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Abstract—Deception is an effective means of jamming against
synthetic aperture radar (SAR). The performance of deceptive
jamming is affected by the accuracy of parameter measurement
and the applied antijamming methods of SAR. In this article,
we analyze the accuracy of current deceptive jamming evaluation
indicators, propose a new method for evaluating the performance
of deceptive jamming based on the combination of typical dominant
deceptive jamming evaluation indicators, and recessive indicators
extracted by convolutional neural networks, and obtain a level of
deceptive jamming using a softmax activation function in a fully
connected network. Deceptive jamming images affected by the SAR
motion parameter measurement error are taken as training and
test sets. Finally, the moving and stationary target acquisition and
recognition database is used as a deceptive jamming template in
order to verify the effectiveness of the proposed method.

Index Terms—Convolutional neural network (CNN), deceptive
jamming, electronic countermeasure (ECM), synthetic aperture
radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is widely used in military
and civilian applications, such as target classification, iden-

tification, and detection due to its high resolution at all times of
day and in all types of weather [1]. To protect targets or regions of
interest from the malicious reconnaissance of SAR, research into
jamming has been of great interest in electronic countermeasure

Manuscript received April 1, 2020; revised June 23, 2020, September 2, 2020,
and September 20, 2020; accepted September 21, 2020. Date of publication
October 5, 2020; date of current version January 6, 2021. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61631019, Grant 61801347, Grant 61801344, Grant 61971332, and Grant
62001350; in part by the China Postdoctoral Science Foundation under Grant
2016M602775, Grant 2017M613076, and Grant 2020M673346; in part by
Aeronautical Science Foundation of China under Grant 20180181003; in part by
Joint Fund of Ministry of Education under Grant 6141A02022367; and in part
by Natural Science Basic Research Plan in Shaanxi Province of China under
Grant 2020JQ-312. (Corresponding author: Feng Zhou.)

Tian Tian, Feng Zhou, Yuchen Li, Weiwei Fan, and Shuang Yang are with the
Ministry Key Laboratory of Electronic Information Countermeasure and Simu-
lation, Xidian University, Xi’an 710071, China (e-mail: dtian_1992@163.com;
fzhou@mail.xidian.edu.cn; yuchenli233333@gmail.com; fww1991xxy@
163.com; yangsh_xidian@163.com).

Bin Sun is with the Jinzhou Test Research Center, Jinzhou 121000, China
(e-mail: ben1017617@126.com).

Chen Gong is with the University of Science and Technology of China, Hefei
230026, China (e-mail: cgong821@ustc.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2020.3028858

(ECM) devices [2], [3]. Deception is one of the most important
techniques in the SAR jamming. The performance evaluation
of deceptive jamming (PEoDJ) against SAR is useful for test-
ing, upgrading, and combatting ECM methods and equipment
[4]–[8], although there have been relatively few studies of the
PEoDJ.

SAR ECM is a dynamic game process with incomplete in-
formation [9]–[11]. With the development of intelligent sys-
tems such as adaptive radar, adaptive electronic warfare, and
intelligent ECM, adaptive PEoDJ has become an indispensable
component of the SAR closed-loop game system [12]–[14]. The
PEoDJ is a prerequisite for resource scheduling and decision-
making in intelligent ECM systems. Therefore, the study of the
real-time PEoDJ with high accuracy and stability is of great
importance.

The purpose of jamming is to hinder or destroy the informa-
tion retrieval capability of SAR. The traditional rules for PEoDJ
generally utilize the changes in SAR images before and after
jamming. The proposed deceptive jamming evaluation criteria
include the information criterion [15]–[17], power criterion [18],
[19], and efficiency criterion [20].

In order to evaluate the performance of deceptive jamming,
the imaging characteristics of SAR can simultaneously utilize
three aspects of indicators: the data domain, such as the signal-
to-jamming ratio, and information loss ratio [18]; the scatterer
target domain, such as the integral sidelobe ratio, peak sidelobe
ratio, and impulse response width [22], [23]; and the scene target
domain, such as image mean, image variance, Euclidean dis-
tance [24], equivalent number of looks (ENL) [25], correlation
coefficient [25]–[27], dynamic range, image entropy [28], [29],
and structural similarity (SSIM) [30], [31].

Unfortunately, these indicators are limited in practical appli-
cation because they only focus on the variation of a single image
and cannot directly judge the performance of a jamming method.
Furthermore, they cannot meet the real-time requirement of
today’s ECM devices. The jamming indicator is empirically
selected as the evaluation criterion in deceptive jamming. These
jamming indicators are of low universality for a series of de-
ceptive jamming images. Qin et al. obtained a high level of
SAR deceptive jamming by introducing weighted summation
of various evaluation indicators, but could not guarantee the
accuracy for a large number of samples [21], [32].
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With continuous growth of computation power, research on
deep learning has increased. Convolutional neural networks
(CNNs) have been applied in many fields, such as speech recog-
nition and optical image recognition [34]–[37], to obtain image
texture information and capture the spatial features between
pixels. CNNs have also been effective in the classification and
recognition of radar targets. This article proposes a new per-
formance evaluation method for the deceptive jamming based
on the combination of typical deceptive jamming evaluation
indicators and recessive indicators extracted by CNNs. We attain
the performance evaluation result through the use of the softmax
activation function in fully connected networks. The proposed
method can improve the adaptive and real-time processing capa-
bilities of the PEoDJ and resolve the issues of poor universality
and weak real-time assessment capability. At the same time,
we analyze the influence of the measurement error of the SAR
platform motion parameter on a deceptive jamming image. By
adding velocity and position measurement error, different levels
of deceptive jamming samples are generated [38]. This solves
the problem of a limited number of deceptive jamming samples.

The remainder of this article is organized as follows. Section II
introduces the dominant deceptive jamming indicators, which
have clear physical meaning, and recessive indicators extracted
according to the CNN. We focus on the dominant and recessive
indicators as input to a fully connected network and obtain de-
ceptive jamming levels through classifiers. Section III analyzes
the influence of the SAR platform motion parameter measure-
ment error on jamming performance. After adding velocity and
position measurement errors, the training and test samples of
deceptive images are generated. Section IV demonstrates the
effectiveness of the proposed method using deceptive images,
which are generated using the moving and stationary target
acquisition and recognition (MSTAR) database as the original
deceptive jamming template. Section V offers our conclusion.

