficient.
πk Probability of using dictionary element.
γs Precision of the sparse weights.
γε Observation noise.
Zl, Zh Smooth/texture feature map.
Z̄h Real feature map.
Z̃h Reasonable estimation for real feature

map.
vz = Zh − Z̄h Sparse coding noise.
Z(h)∗ Optimal feature map.
Ẑh
i Initial HR feature map.

Ωi Index position information set.
εi Observation noise.
Sτ (·) Soft threshold operation.
x̃i(−k) Reconstruction error.
λi γ λl Regularization parameters.
c0, d0, e0, f0, τ0, η0 Hyperparameters.
h, c η. Q Ui d Auxiliary parameter.

I. INTRODUCTION

TO OVERCOME the limitations of the remote sensors and
optics manufacturing technology, superresolution (SR) im-

age reconstruction has proven to be very promising in obtain-
ing high-resolution (HR) image from the observed multiple
low-resolution (LR) images [1], [2]. The SR image recon-
struction process is a morbid inversion process, which usually
incorporates prior knowledge or uses a regularization method
to constrain its solution space to solve the ill-posed problem.
Single-image SR (SISR) aims to obtain an HR output from one
of its LR versions, which attempts to improve the resolution
by the prior information of one image. Due to the influence of
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atmospheric refraction, motion blur, random noise, and insuffi-
cient sampling of optical sensors, the quality of satellite images
obtained is relatively poor compared with natural images, and
the restoration of high-frequency details of satellite images is
more difficult than that of natural images. Therefore, the SR
problem of single satellite imagery has become a hot research
topic in the field of remote sensing image data processing [3].

Several studies suggested that most advanced SR reconstruc-
tion methods nowadays consider an example-based reconstruc-
tion strategy [4]–[12]. Among them, the sparse coding-based
methods are more popular, which uses image training sets to
build the relationship between the LR and HR patch pairs
[13], [14]. Image SR via sparse representation (SCSR) method
proposed in [15] was such a pioneering algorithm. An online
dictionary learning algorithm was proposed in [16] to improve
the efficiency of dictionary learning, which greatly reduced the
computational complexity by processing samples in batches. A
novel global joint dictionary model (GJDM) was proposed in
[17] to explore the local and global characteristics of images,
which effectively improved image reconstruction results. In the
above-mentioned reconstruction methods, the dictionary size is
an unknown parameter and needs to be set artificially in advance.
The Bayesian nonparametric method was used in [18] for SR
image reconstruction, which approximated the posterior distri-
bution of the model parameters based on Markov chain Monte
Carlo or variable inference, and derived a complete dictionary
and sparse coefficient through probability statistics.

The patch-based image reconstruction methods mentioned
above obtain the final reconstruction result by averaging the
overlapping portions of adjacent image patches. Since the pixels
in overlapping areas are often inconsistent, a simple averaging
strategy will destroy the spatial structure of the image. To use
the consistency prior, an SR reconstruction scheme based on
convolutional sparse coding (CSC-SR) was proposed in [19],
which takes the entire image as an input and uses convolution
filters and feature maps to estimate the target image. Nonlin-
ear convolution operations were used as the mapping function
between LR and HR features in a semicoupled convolutional
sparse learning method (SCCSL) [20], which reduce the cou-
pling between LR and HR representations. Using the adaptive
CSC and convolutional neural network (CNN) to reconstruct the
texture part and the smooth part of the input image, respectively,
a hybrid adaptive convolutional sparse coding-based SR method
was proposed [21]. However, the prior information of the image
itself is not introduced into the CSC framework in these methods
to further improve the reconstruction effect, and the obtained
reconstruction effect is suboptimal.

The above-mentioned SR methods mainly realize the im-
provement of the spatial resolution of natural images. Compared
with natural images, satellite images have the characteristics of
wide-range imaging and complex features of ground features.
CSC is a global sparse coding method [22], [23]. It directly uses
the global correlation of the whole image to reconstruct the local
structure of the image robustly, which can ensure the integrity
of the feature structure. Currently, a suitable CSC-SR model for
satellite images has not been proposed. Satellite images have
more NL similar structures as compared with natural images. In
this article, we make full use of this favorable prior information

to constrain the NL similarity of all feature maps and propose
an improved CSC-SR model suitable for satellite imagery.

There are many NL redundant structures on the natural or
satellite images, and this critical prior information plays an
important role in image restoration [24]–[26]. Some studies
prove that combining local sparsity and NL redundant structures
can provide more accurate reconstruction models, for example,
the concept of sparse coding noise (SCN) presented in [27] and
[28]. Due to image damage, blurring, or incompleteness, the
sparse coding coefficients used for reconstruction are not the
same as the actual sparse coding coefficients. Image patches
are nonlocally correlated, and there is a certain correlation
between sparse coding coefficients, so using the NL similarity
of the image can reduce SCN, thereby improving the quality
of the estimated image. Inspired by this, we propose a hybrid
NL similarity convolution sparse coding SR (HNLSCSC-SR)
method.

The CSC-SR method divides the LR image into a smooth
part and a texture part and uses bicubic interpolation and CSC
to reconstruct them, respectively. The residual high-frequency
information in the smooth part can hardly recover well by the
bicubic interpolation and the feature learning of the texture part
also lacks local details, resulting in the estimated HR images
that are not satisfactory in terms of edges and details. The
proposed HNLSCSC-SR method combines the advantages of
the Bayesian nonparametric method and the CSC method. On
the one hand, the Bayesian nonparametric method uses the
external training set composed of the smooth part of a large
number of sample images to accurately train a dictionary that
fully reflects the structural characteristics of the smooth part of
the satellite image, which can better restore the high-frequency
information remaining in the smooth image. On the other hand,
the CSC method convolves the entire texture image, which can
overcome the blocking phenomenon and maintain the spatial
structure of the image. Besides, NL self-similarity prior con-
straints are imposed on all feature maps of the texture part, and
the final texture feature maps obtained by solving the constraint
model through iterative optimization are closer to the real value,
thereby better reconstructing the high-frequency information of
the texture part. The NLM algorithm has been approved very
effective in sharpening edges and preserving image details [25],
[26]. These methods are complementary to each other, making
the proposed method highly effective in preserving the edges
and details of the image while reducing unexpected noises and
artifacts.

Three main contributions of this study can be summarized as
follows.