II. PERFORMANCE EVALUATION NETWORK CONSTRUCTION OF

DECEPTIVE JAMMING

In this section, we first introduce the physical meaning of
PEoDJ indicators, which are known as dominant indicators,
against SAR. We then introduce the recessive indicators ex-
tracted based on the CNN and concatenate them with the domi-
nant indicators to form a new feature vector. Such results in the
generation of the performance evaluation network of deceptive
jamming. The proposed method can resolve the issues of tra-
ditional performance evaluation methods, such as subjectivity,
poor generalization ability, and inability to meet the stringent
real-time requirements of specific services. Compared with gen-
eral multifeature weighting methods, the proposed method has
higher confidence in setting weights.

A. Dominant Indicator Extraction Based on
Traditional Methods

By comparing an ideal SAR imaging distribution and the
imaging result generated by a deceptive jammer, the perfor-
mance level of deception jamming is obtained [21]. For a single
image, assume that the size of the deceptive jamming scene is

[Nr, Na]. Ideally, a SAR imaging result is represented by R =
{r(xi, yj)}. When a SAR is jammed by a deceptive jammer,
the imaging result is represented by G = {g(xi, yj)}, where
the gray values of the two images on the scatterer (xi, yj) are
r(xi, yj) and g(xi, yj), respectively. The means and variances
of the two images are as follows:

⎧⎨
⎩

μR =
∑Nr

i=1

∑Na
j=1 r(xi,yj)

NrNa

σ2
R =

∑Nr
i=1

∑Na
j=1 (r(xi,yj)−µR)

NrNa

(1)

⎧⎨
⎩

μG =
∑Nr

i=1

∑Na
j=1 g(xi,yj)

NrNa

σ2
G =

∑Nr
i=1

∑Na
j=1 (g(xi,yj)−µG)

NrNa
.

(2)

The Euclidean distance (d) compares the gray level at equiva-
lent locations between the SAR image before and after deceptive
jamming. After finding the square of the difference between
r(xi, yj) and g(xi, yj), d is obtained as [24]

d =

√∑Nr

i=1

∑Na

j=1
(r (xi, yj)− g (xi, yj))

2. (3)

As the difference between the signals increases, d also in-
creases. In the PEoDJ, a larger d between the real and false
images leads to lower fidelity of the SAR deceptive jamming.
Although the range of d is infinite, there is no upper bound of
convergence. We can only analyze the jamming performance
for the same scenario under different jamming conditions, but
not for a single deceptive jamming image or group of different
scenes.

Similar to the Euclidean distance, the mean square error
(MSE) [33] measures the fidelity of deceptive jamming by

MSE =
1

NrNa

Nr∑
i=1

Na∑
j=1

(r (xi, yj)− g (xi, yj))
2. (4)

The MSE increases with the difference between the signals,
hence a smaller MSE leads to better jamming performance.

The correlation coefficient (c) [25]–[27] characterizes the
statistical correlation between two images, defined as

c =

∑Nr

i=1

∑Na

j=1 r (xi, yj) g (xi, yj)√∑Nr

i=1

∑Na

j=1 r
2 (xi, yj)

∑Nr

i=1

∑Na

j=1 g
2 (xi, yj)

. (5)

Since the gray value is nonnegative, i.e., r(xi, yj) ≥ 0 and
g(xi, yj) ≥ 0, we can deduce that 0 < c ≤ 1, where a larger c
indicates a stronger correlation between the false scene imaging
result and the original scene. When c is close to 1, lower param-
eter measurement error is introduced in the deceptive jamming
modulation.

SSIM evaluates the similarity between images by comparing
the differences in image structure information [30], [31]. SSIM
simulates the process of biological observation of objects based
on the human visual system. It is expressed mathematically as

SSIM = L (R,G)C (R,G)S (R,G) (6)
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where L(R,G), C(R,G), and S(R,G) are the brightness com-
parison, contrast comparison, and structure comparison, respec-
tively, which can be expressed as

L (R,G) =
2μRμG + C1

μ2
R + μ2

G + C1

C (R,G) =
2σRσG + C2

σ2
R + σ2

G + C2

S (R,G) =
σRG + C3

σRσG + C3
(7)

where R and G denote the real SAR image and the generated
deceptive jamming image, respectively; and C1, C2, and C3 are
specific small values included to prevent a zero denominator.
Since SSIM addresses the correlation between local area pixel
points, it is more sophisticated than simply calculating the
pixel point parameters between images. A higher SSIM implies
greater similarity of two images, and a more realistic deceptive
jamming image.

The equivalent number of looks (ENL) [25] is commonly
adopted to measure the speckle suppression of a single SAR
image. It is defined as the ratio of the mean and variance of the
image

ENL =
μ

σ2
. (8)

A larger ENL indicates that an image is well smoothed. By
comparing the difference of the equivalent number of looks
(ΔENL) between a real SAR image R and a deceptive jamming
image G, the performance of the deceptive jamming can be
analyzed

ΔENL = |ENLR − ENLG| (9)

where | · | denotes the absolute value. The larger the ΔENL, the
better the performance of deceptive jamming is modulated.

Image entropy [28], [29] is defined as

H = −
L−1∑
i=0

Pi logPi (10)

where L is the total number of gray levels and Pi is the probabil-
ity of gray level i. Image entropy characterizes the aggregation
of the gray distribution of an image. Richer information included
in an image implies larger entropy. The degradation of deceptive
jamming quality leads to information loss. Deceptive jamming
performance can be evaluated by calculating the difference
between the image entropy values of R and G

ΔH = |HR −HG| . (11)

Theoretically, all of the above indicators can be used to eval-
uate the quality of deceptive jamming. Each of them measures
a different aspect of deceptive jamming, which, however, may
lead to erroneous conclusions. Some of these indicators either
have no boundaries or a very wide range. Therefore, we cannot
judge the performance of deceptive jamming by their absolute
values. Moreover, when using a multifeature weighted fusion
method, the vast difference in the distribution intervals of these
indicators exerts negative effects on the weight distribution,

since the weights tend to be more advantageous for features with
larger values. This will be verified in subsequent experiments.

B. Recessive Indicator Extraction Method Based on CNN

A CNN is a neural network designed to process data with
similar grid structures [35], such as time series or image data.
CNNs use a convolution operation instead of a general matrix
multiplication operation in at least one layer. Unlike fully con-
nected networks, CNNs use weight-sharing to reduce the number
of network parameters and alleviate the problem of overfitting.
AlexNet (2012) was a breakthrough in the effectiveness of
a CNN for complex models [36]. Subsequently, researchers
continued to explore CNNs and proposed more powerful CNN
structural models. Since SAR deceptive jamming images consist
of typical grid data, we can utilize CNNs to extract indicators
for the PEoDJ.

A CNN includes an input layer, convolutional layers, pooling
layers, and a final output layer. The convolutional layer is
the core layer, and is used to extract image features. It has
the characteristics of local perception and parameter sharing.
Each neuron in the current layer extracts the same feature of
all feature maps in the previous layer, so that the features
between different neurons in each layer are independent. The
operations of the convolutional layer include convolution and
activation. In forward propagation, the convolutional kernel
will slide on the width and high dimension of the input data,
calculate the inner product of the entire convolutional kernel,
and the input data at any position, generate a 2-D feature map,
and overlay the activation maps of different filters in the depth
direction to generate the output data. Define the input of the
previous layer as I

(l−1)
i (i = 1, . . . , Nl−1), where Nl−1 is the

number of feature units of the (l − 1) th layer, and the output is
I
(l)
j (j = 1, . . . , Nl), where Nl is the number of feature units of

the lth layer. Convolutional processing can be expressed as

O
(l)
j (x, y) =

Nl−1∑
i=0

F−1∑
u,v=0

k
(l)
ji (u, v) · I(l−1)

i (x− u, y − v) + blj

(12)
where I(l−1)

i (x, y) is the activation value of the ith unit at (x, y)

of the (l − 1)th layer, I(l)j (x, y) is the activation value of the jth

unit at (x, y)of the lth layer, k(l)ji (u, v) is the weight of the ith
unit at the (l − 1)th layer and the jth unit at the lth layer, and
b
(l)
j is the bias of the jth unit at the lth layer. The activation value

of the jth unit in the lth layer can be expressed as

I
(l)
j (x, y) = f

(
O

(l)
j (x, y)

)
(13)

where f(x) is the rectified linear unit (ReLU). The ReLU layer
is used to activate the data after every convolution in order to
increase the nonlinear characteristics of the network and provide
the model with stronger classification expression ability.

When mapped to a higher-dimensional space, the final deci-
sion surface is decomposed into multiple planes. As the neural
network deepens, multiple piecewise planes are required to fit
the final decision surface and achieve nonlinear classification.
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The convolutional kernels and biases are the parameters that
must be trained.

The pooling layer is added after the convolutional layer. Its
function is to reduce the data dimensions and semantically fuse
similar features, such that the model can extract a wider range
of features. The pooling layer can also reduce the amount of
calculation and the number of required parameters, leading to
the characteristic of feature invariance.

In most cases, the maximum and average pooling indepen-
dently operate on each depth slice of input data in the pooling
layer. Such types of pooling can change the spatial size of data. In
this article, we choose maximize pooling with step size 2, which
returns the maximum value in the pooling window. The image
features are extracted after multiple convolution and pooling
operations.

The softmax activation layer is the last layer of the entire
network, whose primary purpose is to complete the classification
task. The output layer of the CNN is a K-dimensional vector
whose elements correspond to the posterior probability pi =
P (y = i|I(L)), i = 1, · · · ,K of each class. I(L) is the input of
the softmax layer, which is obtained by the weighted sum of the
previous fully connected layer. The actions of softmax can be
expressed as

pi =
exp

(
I
(L)
i

)
∑K

j=1 exp
(
I
(L)
j

) (14)

where I
(L)
i is the weighted sum of the ith node of the last fully

connected layer and L is the number of layers.
Given a training set with m samples, which can be expressed

as {(x(i), y(i)), i = 1, · · · ,m}, y(i) is the real label of the target,
and the cross-entropy loss function can be defined as

L (k,b) = − 1

m

m∑
i=1

logP
(
y(i)

∣∣∣x(i);k,b
)

(15)

where k and b are the weight and bias sets, respectively, of all
the layers in the CNN.

By minimizing the cross-entropy loss function, the weight k
will be updated to increase the probability of the correct category,
which is equivalent to maximum likelihood estimation. The goal
of softmax is not to minimize the square of the error, but to
minimize the cross entropy of the known distribution and the
probability distribution of the network estimation in order to
obtain better classification results.

The weight and bias are updated by minimizing the loss
function. Due to the complexity of the global loss function, it is
unrealistic to directly calculate and analyze the global minimum
loss function, although it is feasible in practice to solve for the
partial derivative of the corresponding parameter. Therefore, the
loss function can be minimized by iterative optimization, and the
simplest way to do so is by gradient descent.

In a CNN, the weight parameter update of the loss function
can be realized by back propagation, in which random gradient
descent is used to optimize the network parameters. To update
the network parameters, the residual δli(i = 1, . . . , Nl) of the
intermediate variable must first be calculated, which is realized

by calculating the partial derivative of the corresponding weight
parameters for each cell. For the elements of the output layer,
the residual can be expressed as

δli = −
(
y(i) − pi

)
(16)

where pi is the predicted value of the CNN. The residual of the
front layer can then be calculated according to the residual of
the output layer. If the (l + 1)th layer is the convolutional layer,
the residual of the lth layer can be expressed as

δli (x, y) =
∑
j

F−1∑
u,v=0

k
(l+1)
ji (u, v) · δ(l+1)

j (x+ u, y + v)

(17)
where k

(l+1)
ji is the weight connecting the ith unit at the lth

layer and the jth unit at the (l + 1)th layer, and δ
(l+1)
j is the

residual of the jth unit at the (l + 1)th layer. Although there is no
trainable weight parameter in the pooling layer, the residual must
be transferred back to the low-level network. If the (l + 1)th
layer is the maximum pooling layer, the residual of the lth layer
can be expressed as

δli (x, y) = f ′
(
I
(l)
i (x, y)

)
· ∑
m,n

δ
(l+1)
i (m,n)

·ε (ui,m +ms− x, vi,n + ns− y)
(18)

where f ′(x) is the derivative of the nonlinear excitation function,
which in this article is ReLU.