First, this article innovatively introduces the prior information
of the NL similarity of the satellite image itself in the CSC
framework and proposes an HNLSCSC-SR model suitable for
single satellite imagery, which can integrate the advantages of
the Bayesian nonparametric method and the CSC method to a
certain extent.

Second, the Bayesian nonparametric method is used to better
explore the residual high-frequency information of the smooth
part by taking advantage of more prior information of the origi-
nal image than the use of the bicubic interpolation. The texture
reconstruction is transformed by considering the convolutional



CHEN et al.: SINGLE SATELLITE IMAGERY SUPERRESOLUTION BASED ON HYBRID NONLOCAL 7491

Fig. 1. Reconstruction process of the proposed HNLSCSC-SR method.

sparse coding noise (CSCN) model of the feature maps as an
embedded constraint, which minimizes the CSCN.

Third, in the texture reconstruction stage, the correlation
coefficients are used as structural information to preselect the
most relevant subset of image patches in the search space,
which avoids unnecessary weight calculation and reduces the
computational burden of the NL mean algorithms.

The rest of this article is organized as follows. Section II
describes our proposed method. Section III describes the ex-
perimental setup and presents experimental results. Section IV
discusses the results and Section V concludes this article.

II. METHOD

Fig. 1 shows the flowchart of our proposed HNLSCSC-SR
method. The LR input image is divided into a smooth part and
a texture part. The high-frequency information contained in the
smooth part is not obvious and difficult to extract. We use the
Bayesian nonparametric method to train and derive the posterior
distribution of the model parameters and then reconstruct the
smooth part HR image. Besides, we decompose the texture part
into the summation of convolutions of the sparse LR feature
maps and the corresponding learned LR filters and use the
mapping function to project the sparse LR feature maps into
the sparse HR feature maps. Then, we make the sparse HR
feature maps closer to the real values by using NL similarity
constraints. Next, the texture part HR image is reconstructed by
the summation of convolutions of the learned HR filters and the
optimized sparse HR feature maps. Finally, the smooth part HR
image and the texture part HR image are added to obtain the
reconstructed HR image.

A. Decomposition of Input LR Image Y

To obtain feature maps with sparser edge textures and details,
our method first divides the input LR images Y into a smooth

part Yl and a texture part Yh. Similar to [19], we use a filtering
method to extract the smooth feature map Zl by solving the
following optimization problem:

Zl = min
zl

‖Y − fs ⊗ Zl‖2F + γ
∥∥fh ⊗ Zl

∥∥2
F
+ γ ‖fv ⊗ Zl‖2F

(1)
wherefs is a 3× 3 low-pass filter and its all entries are 1/9,
and fh = [−1, 1] and fv = [−1, 1]� are the horizontal and
vertical gradient operators. From the smooth feature map Zl, we
can calculate the smooth components Yl and the corresponding
texture components Yh of the original image Y by the following
equation:

Yl = fs ⊗ Zl, Yh = Y − Yl. (2)

B. SR for Smooth Components Yl Based on Bayesian Model

The Bayesian nonparametric model transforms the ill-posed
problem into a well-posed problem by introducing prior knowl-
edge. This method can make full use of the potential spatial
structure information and more prior knowledge of the image
itself to derive the model parameters. The posterior distribution
of the model parameters can be adaptively learned directly from
the sample dataset, which is more flexible and expandable and
can adapt to various uncertain problems [29]–[31]. This method
can well recover the residual high-frequency information of Yl.

The HR dictionaryD(h) with the dictionary elements d(h)k and

LR dictionaryD(l) with the dictionary elements d(l)k are learned

from a set of training samples composed of HR imagesx(h)
i and

the corresponding LR images x(l)
i . P (h) and P (l) represent the

dictionary dimensions corresponding to HR and LR dictionaries.
IP represents a P × P identity matrix. A hierarchical model
based on the Beta-Bernoulli process for dictionary learning
was proposed in [29]. The probability distribution model of all
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hidden variables used in dictionary learning is as follows:

x
(l)
i = D(l)(si � zi) + ε

(l)
i x

(h)
i = D(h)(si � zi) + ε

(h)
i

d
(l)
k ∼ N(0, P (l)−1

IP (l)) d
(h)
k ∼ N(0, P (h)−1

IP (h))

s
(l)
ik ∼ N(0, 1/γs(l)) s

(h)
ik ∼ N(0, 1/γs(h))

zik ∼
K∏

k=1

Bernoulli (πk) πk ∼ Beta(τ0η0, τ0(1− η0))

γs ∼ Gamma(e0, f0) γε ∼ Gamma(c0, d0)

ε
(l)
i ∼ N(0, γε

−1Ip(l)) ε
(h)
i ∼ N(0, γε

−1Ip(h)) (3)

where � denotes the elementwise product, K is the dictionary
size, sik are the sparse valued weights, and zik are the binary-
valued to record whether the dictionary element is activated. πk

denotes the probability of using element dk, γs and γεrepresent
the precision of the sparse weights and observation noise, c0,
d0, e0, f0, τ0, and η0 denote the hyperparameters, and εi is the
observation noise.

At the stage of dictionary training, the posterior distribution of
the coupling dictionary {D(h), D(l)} and hidden variables π, z,
s, γs, and γε can be calculated by the Gibbs sampling method. In
the reconstruction stage, these posterior distributions obtained
are used as the prior information for SR reconstruction. Specifi-
cally, the smooth component Yl obtained in Section II-A is taken
as the observation, and the obtained posterior distributions of the
parameters π, γs, and γε in the dictionary training stage are used
as the initial iteration values of the Gibbs sampling process in the
reconstruction stage. The dictionary obtained in the dictionary
training stage does not change and only uses the formulas (6)
and (7) in the Gibbs sampling formula to resample the sparse
weight components zik and sik associated with Yl. Finally, the
HR image corresponding to Yl can be reconstructed by

E
[
Y

(h)
j |Y (l)

j ,
{
x
(h)
i , x

(l)
i

}]
≈ D̂(h)

(
s
(h)
jk � z

(h)
jk

)
= D̂(h)A

(h)
jk

(4)
where D̂(h) is the mean of the posterior distribution of the HR
dictionaries, and A(h) = s(h) � z(h) is the sparse coefficient
obtained in the reconstruction phase.