By calculating the residuals of each layer, the gradients of the
weight and the bias of each layer can be calculated as

∂L

∂k
(l)
ji (u, v)

=
∑
x,y

δ
(l)
j (x, y) · I(l−1)

j (x− u, y − v) (19)

∂L

∂b
(l)
ji

=
∑
x,y

δ
(l)
j (x, y). (20)

Using gradient descent to update the weight and bias of the
network, through forward propagation and back propagation,
the network finally converges, stable network parameters are
obtained, and the SAR recessive features of deceptive jamming
images are extracted.

Fig. 1 shows the CNN structure adopted in this article. It
includes six convolutional layers, three max pooling layers,
two fully connected layers, and one softmax classifier. Smaller
convolution kernels usually have a better feature extraction effect
and higher recognition result [39]. Therefore, we chose a 3× 3
convolutional kernel, which can achieve a good balance between
reducing the number of parameters and effectively extracting
image features. The parameters in the convolutional kernel are
obtained through training, and its learnable parameters through
a supervised learning method with a training set. There are eight
3× 3 convolutional kernels in the first and second convolutional
layers, 16 3× 3 convolutional kernels in the third and fourth
convolutional layers, and 32 3× 3 convolutional kernels in the
fifth and sixth convolutional layers. The stride size and padding
of a convolutional kernel are both 1. With the deepening of
a convolutional layer, the features of the feature map become
increasingly abstract and more difficult to extract. It is generally



TIAN et al.: PERFORMANCE EVALUATION OF DECEPTION AGAINST SAR BASED ON MULTIFEATURE FUSION 107

Fig. 1. Applied CNN structure.

necessary to increase the depth of a convolutional kernel to fully
describe the in-depth features with more parameters [40]. After
every two convolutional layers, a max pooling layer with pooling
size 2× 2 and stride size 2 is added. Dropout is added to the
first fully connected layer with probability p = 0.5. After three
sets of convolution and pooling operations, 32 feature maps of
size 28× 28 are obtained. The first fully connected layer has 64
nodes, and the second has five nodes, followed by the softmax
activation function for classification. The input data consists of
a single-channel grayscale image of size 224× 224. The batch
size is 64 and the learning rate is 10−4. During the input of the
recessive part, the mean value of the deceptive jamming image
is subtracted in order to make the overall mean value of the
image zero, which is conducive to CNN training, thus enabling
the network to more easily converge while avoiding gradient
explosion.

C. Dominant and Recessive Feature Joint Weight Construction

To integrate multiple image quality indicators, the traditional
method often applies weighted summation [21]

y =
∑
i

kixi + b (21)

where xi is the ith performance evaluation indicator of the SAR
deceptive jamming image; ki is the corresponding weight; b
is a bias; f(·) is a nonlinear activation function; and y is the
comprehensive result.

Fig. 2. Proposed performance evaluation network of deceptive jamming.

Weighted summation is essentially a linear model that can be
represented by a perceptron [41], [42], which can only solve
the linear separable problem. Due to the complexity of the
performance evaluation of deceptive jamming, the weighted
summation model must be extended to a nonlinear version. Fig. 2
shows the proposed performance evaluation network framework
of deceptive jamming, from which both recessive and dominant
indicators can be obtained. The recessive indicators are extracted
according to the CNN, whose structure is described in the red box
in Fig. 1. The dominant indicators are determined according to
the classical image assessment indicators. To avoid the situation
in which the sensitivity of the weight to the parameter is large,
the dominant feature is linearly normalized to [0, 1]:

xnor =
x− xmin

xmax − xmin
(22)

where xnor is the normalized dominant feature, x is the original
dominant feature, andxmax andxmin are the respective maximal
and minimal values in the original feature set. These dominant
features are combined to form the new feature map.

In Fig. 2, the first fully connected layer has 64 nodes that are
extracted from recessive features and the second has 10 nodes
from dominant features separately. The third fully connected
layer has five nodes, followed by the softmax activation function
for classification. The framework is end-to-end, and the weights
are automatically learned from deceptive jamming samples.
In our experiment, the weights obtained by training are fixed.
Finally, the levels of deceptive jamming are obtained.

III. GENERATION OF DECEPTIVE JAMMING SAMPLES

Deceptive jamming modulation is achieved based on digital
radio frequency memory, which consists of amplitude-, delay-,
and phase-modulation terms [38]. A jamming signal intercepted
by a deceptive jammer is the signal directly transmitted by
SAR, which contains the error of the SAR hardware system and
the motion error information of its platform. Hence, it has the
same time sequence and waveform characteristics as the signal
transmitted by SAR. Because of this, it can produce realistic
false targets.
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Fig. 3. Geometry of deceptive jamming against SAR.

Owing to the limit in reconnaissance accuracy of the jammer,
the geometric parameters used for deceptive jamming modula-
tion have difficulty accurately containing the motion error of the
SAR platform. Thus, the jamming signal may not completely
match the real echo. As a result, the parameter measurement
error in the processing of echo motion compensation is either
inaccurate or has difficulty estimating the real scene. The unified
compensation with the false scene results in defocusing of
the false or real scene, which diminishes the performance of
deceptive jamming. Therefore, deceptive jamming samples with
different levels can be generated by adding different SAR param-
eter measurement errors. We analyzed the influence of parameter
measurement on the performance of deceptive jamming.

A. Analysis of Factors Affecting Performance of
Deceptive Jamming

The imaging geometry of a point target can be characterized
by the ideal stop-and-go model, as shown in Fig. 3. In a Cartesian
coordinate system, the x-axis is the azimuth dimension and is
parallel to the flight direction of the SAR platform. The y-axis is
the range dimension in the oblique plane and is perpendicular to
the x-axis. The origin O is the pointing position of the beam
center at the initial time at the jammer’s location. P (x, y)is
the location of an arbitrary false scatterer and L is a synthetic
aperture length. Ideally, SAR flies along a straight line with
velocity v. Rs is the shortest range between a SAR platform and
a jammer, and is ideally a constant. When affected by external
factors such as clouds and air flow, as well as the navigation
capability of a radar platform, the real SAR trajectory is a curve,
as depicted by the dotted line. Thus, there is some deviation of
Rs in every slow time tm, which is expressed as Rs(tm). The
instantaneous slant range between the SAR and jammer is

RO (tm) =
√

R2
s (tm) + v2 (tm) t2m (23)

where tm is the slow time.
The theoretical instantaneous slant range between the SAR

and a false scatterer P (x, y) is

RP (tm) =

√
(Rs (tm) + y)2 + (x− v (tm) tm)2. (24)

The ideal Doppler frequency rate with scatterer P (x, y) is

γa =
v2 (tm)

2 (Rs (tm) + y)
. (25)

Comparing (23) and (24), the difference of slant range be-
tween real and false scatterers is

ΔRP (tm) = RP (tm)−RO (tm) . (26)

For computational convenience, we approximate the delay
term in (26) as a second-order Taylor series of tm

ΔRP (tm) = y +
x2

2 (Rs (tm) + y)
− xv (tm) tm

(Rs (tm) + y)

+
[v (tm)]2t2m

2

(
1

(Rs (tm) + y)
− 1

Rs (tm)

)

= r0 + r1tm + r2t
2
m (27)

where

r0 = y +
x2

2 (Rs (tm) + y)

r1 = − xv (tm)

(Rs (tm) + y)

r2 =
v2 (tm)

2

(
1

(Rs (tm) + y)
− 1

Rs (tm)

)
(28)

where r0 is a constant term of tm, whose value determines the
position of a false scatterer in range; r1 is a first-order term of tm,
whose value determines the imaging position of a false scatterer
in the azimuth; and r2 is a second-order term of tm, whose value
is related to the Doppler frequency rate.

When SAR platform trajectory deviation occurs, the instanta-
neous slant distanceRs(tm) and velocity v(tm) vary with tm.
Unfortunately, the precise measurement of the SAR motion
parameter is not easy, although a key step in deceptive jamming
is the accurate calculation of the difference of instantaneous slant
rangeΔRP (tm). This will affect the deceptive jamming quality.

1) Influence of Rs(tm) Measurement Error on Deceptive
Jamming: The measurement error of Rs(tm) will affect all
terms in (27). The errors in r0 and r1 caused by the Rs(tm)
measurement error will result in offsets of the false scatterer im-
age in range and azimuth, respectively. The r2 error will lead to
the mismatch of the false scatterer’s signal to the corresponding
match-filter function, causing the deceptive jamming image to be
defocused, thus significantly degrading the deceptive jamming
performance. In summary, the errors in r0 and r1 will cause
the position of the false scatterer imaging to deviate from the
preset coordinates, which will cause the distortion of the false
scene. The deceptive jamming performance, however, will not
change significantly. In contrast, r2 error will cause obvious
false scene defocusing, which will lead to the degradation of
deceptive jamming.

Define the Rs(tm) measurement error as

ΔRs =

∑Na

tm=1 |Rs (tm)−Rs|
NaRs

(29)
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Fig. 4. Variation of Doppler frequency rate error with Rs(tm) measurement
error.

Fig. 5. Comparison of azimuth profiles of deceptive jamming scatterer with
±20% of Rs(tm) measurement error and real scatterer: (a) −20% of Rs(tm)
measurement error; (b) 20% of Rs(tm) measurement error.

where ΔRs ∈ (−1, 1). The corresponding Doppler frequency
rate of a deceptive jamming signal after phase compensation is

γ̂a =
v2 (tm)

2 ((1 + ΔRs) ·Rs (tm) + y)
. (30)

The resulting Doppler frequency rate error is defined as

Dopr =
γ̂a − γa

γa
=

−ΔRs ·Rs (tm)

(1 + ΔRs) ·Rs (tm) + y
. (31)

The variation of γa error caused by the Rs(tm) measure-
ment error is plotted in Fig. 4. In the most extreme case, the
Rs(tm) measurement error increases from −100% to 100%.
Correspondingly, γa error decreases from +∞ to 0, and then
to approximately −50%. The physical meaning of −100% γa
error is that r2 is zero, i.e., no compensation is made for γa
spatial-variability caused by deceptive jamming. The 100% γa
error means that γa spatial-variability is compensated for twice.

There is no such extreme situation in reality. Rs(tm) mea-
surement error is generally hundreds to thousands of meters.
Fig. 5 compares the azimuth profile of deceptive jamming data
with −20% or 20% of Rs(tm) measurement error and the real
echo. The solid line represents the real echo, and the dotted line
represents the false scatterer. Such result indicates that when
the measurement error is −20% of Rs(tm), the performance of
deceptive jamming becomes worse. The result is consistent with
the curve plotted in Fig. 4.

2) Influence of v(tm) Measurement Error on Deceptive Jam-
ming: Inevitable measurement errors in v(tm) similarly occur.
The analysis of v(tm) measurement error is also discussed

Fig. 6. Variation of Doppler frequency rate error with v(tm) measurement
error.

according to its effect on r0, r1, and r2. Based on (27) and (28),
v(tm)measurement error does not affect the position of the false
scatterer in the range. The r1 error caused by v(tm)measurement
error will result in the offset of false scatterer images in the
azimuth, but will not defocus them. v(tm) measurement error
in r2 will lead to γa error. This will result in the false scatterer’s
signal mismatch with the corresponding match-filter function,
causing the deceptive jamming image to be defocused, thereby
degrading the performance of deceptive jamming.

Define v(tm) measurement error as

Δv =

∑Na

tm=1 |v (tm)− v|
Nav

(32)

where Δv ∈ (−1, 1). The corresponding γa of a deceptive jam-
ming signal after phase compensation is

γ̂a =
(1 +Δv) · v2 (tm)

2 (Rs (tm) + y)
. (33)

The resulting γa error is defined as

Dr =
γ̂a − γa

γa
= (Δv)2 + 2Δv. (34)

With the variation of the measurement error of v(tm), γa
error compensated by a deceptive jamming signal is shown in
Fig. 6. When v(tm) measurement error increases from −100%
to 100%, the corresponding γa error varies from −100% to 0%,
and continues to increase. Its physical meaning is the same as
that caused by Rs(tm).