The prior distribution of all hidden variables belongs to the
conjugate exponential family. We use the Gibbs sampling ap-
proach for posterior reasoning. It is necessary to establish a
Markov chain to simulate the sampling of unknown variables.
By running it long enough to make the sampling distribution
reach a steady state, the stationary distribution is the required
posterior distribution. The corresponding sampling formula is
as follows [32]–[35]:

Sample dk: from N(μ̃k,
∑̃

k), where

∑̃
k
=

(
2P I2P + γε

N∑
i=1

(sikzik)
2

)−1

μ̃k=γε
∑̃

k

N∑
i=1

sikx̃i(−k))

(5)
Sample zik: from Bern(

ςπk0

1−πk0
+ςπk0

), where

ς = exp
(−γε

(
s2ikd

T
k dk − 2sikd

T
k x̃i( −k)

)
/2
)

(6)

Sample sik: from N(μik,
∑̂

ik) , where∑̂
ik

=
(
γs + γεd

T
k dk

)−1
, μik = γε

∑̂
ik
d

T

k x̃i(−k) (7)

Sample πk: from Beta(a, b) , where

a = τ0η0 +

N∑
i=1

zik, b = N −
N∑
i=1

zik + τ0 (1− η0) (8)

Sample γε: from Gamma(c, d), where

c = c0 +NP, d = d0 +
1

2

N∑
i=1

‖xi −Di (si � zi)‖22 (9)

Sample γs: from Gamma(e, f), where

e = e0 +NK/2, f = f0 +
1

2

N∑
i=1

‖si‖22 (10)

where x̃i(−k) = xi −Di(si � zi) + dk(sik � zik) is the recon-
struction error using all except the kth dictionary element.

C. SR for Texture Components Yl Based on NL Similarity
Constrained Convolutional Sparse Coding (NLSCSC) Method

In this section, we propose an NLSCSC-SR method to recon-
struct the texture part. The convolution filters have translation
invariant, and for the same features of different positions in the
image, the convolution filter can accurately represent them.

1) Obtaining HR and LR Filters and Mapping Functions Be-
tween Feature Maps: Given a set of training samples composed
of HR images x(h)

i and the corresponding LR images x(l)
i . The

LR filters {f l
i}ni=1 can be obtained by optimizing the following

problem:

min
{fi}ni=1

∥∥∥∥∥X(l) −
n∑

i=1

f l
i ⊗ Zl

i

∥∥∥∥∥
2

F

,

s.t.
∥∥f l

i

∥∥2
F
� en, i = 1, 2, . . . , n (11)

where en is a scalar to constraint the energy of the LR filter.
To save computer memory, the stochastic alternating direction

method of multipliers algorithm (SA-ADMM) in [36] was used
to solve it. We introduce the augmented variable s = f l and the

Lagrange variable d. Let Zl = [(Zl
1)

T
, (Zl

2)
T
, . . . ,(Zl

n)
T
] and

Q is the upper bound of the eigenvalue of (Zl)TZl, then the
iterative solutions of LR filters in (11) are(
f l
)(t+1)

=

(
Q

n

n∑
i=1

(
f l
)(t) − ρ

(
d(t) − s(t)

)
− 1

n

n∑
i=1

(
Zl
i

)T (
Zl
i

(
f l
)(t) −X(l)

)))/
(ρ+Q)

s(t+1) = argmin
s

ρ

2

∥∥∥(f l
)(t+1)

+ d(t) − s(t)
∥∥∥2
F

d(t+1) = d(t) +
(
f l
)(t+1) − s(t+1). (12)

With the obtained LR filters {f l
i}ni=1 from (11), we will learn

the LR feature maps {Zl
i}ni=1 by the following optimization:

min
{zi}ni=1,x

∥∥∥∥∥X(l) −
n∑

i=1

f l
i ⊗ Zl

i

∥∥∥∥∥
2

F

+ λl
n∑

i=1

∥∥Zl
i

∥∥
1
,

s.t.
∥∥f l

i

∥∥2
F
� 1 (13)
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we solve (13) by using ADMM [37]. Introducing the auxiliary
variableMi = Zl

i and the dual variableUi, the iterative solutions
of LR feature maps in (13) are

(
Zl
i

)(k+1)
= argmin

zl

⎛⎝∥∥∥∥∥X(l) −
n∑

i=1

f l
i ⊗ Zl

i

∥∥∥∥∥
2

F

+
ρ

2

∥∥∥Zl
i −M

(k)
i + U

(k)
i

∥∥∥2
F

⎞⎠
M

(k+1)
i = argmin

Mi

(
λl

n∑
i=1

‖Mi‖1

+
ρ

2

∥∥∥(Zl
i

)(k+1) −Mi + U
(k)
i

∥∥∥ 2
F

)

U
(k+1)
i = U

(k)
i +

(
Zl
i

)(k+1) −M
(k+1)
i . (14)

Assume that there is a mapping function W that can scale the
LR feature maps to the HR feature maps in terms of space size
and the number of feature maps, that is [19]

Zh
j (kx, ky) = g

(
Zl
: (x, y);wj

)
= w�

j Z
l
: (x, y), s.t.

wj � 0, |wj |1 = 1 (15)

where Zl
: (x, y) is a vector composed of all the coefficients of N

LR feature maps in point (x, y), andwj is a transformation vector
for the HR feature map Zh

j . The joint optimization training
model of HR filters {fh

i }ni=1 and the mapping function W is
constructed as follows:

min
{wj}ni=1,{fh

j }n

j=1

K∑
k=1

∥∥∥∥∥∥X(h) −
n∑

j=1

fh
j ⊗ g

(
U l
k,:;wj

)∥∥∥∥∥∥
2

F

s.t.
∥∥fh

j

∥∥2
F
� en

wj � 0, |wj |1 = 1, j = 1, 2, . . . ,m (16)

where en is a scalar to constraint the energy of the HR filters. The
HR filters and the mapping function W are alternately solved
by SA-ADMM.

2) NLSCSC-SR Method Constrained With SCN: Using the
learned LR filter {f l

i}ni=1, HR filter {fh
i }ni=1, and the mapping

function W , We take the texture part Yh obtained in Section
II-A as the observations to perform NLSCSC-SR reconstruction.
First, the LR filters {f l

i}ni=1 are used to perform convolution
decomposition Yh to obtain the LR feature maps {Zl

i}ni=1, and
then the mapping function W is used to project the LR feature
maps {Zl

i}ni=1 into the HR feature maps {Zh
i }ni=1.