The v(tm)measurement error will not reach±100% in reality.
Therefore, we compare the image of the deceptive jamming
data with −20% or 20% of v(tm) measurement error and the
real echo. The azimuth profile is plotted in Fig. 7. The solid
and dotted lines are the azimuth profiles of the real and false
scatterers, respectively. This indicates that with a −20% v(tm)
measurement error, the performance of deceptive jamming is
better than the case with 20%. Such result is consistent with the
curve plotted in Fig. 6.

B. Construction of Deceptive Jamming Samples Based on
Measurement Error of SAR Motion Parameters

A deceptive jamming signal may be caused by the superpo-
sition of multiple false scatterers. The measurement error of
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Fig. 7. Comparison of azimuth profiles of deceptive jamming scatterer with
±20% of v(tm) measurement error and real scatterer: (a) −20% of v(tm)
measurement error; (b) 20% of v(tm) measurement error.

TABLE I
SAR SYSTEM PARAMETERS

the SAR motion parameter will lead to both position offset and
defocusing of the entire jamming image. This will reduce the 2-D
coherent accumulation gain of the jamming image. Therefore,
the samples required for the deceptive jamming evaluation can
be generated by the inaccurate measurement of the SAR mo-
tion parameters. After adding Rs(tm) and v(tm) measurement
errors, the training and test samples for the PEoDJ are generated.

To visually depict the influence of Rs(tm) and v(tm) mea-
surement errors on the imaging of a false target, experiments
were carried out, as discussed in the following section, with the
parameters listed in Table I. We used the MSTAR open dataset as
the template for deceptive jamming. Random measurement error
with variances 0.5%, 1.5%, 3%, 7%, and 12% were added to
Rs(tm). The deceptive jamming images are presented in Fig. 8.
When the error is small, the image edge defocuses, but not to
an obvious extent. As Rs(tm) measurement error increases, the
image position shifts in both range and azimuth, and the image
quality degrades. More serious image defocusing leads to worse
deceptive jamming quality.

IV. EXPERIMENTAL RESULTS

We evaluated the proposed method based on the data gener-
ated in Section III. The sizes of the training and testing datasets
are listed in Table II. We utilized BMP-2 as the deceptive
jamming template to generate the training and test sets, which
were provided at 17° and 15° depression angles, respectively,
under Rs(tm) measurement error with variances 0.5%, 1.5%,
3%, 7%, and 12%.

The applicable scope and limitations of current SAR decep-
tive jamming evaluation indicators were analyzed on specific
samples. For a single deceptive jamming template, different

Fig. 8. False target imaging results under randomRs(tm)measurement error.
(a) False scene imaging result without measurement error. False scene imaging
result under Rs(tm) measurement error with variance of: (b) 0.5%; (c) 1.5%;
(d) 3%; (e) 7%; (f) 12%.

TABLE II
DESCRIPTION OF TRAINING AND TEST SETS

Rs(tm) measurement errors were added to generate deceptive
jamming images. The corresponding variation of these indica-
tors in Section II-A is plotted in Fig. 9. The horizontal axis
represents the addedRs(tm)measurement error, the vertical axis
represents the corresponding indicators, the points comprise the
simulation result of the image quality indicators corresponding
to the measurement error, and the solid line is the fitting curve
of the data.

From Fig. 9, we see that d and MSE increase with Rs(tm)
measurement error, indicating that the performance of deceptive
jamming images worsens. In addition, c decreases gradually,
which indicates that the statistical correlation of the deceptive
jamming image will decrease gradually due toRs(tm)measure-
ment error. SSIM decreases with increasing measurement error,
which indicates the difference between the deceptive jamming
image and the real one, and reflects the influence of Rs(tm)
measurement error on the performance of deceptive jamming.
ΔENL varies randomly with Rs(tm) measurement error, which
cannot reflect the influence of parameter measurement error
on the performance of deceptive jamming because the influ-
ence of Rs(tm) measurement error on the deceptive jamming
image is mainly reflected in the position offset and defocus
of the scatterer far from the jammer. The image center still
maintains a high focusing energy. Its mean and variance are
greatly affected by random noise, and cannot reflect the variation
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Fig. 9. Variations in dominant indicators of a single deceptive jamming image
with Rs(tm) measurement error: (a) Euclidean distance (d). (b) Mean square
error (MSE). (c) Correlation coefficient (c). (d) Structural similarity (SSIM ).
(e) Differential equivalent number of looks (ΔENL). (f) Difference between
image entropy of Rand G (ΔH).

of Rs(tm) measurement error. ΔH generally increases with
Rs(tm) measurement error, which indicates that the deceptive
jamming image information is lost asRs(tm)measurement error
increases. When Rs(tm) measurement error is large, the image
entropy is affected by random noise, although it still reflects the
influence of deceptive jamming.

According to Fig. 9, ΔENL is not a suitable evaluation
criterion for the deceptive jamming. The trends of the remain-
ing indicators are similar to a logarithmic distribution. As the
measurement error increases, the deceptive jamming image de-
terioration decreases. This is why we apply the nonuniform error
variation interval. The levels of deceptive jamming can be well
discriminated, which is basically consistent with the theoretical
analysis. Therefore, we selectedd, MSE, c, SSIM, andΔH as the
dominant indicators in this article, and used them to evaluate the
performance of deceptive jamming from different perspectives.

For a single sample, the trend of the indicator value is obvious
after adding different Rs(tm) measurement errors. Multiple
deceptive jamming samples, however, belong to one level, whose
range of indicators is relatively large. The distribution of indi-
cators for the five levels of training samples is shown in Fig. 10.

After adding the Rs(tm) measurement error, the indicators
of different levels of deceptive jamming images overlap to

Fig. 10. Distribution of dominant indicators of training set with Rs(tm)
measurement error. (a) Euclidean distance (d). (b) Mean square error (MSE).
(c) Correlation coefficient (c). (d) Structural similarity (SSIM). (e) Difference
between image entropy of Rand G (ΔH).

some extent. Fortunately, there is still a general increasing or
decreasing trend. To divide the range of each image quality
indicator, we plot the histograms of different levels of samples
under different indicators along with their corresponding fitted
probability distributions in Fig. 11.

The performance of deceptive jamming images under differ-
ent Rs(tm) measurement errors obviously differs. Based on the
fitting results of each indicator after repeated experiments, the
error interval of each indicator was divided by the minimum
error rate criterion. The classification boundaries for different
levels of the deceptive jamming images are listed in Table III.

Based on Table III, the performance of 2935 deceptive jam-
ming images in the test set are evaluated, with the confusion
matrix with dominant indicators presented in Table IV, while
each row in Table IV represents a level of deceptive jamming
samples that is evaluated in the test set. Each column represents
the true level of jamming samples. The accuracy is defined as

acc (f ;D) =
1

m

m∑
i=1

I
(
f
(
x(i)

)
= y(i)

)
(35)

where D = {(x(1), y(1)), (x(2), y(2)), · · · , (x(m), y(m))} is the
test set; y(i) is the true label of jamming samplex(i); and I(·) is a
mapping function that equals 1 iff(x(i)) = y(i), and 0 otherwise.
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Fig. 11. Histogram of dominant index of training set with RS(tm) mea-
surement error. (a) Euclidean distance (d). (b) Mean square error (MSE). (c)
Correlation coefficient (c). (d) Structural similarity (SSIM). (e) Difference
between image entropy of R and G (ΔH).

TABLE III
CLASSIFICATION BOUNDARIES OF DIFFERENT PERFORMANCES OF DECEPTIVE

JAMMING IMAGES

The correlation coefficient and structural similarity exhibit good
discrimination to different levels of deceptive jamming images.
The MSE and Euclidean distance display high evaluation preci-
sion when the Rs(tm) measurement error is small, but show a
poor distinction between levels when the
Rs(tm)measurement error is large, because the histogram has

some overlap between levels. In contrast, the evaluation preci-
sion of differential image entropy values varies in the opposite
manner. Table IV indicates that a single image quality indicator is
not enough to characterize the performance of a set of deceptive
images. Fortunately, the accuracy rate of all the indicators is

TABLE IV
CONFUSION MATRIX OF DECEPTIVE JAMMING EVALUATION RESULTS WITH

DOMINANT INDICATORS

TABLE V
CONFUSION MATRIX OF DECEPTIVE JAMMING EVALUATION RESULTS WITH

VOTING WEIGHTS OF DOMINANT INDICATORS

more than 50% at all levels. Therefore, these indicators have
value as performance evaluation features of deceptive jamming.

In Table V, dominant indicators are used as weak classifiers,
and the voting weighted method is employed as the integrated
classifier to recognize the five jamming levels [21]. The test
results reveal that the accuracy of this approach is much worse
than that of the optimal indicator. Also, some rejected samples
must be evaluated.
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TABLE VI
CONFUSION MATRIX OF DECEPTIVE JAMMING EVALUATION RESULTS WITH

MULTILAYER PERCEPTRON WEIGHTS OF DOMINANT INDICATORS

TABLE VII
CONFUSION MATRIX OF DECEPTIVE JAMMING EVALUATION RESULTS

WITH CNN

TABLE VIII
CONFUSION MATRIX OF DECEPTIVE JAMMING EVALUATION RESULTS WITH

THE PROPOSED METHOD

Table VI lists the test results from the use of the neural network
model with a multilayer perceptron to directly determine the
weight. The average accuracy of the image deceptive evaluation
is very low, since these dominant factors cannot fully represent
the features of deceptive images. The net weight is greatly
influenced by certain dominant evaluation factors with poor
performance.

The performance evaluation accuracy using the CNN directly
is only about 85.96%, due to low Rs(tm) measurement error.
As the Rs(tm) measurement error increases, the accuracy ap-
proaches 100%, as shown in Table VII. The features extracted
by CNN have no clear physical meaning, and cannot provide
reliable support for expert judgment in a human–machine in-
terface. Therefore, we apply the indicators extracted by the
CNN as the recessive features. The performance evaluation
accuracy using the proposed method is presented in Table VIII,
which confirms that the proposed approach outperforms other
comparison benchmarks. Its evaluation accuracy is less affected
by the Rs(tm) measurement error.

Fig. 12 illustrated the comparison between the convergence
curves of the CNN and the proposed method. The solid and
dotted lines represent the convergence curves of the training
and testing accuracy, respectively, with the CNN directly. The
dotted and dash-dot lines represent the convergence curves of
the training and testing accuracy, respectively, with the proposed
method. From Fig. 12, it can be seen that the training accuracy
reached a stable value after 150 epochs using the two methods.

Fig. 12. Comparison of convergence of CNN directly and with proposed
method.

The proposed method reached a training accuracy of 97.92% and
a testing accuracy of 95.84%, outperforming using the CNN
directly. This demonstrates the effectiveness of the proposed
method.

V. CONCLUSION

To solve the issues of poor generalization ability and low
adaptive processing efficiency of the PEoDJ methods, this ar-
ticle proposed a performance evaluation method that combines
dominant and recessive features. The proposed method exhibits
high evaluation accuracy and strong generalization ability, and
supports the closed-loop working system of intelligent ECM. We
analyzed the influence of the motion parameter measurement
error of SAR on deceptive jamming images, and generated a
large number of deceptive jamming images at different levels,
which solves the problem of insufficient jamming samples. The
proposed method was then verified on the MSTAR dataset. The
experimental results demonstrated that the proposed method
exhibits higher evaluation accuracy than other methods, which
in turn indicates its effectiveness, robustness, and generalization
performance.

REFERENCES

[1] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P.
Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geosci.
Remote Sens. Mag., vol. 1, no. 1, pp. 6–43, Mar. 2013.

[2] D. Adamy, Introduction to EW Modeling and Simulation. Norwood, MA,
USA: Artech House, 2003.