Due to the influence of blur and noise in the process of
original image acquisition, there is a deviation between Zh

obtained and the real feature map Z̄h. Some studies prove that
the SCN can achieve good SR reconstruction results [27], [28].
Inspired by this, we introduce the SCN based on feature maps
in the CSC model. Its basic form is vz = Zh − Z̄h. Since Z̄h is
unknown, we use the NL similarity prior of the image to make

a reasonable estimation Z̃h for Z̄h. We take vz ≈ Zh − Z̃h as
the regularization constraint and iteratively solve (17) to make
the SCN get the minimum value, to obtain the optimal feature
map Z(h)∗ closest to the true value Z̄h. Due to the sparsity of
vz ≈ Zh − Z̃h, the SR frame can be simplified as follows:

Zh=argmin
zh
i

⎧⎨⎩
∥∥∥∥∥y−DB

n∑
i=1

fh
i
⊗ zh

i

∥∥∥∥∥
2

F

+

n∑
i=1

λi

∥∥zh
i
− z̃h

i

∥∥
1

⎫⎬⎭
(17)

where D is a downsampling operator, B is a blurring operator,
and λi denotes the regularization parameter.

First, the initial HR feature map {Ẑh
i }ni=1 is obtained by pro-

jecting the LR feature map {Zl
i}ni=1 directly using the projection

function W . We use a convolution operation to obtain a less
accurate initial reconstructed image Ŷh of the texture part Yh.
Divide Ŷh into nonoverlapping image patch sets Y ′ = {yi}bi=1

with patch size a× a, where b is the number of image patches.
Previous NL means algorithms used Euclidean distance to mea-
sure the self-similarity between image patches [27], [28]. The
calculation of Euclidian distance is just a time-consuming pro-
cess and the additional information contained in image patches
with a similar structure cannot be expressed by this distance.
When two image patches have a linear relationship, they have
also been proved to be similar [38]. We preselect the most
relevant patch subset in the search space to remove irrelevant
patches and speedup the weight calculation process in NL means
algorithms.

We use the correlation coefficient between any two image
patches as structural information to classify the search space,
extract the image patches with the most relevant structural
information, only calculate the Euclidean distance between
these related image patches, arrange these Euclidean distances
in descending order, and select the first L image patches for
weighted calculation. Assuming that x1 and x2are the vectors
corresponding to two image patches, the expression of the
correlation coefficient between them is

ρ (x1, x2) = cov (x1, x2) /σx1
σx2

(18)

where σx1
and σx2

represent the standard devia-
tions of x1 andx2, respectively, and cov(x1, x2) =
E((x1 − μx1

)(x2 − μx2
))represents the covariance between

two image patches. We calculate the correlation coefficient
between each image patches yi(i = 1, 2, . . . , b) and other image
patches Y ′ = {yi}bi=1. By setting the threshold conditions of
structural information, the classification calculation of the
necessary weights can be performed well

Sw(yi, yj) =

{
exp

(
−‖yi − yj‖22 /h

)
ρ ≥ η

0 otherwise
(19)

where η is a predefined value. Then, we take the image patches
with the largest L Euclidean distance in the most relevant patch
subset as the most similar image patches to the given image
patch and record the index position information of the L image
patches to form a set Ωi.
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Second, in the convolution operation, the convolution filter
extracts the global features of the entire image. The feature
map corresponding to each filter should have the same structure
information corresponding to the global features. Based on this
characteristic, we perform the same NL means algorithms on
the initial value of each HR feature map {Ẑh

i }ni=1. Each HR
feature map is divided into nonoverlapping image patch sets
ẑ
(t)
i = {ẑ(t)ij = Rj ẑ

(t)
i }bj=1 with patches size a× a, where Rj

is the patch extraction matrix for the patch j. We can notice that
the image patches in the same location of each feature map have
the same similar patch index location information. According to
the index position information set Ωi of image similar patches
of global features obtained in the previous step, the approximate
value Z̃h

i of each HR feature map added with NL similar
information is calculated by using NL means algorithm [39],
that is

z̃
(t+1)
i =

b∑
j=1

RT
j

∑
p∈Ωj

Swij,p
ẑ
(t)
ip

Swij,p
=

1

SWij

exp

(
−
∥∥∥ẑ(t)ij − ẑ

(t)
ip

∥∥∥2
2
/h

)
, SWij

=
∑
p∈Ωj

Swij,p

(20)

where t is the number of iterations and h is a scalar. SWij,p
is

the weight, and RT
j is the inverse process of Rj .

Third, the approximate value Z̃h of each HR feature map in
the texture part can be calculated by using the NL method. To
minimize the SCN vz ≈ Zh − Z̃h of the feature maps, Z̃h needs
to be substituted into the sparse reconstruction model in (17) for
joint optimization, and iterative update value Zh(t+1) of each
HR feature map that is closer to the true value is solved. The
optimization process can use an iterative threshold algorithm
[40]

z
h(t+1)
i = Sτ

(
v
(t)
i − z̃

(t+1)
i

)
+ z̃

(t+1)
i (21)

where v
(t)
i = f ′

i ⊗ ((DB)T × (y −DB
∑n

i=1 fi ⊗ z
(t)
i ))/c+

z
(t)
i , f ′

i is the corresponding value after fi is rotated
180°, and τ = λi/c, where c is an auxiliary parame-
ter that guarantees the convexity of the function. Sτ (·)
is a soft threshold operation, λi = 2

√
2/σi, and σ2

i =
1

n1×n2

∑ni

d=1

∑n2

e=1 (z
(i)
de − z̃

(i)
de )

2
, where n1 and n2are the

numbers of rows and columns of the feature map. z(t)de and z̃
(t)
de

represent the element values of z(t)i and z̃
(t)
i , respectively.

Finally, using the learned HR filter {fh
i }ni=1 and the updated

HR feature map {Zh(t+1)
i }ni=1 for convolution operation, the HR

imageYh
(t+1) =

∑n
i=1 f

h
i ⊗ z

h(t+1)
i under the current iteration

can be obtained. We continue to repeat steps (1)–(3) until the
iteration termination condition is reached (i.e., t = T , T is the
set total number of iterations) and obtain the optimal value of
the feature map Z(h)∗ = {zh(T )

i }ni=1. Finally, the texture part of

the input image is reconstructed by Y
(h)
h =

∑n
i=1 f

h
i ⊗ z

h(T )
i .

Therefore, the final HR image is: Y ∗ = Y
(h)
l + Y

(h)
h . Finally,

Algorithm 1: The Proposed Hybrid NL Similarity Convo-
lution Sparse Coding SR (HNLSCSC-SR) Method.

Input: the input image Y , two training image sets
{x(h), x(l)} and zooming factor k, iteration times T ,
auxiliary parameter M, c, η.

Step 1: Decompose the LR image Y into the smooth
component Yl and the texture component Yh.

Step 2: Reconstruct the HR image Y
(h)
l of the smooth

part Ylbased on the Bayesian nonparametric method as
(3)–(10).

Step 3: Reconstruct the HR image part Y (h)
h of the

texture part Yhby the proposed NLSCSC-SR method.
(1) Learn the LR filters {f l

i}ni=1, HR filters {fh
i }ni=1, and

mapping function W base on the training set
{x(h), x(l)} by the SA-ADMM algorithm [32].

(2) Get the LR feature maps {Zl
i}ni=1 by solving ADMM

[46], and combine W to get the initial value of HR
feature maps{Ẑh

i }ni=1.
(3) Construct the SCN of the feature maps, use structure

information to classify the search space and perform
effective NL means, and get the optimal HR feature
maps {Zh(T )

i }ni=1 of the texture part Yh by using
(17)–(21).

(4) Obtain the HR reconstruction image Y
(h)
h of the

texture part Yh.

Step 4: Combine Y
(h)
l and Y

(h)
h to get the HR

reconstructed image Y ∗ of the input image.
Output: The corresponding HR image Y ∗.

we also use back projection [41] to obtain more robust recon-
struction results. We summarize the proposed HNLSCSC-SR
method in Algorithm 1.

III. EXPERIMENTS AND RESULTS

In this study, extensive SR reconstruction experiments were
carried out to assess the performance of the proposed method.
Considering satellite images obtained from GF-1, ZY-3, WV-2,
and TM-5 as test images, with spatial resolutions of 2, 2.1, 0.5,
and 30 m, respectively. We compare our method with some
other state-of-the-art methods, including Bicubic, SCSR [15],
NPDDR [42], GJDM [17], LapSRN [43], RCAN [44], CSC
[19], and HCSC [21]. All the experimental parameters of the
comparison algorithms are referenced to the original literature.
The brightness component (Y) of the LR image is reconstructed,
and the chroma channel (CB, Cr) is only performed by bicubic
interpolation. We use peak signal-to-noise ratio (PSNR) and
feature similarity (FSIM) [45] to evaluate the quality of the
estimated image quantitatively. The absolute error map is used
for visual evaluation. The brighter the points are on the error
map, the larger the difference exists, and the darker the points are,
the smaller the difference exists. The LapSRN developed on the
MatConvNet package [46], which is a convolutional neural net-
work framework for MATLAB. The RCAN was implemented
in the Tensorflow. Except for RCAN, all other experiments were
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Fig. 2. Several training samples used to construct a dictionary or filter sets in our method.

performed on MATLAB R2018b in a computer with Intel (R)
Xeon (R) CPU E5-2630 V3.

This article uses satellite images of different sizes, differ-
ent sensors, and different noise types as experimental data.
The Bayesian nonparametric method is used to reconstruct the
smooth part, and the NLSCSC-SR method is used to reconstruct
the texture part. Both need to use the training sample set to learn
dictionary elements or filters in the early stage. Based on the
principle of selecting as many feature types as possible, 100
GF-1 orthoimages of different sizes with the spatial resolution
of 2 m were intercepted to form the training sample set. Fig. 2
shows several training samples used in our method to construct
a dictionary or filter sets.

Different from Zhou’s method [18], we use the Bayesian
nonparametric method to reconstruct the smooth part of the test
image. Therefore, in dictionary training, we first separate all the
sample images into smooth and texture parts. Then, we only train
the smooth part of all sample images to get the joint dictionary
of high frequency and low frequency, which can reflect the
structural characteristics of the smooth image. To make a fair
comparison, in the LR and HR filters training stage for the CSC
and HCSC, we randomly cropped 1000 72×72 images from 100
GF-1 orthoimages to train LR/HR filters. For other comparative
methods, their models are also retrained on this sample training
set.

When the Bayesian nonparametric method is used for the
smooth part, the parameter settings are as follows: in the training
stage, the 100 GF-1 orthoimages and corresponding LR images
are divided into 8× 8 patches with the maximum overlap; 105

HR and LR image patch pairs are randomly selected to form
the training set for dictionary learning; the initial values of
dictionary elements and other model parameters are initialized
through the singular value decomposition algorithm; and the
hyperparameters are c0 = d0 = e0 = f0 = 10−6, τ0 = 2, and
η0 = 0.5. We used 5000 Gibbs samples for our model, where
the burn-in is 4500 samples and the rest 500 samples are used
to approximate the posterior distribution of dictionary elements
and other parameters. The nonparametric derivation of dictio-
nary size in this study shows that the best dictionary sizes for SR
reconstruction corresponding to the zooming factors 2, 3, and 4
are 630, 619, and 564, respectively.

When using the proposed NLSCSC-SR method to reconstruct
the texture part, the parameter settings are as follows: the regu-
larization parameter γ is 30, λl is 0.02, and the energy limiting
parameter en with the zooming factors 2, 3, 4, 9, and 12. The size
of the LR filter is5× 5, and its number is 800. The corresponding
HR filter is 5× k, where k is the magnification, and its number is
1200. In the reconstruction process, each feature map is divided
into nonoverlapping patches of size 6× 6. The position index
set Ωi of similar patches of each feature map includes the L = 9
most similar image patches. We use the target image patch as
the center to search and match similar image patches within the
range of 60× 60 and set h as 75, c as 1, and η as 0.7.

A. SR Reconstruction of Satellite Images With different Sizes

In this experiment, five ZY3 orthoimages with different sizes
and without any noise are used as test images. The test images
are all square and the side lengths are 240, 360, 480, 600, and
720 pixels. Considering the NL similar structure, the test images
with buildings as the main feature are selected. Fig. 3 shows
the LR input images obtained from the original HR reference
images under the zooming factor 3 (45% of the original scale in
the figure due to the large size of the original image).

To compare the performance of different reconstruction meth-
ods, this experiment performed the SR reconstruction for the
satellite images with different pixel sizes under the zooming
factors 2, 3, and 4. All reconstruction results are visually and
quantitatively compared. Table I shows the PSNR and FSIM
comparison results of the proposed method with other state-of-
the-art methods, where the zooming factor is 3. Fig. 4 shows the
PSNR comparison histograms of the reconstructed images under
the zooming factors 2 and 4. It can be seen that as the size of the
test image increases, the quantitative evaluation value of the SR
reconstruction based on the learning method is far superior to
the interpolation method. Because the Bayesian nonparametric
method is used to extract the high-frequency information re-
maining in the smooth part, and the convolution sparse noise
of nonlocally similar structures is iteratively updated to the
minimum value, which fully considered in the texture part,
the proposed method is far superior to other methods, and its
performance is the best in PSNR and FSIM evaluation indicators.
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Fig. 3. LR input images with different pixel sizes obtained from the corresponding original HR images under the zooming factor 3.

TABLE I
PSNR AND FSIM COMPARISON OF DIFFERENT RECONSTRUCTION METHODS ON DIFFERENT SIZE IMAGES UNDER THE ZOOMING FACTOR 3

Fig. 4. PSNR comparison of several reconstruction methods on different image sizes under different zooming factors (left: factor = 2; right: factor = 4).

Taking the reconstruction result of the test image with side length
480 under the zooming factor 3 as an example, the PSNR value
of the proposed method is 1.1569 dB higher than that of SCSR,
0.3765 dB higher than that of CSC, and the FSIM value is
0.9915 for the proposed method, which is also the best than other
methods. It shows that the proposed method can better recover
image quality and maintain the structural characteristics of the
original image.

The method strategy adopted in this article significantly im-
proves the performance of the CSC-SR method. Image size is

an important factor for the self-similarity of image features.
The change in image size causes a change in the proportion of
similar structures in the image, which has a significant impact
on the results of SR reconstruction. As shown in Table I, with
the increase of image size, on the one hand, the PSNR value of
reconstruction results of all methods gradually decreases, and
the PSNR value of our method always decreases the slowest. On
the other hand, because the proportion of self-similar structure
contained in each image is different, the FSIM value of the
reconstruction image of all methods fluctuates with the image



CHEN et al.: SINGLE SATELLITE IMAGERY SUPERRESOLUTION BASED ON HYBRID NONLOCAL 7497

Fig. 5. SR results and absolute error images with respect to ZY3-360 under the zooming factor 3. (a) Ground truth HR image. (b)–(h) SR results from bicubic,
SCSR [15], NPDDR [42], GJDM [17], LapSRN [43], RCAN [44], CSC [19], HCSC [21], and our method. (b1)–(h1) Absolute error images with respect to the
ground truth from bicubic, SCSR [15], NPDDR [42], GJDM [17], LapSRN [43], RCAN [44], CSC [19], HCSC [21], and our method.

size, generally showing an increasing trend, and the FSIM value
of our method is also the best than the others.

We take the reconstruction result of the test image with side
length 360 under the zooming factor 3 as an example. We
compare and analyze the SR reconstruction effect of different
methods and the corresponding absolute error map. As shown
in Fig. 5, the image reconstructed by the bicubic interpolation
method is excessively smooth and fuzzy. The reconstruction
effect of SCSR and BPJDL is improved, but as shown in the
magnified part of the test image, their reconstructed image
shows an obvious block effect because of the patch strategy.
The SRCNN algorithm uses a CNN model to greatly improve
the visual effect of the image, but from the magnified part of the
image, the reconstruction image still has aliasing and ghosting.
The CSC and HCSC perform SR reconstruction of the entire
image, effectively avoiding blocky images, and the contours
and textures of the reconstructed image are relatively clear.
Our method regularizes the reconstruction model by using the
NL self-similarity of the feature maps, iteratively optimizes the

minimum value of the convolution sparse noise, so that the fea-
ture map is closer to its real value, so the edge contour and texture
structure of the reconstructed image obtained by our method are
more obvious. Besides, the Bayesian nonparametric method is
used to perform the residual high-frequency information based
on the prior information of the smooth part to retain more
details.

B. SR Reconstruction of Satellite Images of Different Sensors

This experiment aims to study the SR reconstruction of
satellite images with different resolutions, which are obtained
from the different sensors. According to Experiment A, the SR
reconstruction effect of satellite images with different pixel sizes
is different, so this experiment selected four types of remote
sensing sensors with the same pixel size (400×400) for the ex-
periments. In this experiment, eight images (as shown in Fig. 6)
without any noise are reconstructed under zooming factors 2, 3,
and 4. Landsat TM-5 images have the lowest spatial resolution,
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Fig. 6. Test images of different sensors selected in this experiment. (a) GF1_1. (b) GF1_2. (c) ZY3_1. (d) ZY3_2. (e) TM5_1. (f) TM5_2. (g) WV2_1. (h)
WV2_1.

TABLE II
PSNR AND FSIM COMPARISON OF DIFFERENT RECONSTRUCTION METHODS ON DIFFERENT SENSOR IMAGES UNDER THE ZOOMING FACTOR 2

and the features and boundaries in the images are blurred. The
other three kinds of images with higher spatial resolution have
clear features and boundaries. To verify the superiority of the
proposed method, the test images contain different proportions
of nonlocally similar structures, such as buildings and cultivated
land. The quantitative comparison of the reconstruction results
in three cases is presented in Tables II –IV.

We can see that in most reconstruction experiments, our
proposed method shows good PSNR and FSIM values, and the
higher the spatial resolution, the better the image reconstruc-
tion effect. Simultaneously, the richer the nonlocally similar
structure of the image acquired by the same sensor, the better
the reconstruction effect. For example, the ground features in
GF1_1 are mainly buildings and cultivated land, and the ground
features in GF1_2 are mainly cultivated land and waters. The
image comparison revealed that the NL similarity structure in
the GF1_2 was significantly superior to the GF1_1. As shown in
Tables II–IV, the PSNR and FSIM of the reconstruction results

of GF1_2 under the zooming factors 2, 3, and 4 are always better
than GF1_1.

It is worth noting that the SR reconstruction results of CSC and
HCSC for the ZY3_2 image are inferior to the results of SRCNN
under the zooming factors 2 and 3. However, the proposed
method has achieved excellent reconstruction results, and the
PSNR value is 0.047 and 0.204 dB higher than that by SRCNN.
It shows that our method improves the performance of CSC
and HCSC very well. After the above analysis, the proposed
method has a better geometrical structure than other methods
and improves the reconstruction quality of most test images.
Obviously, the higher the resolution and the more abundant the
NL similar structure the image has, the better the reconstruction
effect our method achieves.

In satellite images, besides buildings, cultivated land is also
one of the typical features of nonlocally similar structures. The
cultivated land is often distributed in large areas, and the shape
of the cultivated land is relatively regular and similar, which
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TABLE III
PSNR AND FSIM COMPARISON OF DIFFERENT RECONSTRUCTION METHODS ON DIFFERENT SENSOR IMAGES UNDER THE ZOOMING FACTOR 3

TABLE IV
PSNR AND FSIM COMPARISON OF DIFFERENT RECONSTRUCTION METHODS ON DIFFERENT SENSOR IMAGES UNDER THE ZOOMING FACTOR 4

provides a richer NL structure and can better reflect the superi-
ority of the proposed algorithm. Next, we take the reconstruction
result of image GF1_2 with the zooming factor 3 as an example
to compare the reconstruction effect of various algorithms on
different sensor images and the corresponding absolute error
map. As shown in Fig. 7, the texture features of the cultivated
land reconstructed by the proposed method are more obvious,
there are fewer bright spots on the absolute error map, and the
reconstruction effect is better. Besides, the ZY3_2 image has a
larger proportion of cultivated land than the GF1_2 image. As
shown in Tables II–IV, the reconstruction effect of the proposed
methods in the image ZY3_2 is greater than that in the GF1_2
image. It has been proven once again that our method has a
better reconstruction effect on images with more NL similarity
structures.

C. SR Reconstruction of Satellite Images With
Different Noise Types

Satellite sensors are often disturbed by noise during image
acquisition and processing, so whether the algorithm has good
noise immunity will directly affect the image reconstruction
effect. The purpose of this experiment is to verify the antinoise

performance of our method. First, we added salt and pepper noise
with a noise level of 0.003 to the eight satellite images adopted
in Experiment B. Fig. 8 shows the reconstruction results and the
corresponding absolute error map of image WV2_1 with salt
and pepper noise by our method and some other state-of-the-art
methods under the zooming factor 3. From the absolute error
map in Fig. 8, we can see that the noise spots on the roof of the
buildings in the reconstruction image obtained by our method are
the least. Table V shows that the proposed method is very robust
under the influence of low-density noise and still shows the best
reconstruction effect for most of the test images. Since the NL
mean algorithm itself can effectively reduce noise, the proposed
method is relatively effective for SR reconstruction of noisy
images. Compared with other methods, the image reconstructed
by our proposed method is clearer and can effectively reduce the
influence of noise.

Besides, we add a small amount of Gaussian noise (σ =
0, 2, 4, 6) to the eight satellite images and then perform SR
reconstruction for these images with Gaussian noise under the
zooming factors 3 and 4. Fig. 9 shows the comparison results
of PSNR and FSIM between our method and some other state-
of-the-art methods for GF1_1 at different levels of Gaussian
noise. As shown in Fig. 9(a) and (b), various methods perform
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Fig. 7. SR reconstruction results and absolute error images with respect to GF1_2 under the zooming factor 3. (a) Ground truth HR image. (b)–(h) SR results
from bicubic, SCSR [15], NPDDR [42], GJDM [17], LapSRN [43], RCAN [44], CSC [19], HCSC [21], and our method. (b1)–(h1) Absolute error images with
respect to the ground truth from bicubic, SCSR [15], NPDDR [42], GJDM [17], LapSRN [43], RCAN [44], CSC [19], HCSC[21], and our method.

TABLE V
PSNR AND FSIM COMPARISON OF DIFFERENT RECONSTRUCTION METHODS ON IMAGES WITH SALT AND PEPPER NOISE UNDER THE ZOOMING FACTOR 3



CHEN et al.: SINGLE SATELLITE IMAGERY SUPERRESOLUTION BASED ON HYBRID NONLOCAL 7501

Fig. 8. SR results and absolute error images with respect to WV2_1 with salt and pepper noise under the zooming factor 3. (a) Ground truth HR image. (b)–(h)
SR results from bicubic, SCSR [15], NPDDR [42], GJDM [17], LapSRN [43], RCAN [44], CSC [19], HCSC [21], and our method. (b1)–(h1) Absolute error
images with respect to the ground truth from bicubic, SCSR [15], NPDDR [42], GJDM [17], LapSRN [43], RCAN [44], CSC [19], HCSC [21], and our method.

Fig. 9. PSNR comparison of our method with other methods for GF1-1 at different levels of Gaussian noise. (a) factor = 3. (b) factor = 4.
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TABLE VI
IMPROVEMENT OF PSNR OF RECONSTRUCTION RESULTS OF IMAGE

GF1_1_400 OBTAINED BY OUR METHOD (DB)

SR reconstruction on GF1_1, and the obtained PSNR and FSIM
values both continuously decrease as the noise level increases.
Besides, as the noise level increases, the reconstruction effects of
all methods are getting closer. Through the statistical analysis,
we can see that the PSNR and FSIM values obtained by the
proposed method are always the best than others. These results
show that for images with different Gaussian noise levels, the
proposed method can not only obtain high-quality reconstruc-
tion images but also maintain the spatial structure of the original
image. It can be proved that our method has certain robustness
to noise.

IV. DISCUSSION

A. Model Validity

The proposed HNLSCSC-SR method intends to apply CSC
theory to single satellite image SR reconstruction, aiming to
improve the performance of the CSC-SR method. The CSC-SR
method uses bicubic interpolation to reconstruct the smooth part
and uses the CSC method to reconstruct the texture part. The
HCSC-SR method is also an improved method based on CSC-
SR, which uses the convolutional neural network (SRCNN) to
reconstruct the smooth part, and uses the adaptive CSC algorithm
to reconstruct the texture part. To further reflect the superiority
and effectiveness of our method, we take the GF1_1_400 image
as an example to test the contribution of the three methods to
the reconstruction of the smooth and texture parts of the image.
Table VI shows the improvement of the quantitative evaluation
index PSNR of the proposed HNLSCSC method compared with
the reconstruction results of the CSC and HCSC methods under
the zooming factors 2, 3, and 4.

After a comparative analysis of ablation studies, it is found
that our method has improved the reconstruction results of the
smooth part and the texture part of the image. Compared with
bicubic interpolation and SRCNN, the Bayesian nonparametric
method can be used to train a structured dictionary, which is
more suitable for the smoothing part, which is conducive to
restore the residual high-frequency information in the smooth
part. Besides, we introduce the NL similarity prior information
of the feature map into the CSC framework to reconstruct the
texture part, thereby improving the reconstruction performance
of the CSC method.

B. Number of Similar Patches

The proposed method focuses on the impact of nonlocally
similar structures on the SR reconstruction results. The selection

Fig. 10. Relationship between PSNR and the number of similar image blocks
(upper: TM5_1; lower: GF1_1).

TABLE VII
IMPROVEMENT OF PSNR OF RECONSTRUCTION RESULTS OF IMAGE

GF1_1_400 OBTAINED BY OUR METHOD (DB)

of the number of similar patches L is an important factor. First,
the image patches set that participates in weight calculation is
extracted by using structure information. Then, the Euclidean
distance between image patches in the image set is calculated and
arranged in descending order. The image patches corresponding
to the largest L distances are extracted as the most similar image
patches. There are experiments performed on images GF1_1
and TM5_1 to analyze the relationship between the number of
similar patches L and the quality of the reconstructed image.
As shown in Fig. 10, when L ≤ 9, the PSNR increases with the
increase inL, indicating that the reconstruction quality improves
with the increase in the number of similar patches. For L ≥ 9,
the PSNR decreases slowly with the increase in L. When L
is larger, the set of similar patches will contain some image
patches that are not similar to the target patches to participate in
the estimation, so that the quality of reconstruction results will
be worse. In this article, to obtain the optimal reconstruction
results in all experiments, we adopt L = 9 as the number of
similar patches.

C. Patches Size

Intuitively, a patch size that is too large or too small tends
to produce slow or smooth training. To find the optimal patch
size, we trained the corresponding dictionary to reconstruct the
smooth part of the image GF1_1_400 by setting different patch
sizes in the Bayesian nonparametric method and compared with
the reconstruction results of the CSC under the zooming factor 3.
The impact of the patch size is evaluated and listed in Table VII.

A fixed-size dictionary will result in poor matching accuracy
and long calculation time. The nonparametric derivation of the
dictionary is another advantage of the Bayesian nonparametric



CHEN et al.: SINGLE SATELLITE IMAGERY SUPERRESOLUTION BASED ON HYBRID NONLOCAL 7503

TABLE VIII
FIDELITY ANALYSIS OF RECONSTRUCTION RESULTS OF IMAGE GF1_1_400

OBTAINED BY THE NINE ALGORITHMS

method. In Table VII, we give the initialization dictionary size
of 1024, and the dictionary size obtained by nonparametric
derivation is different, which is the optimal dictionary size for
the corresponding experiment. Since there is less high-frequency
information remaining in the smooth part, the difference in the
results of the smooth image reconstruction using the dictionary
trained with different patches sizes is not very obvious. The
results in Table VII imply that setting the patch size to 8 × 8 has
the best reconstruction effect.

D. Fidelity Analysis

Information fidelity criteria (IFC) [47] and visual information
fidelity criteria (VIF) [48] are considered to be better for evaluat-
ing SR images than the widely used PSNR and SSIM index [49].
They measure the quality of the image to be evaluated by calcu-
lating the mutual information between the image to be evaluated
and the reference image. For the SR task of GF1_1_400 under
the zoom factor 3, we calculated the image quality scores of the
nine algorithms used in this article. In Table VIII, we show the
fidelity analysis results of the nine algorithms in this article for
GF1_1_400 reconstructed images.

The minimum IFC value is 0. The higher the IFC value, the
better the visual quality of the image based on contrast and
mutual information. The VIF index value ranges from 0 to 1. The
higher the value is, the better the image reconstruction result will
be, which is 1 in the ideal state. It can be inferred from Table VIII
that our proposed method also shows better results in fidelity and
visual perception than other methods.

E. Limitation

Since dictionary learning and reconstruction are needed for
the smooth part of the image, and CSC reconstruction needs to
be performed after NL similarity constraint optimization on each
feature map in the texture part, the method in this article takes
longer inference time than in CSC and HCSC. The average SR
reconstruction times of CSC, HCSC, and HNLSCSC under the
zooming factor 2 are 64.39, 580.46, and 749.88 s, respectively.
However, the method proposed in this article has not been
optimized, so the calculation efficiency is relatively low. Our
model is relatively independent of the smooth part and texture
part reconstruction process, and the NL similarity optimization
constraint of each feature map during the texture part recon-
struction is also independent. The parallelization techniques are

a potential solution to accelerate the inference time of our model.
In the future, we will study parallel algorithms and try to extend
HNLSCSC to other applications, such as scene recognition and
semantic image segmentation and other high-level tasks.

It is worth noting that through the comparison of all exper-
imental results, it is found that the HNLSCSC method pro-
posed in this article is only slightly better than the current
advanced deep learning SR reconstruction network RCAN in
the reconstruction result of most test images. Because the spatial
resolution of TM images is low and the nonlocal similar struc-
tures are not obvious, the RCAN method performs better in the
reconstruction of TM images. However, the HNLSCSC method
is developed based on CSC theory. Compared with the deep
learning framework, the principle of the algorithm proposed in
this article is easier for readers to understand, avoiding a large
number of parameter settings, and it is easier to introduce more
prior information of the original image to further improve the
accuracy of the algorithm. Besides, our next research work is to
introduce our method into the python environment for further
updates and optimizations, and then compare it with more recent
deep network SR methods.

V. CONCLUSION

In this article, we proposed a hybrid NL similarity constrained
convolution sparse coding method for SISR reconstruction
(HNLSCSC-SR). We used the Bayesian nonparametric method
and the NL similarity CSC method to reconstruct the smooth part
and the texture part, respectively. In the SR reconstruction of the
texture part, we classified the search space based on structural
information and found the most relevant image patches set to
reduce unnecessary weight calculation. Our study also indicated
that the feature map corresponding to each filter has the same
structure information corresponding to the global features. Also,
different feature maps share the same index position information
of the similar patches. Then, the iterative threshold optimization
is required to minimize the CSCN of the feature maps, thereby
obtaining the optimal feature maps. The results obtained from
three SR reconstruction experiments on satellite images demon-
strated that our method can solve the block effect of the image
and has a relatively better performance on PSNR and FSIM,
when compared with the state of the art. Also, our method was
able to make the texture and edge structure of the reconstructed
image clearer and showed good noise immunity. Besides, the
proposed method is more effective for image reconstruction with
higher resolution and richer NL similar structure.
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