[3] Y. Huang, L. Zhang, J. Li, Z. Chen, and X. Yang, “Reweighted tensor
factorization method for SAR narrowband and wideband interference
mitigation using smoothing multiview tensor model,” IEEE Trans. Geosci.
Remote Sens., vol. 58, no. 5, pp. 3298–3313, May 2020.

[4] F. Zhou, B. Zhao, M. Tao, X. Bai, B. Chen, and G. Sun, “A large scene
deceptive jamming method for space-borne SAR,” IEEE Trans. Geosci.
Remote Sens., vol. 51, no. 8, pp. 4486–4495, Aug. 2013.

[5] B. Zhao, L. Huang, F. Zhou, and J. Zhang, “Performance improvement of
deception jamming against SAR based on minimum condition number,”
IEEE J. Sel. Top. Appl. Earth Observ., vol. 10, no. 3, pp. 1039–1055,
Mar. 2017.

[6] B. Zhao, F. Zhou, and Z. Bao, “Deception jamming for squint SAR based
on multiple receivers,” IEEE J. Sel. Top. Appl. Earth Observ., vol. 8, no.
8, pp. 3988–3998, Aug. 2015.

[7] B. Zhao, L. Huang, J. Li, M. Liu, and J. Wang, “Deceptive SAR jamming
based on 1-bit sampling and time-varying thresholds,” IEEE J. Sel. Topics
Appl. Earth Observ., vol. 11, no. 3, pp. 939–950, Mar. 2018.



114 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

[8] Y. Liu, C. Wang, X. Pan, Q. Fu, and G. Wang, “Inverse omega-K al-
gorithm for the electromagnetic deception of synthetic aperture radar,”
IEEE J. Sel. Topics Appl. Earth Observ., vol. 9, no. 7, pp. 3037–3049,
Jul. 2016.

[9] M. Osborne, An Introduction to Game Theory. New York, NY, USA:
Oxford Univ. Press, 2003.

[10] X. Lin, P. A. Beling, and R. Cogill, “Multiagent inverse reinforcement
learning for two-person zero-sum games,” IEEE Trans. Games, vol. 10,
no. 1, pp. 56–68, Jan. 2018.

[11] D. Bachmann et al., “Games between jammers and radars,” in Proc. AOC
Int. Symp., Feb. 2006, pp. 13–14.

[12] K. Li, B. Jiu, and H. Li, “Game theoretic strategies design for monostatic
radar and jammer based on mutual information,” IEEE Access, vol. 7,
pp. 72257–72266, Jun. 2019.

[13] S. Haykin, “Cognitive radar: A way of the future,” IEEE Signal Process.
Mag., vol. 23, no. 1, pp. 30–40, Jan. 2006.

[14] S. Noh and U. Jeong, “Intelligent command and control agent in electronic
warfare settings,” Int. J. Intell. Syst., vol. 25, no. 6, pp. 514–528, Jun. 2010.

[15] Z. Liu and K. Xu, “The effectiveness index of SAR jamming based on
information loss of images,” Acta. Electronica Sinica, vol. 35, no. 6,
pp. 1042–1045, 2007.

[16] X. Li and J. Zhen, “Information theory-based amendments of SAR jam-
ming effect evaluation,” in Proc. Int. Symp. 6th Int. Conf. Internet Comput.
Sci. Eng., Apr. 2012, pp. 159–162.

[17] F. Zhao, Y. Hu, and X. Tao, “Research on the effect evaluation based on
information theory in imaging systems,” Laser Infrared, vol. 38, no. 4,
pp. 371–374, Apr. 2008.

[18] J. Shi, D. Bi, and L. Xue, “Novel evaluation method of jamming effect on
ISAR based on target detection,” in Proc. 2nd Asian Pacific Conf. Synthetic
Aperture Radar, Oct. 2009, pp. 892–895.

[19] H. Zhao, “Simulation of barrage-type jamming for synthetic aperture
radars,” in Proc. Int. Colloq. Comput., Commun., Control, Manage.,
Aug. 2008, pp. 462–465.

[20] B. Zhonggan, D. Xingsong, Z. Lei, and H. Letian, “Centroid-track based
method for SAR jamming effect evaluation,” in Proc. IEEE Int. Conf.
Electron. Meas. Instrum., Oct. 2017, pp. 406–410.

[21] X. Wu, D. Dai, X. Wang, and H. Lu, “Evaluation of SAR jamming
performance,” in Proc. Int. Symp. MAPE, Dec. 2007, pp. 1476–1480.

[22] M. Ammar, H. Hassan, M. Abdel-Latif, and S. A. Elgamel, “Performance
evaluation of SAR in presence of multiplicative noise jamming,” in Proc.
34th Nat. Radio Sci. Conf., Mar. 2017, pp. 213–220.

[23] W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic
Aperture radar: Signal Processing Algorithms. Norwood, MA, USA:
Artech House, 1995.

[24] X. F. Wu, D. Dai, and X. Wang, “Study on SAR jamming measures,” in
Proc. IET Int. Radar Conf., Oct. 2007, pp. 1–5.

[25] B. Tang et al., “A new method for evaluation of jamming effect on ISAR,”
in Proc. 2nd Asian Pacific Conf. Synthetic Aperture Radar, Oct. 2009,
pp. 531–534.

[26] L. Sun, et al., “Research on deceptive jamming technologies against SAR,”
in Proc. 2nd Asian Pacific Conf. Synthetic Aperture Radar, Oct. 2009,
pp. 521–525.

[27] Y. Li and H. Chen, “Evaluation method of jamming effect on ISAR based
on correlation coefficient,” J. Univ. Electron. Sci. Technol. China, vol. 35,
no. 4, pp. 468–470, Aug. 2006.

[28] W. Wang and G. Wang, “Minimum entropy based registration strategy for
airborne SAR images before and after jamming,” Electron. Opt. Control,
vol. 15, no. 6, pp. 58–62, 2008.

[29] R. Cui and L. Xue, “Evaluation method of jamming effect on ISAR based
on image entropy,” Mod. Def. Technol., vol. 37, no. 1, pp. 94–97, Feb. 2009.

[30] G. Han et al., “Evaluation of jamming effect on SAR based on method
of modified structural similarity,” J. Comput. Electron., vol. 33, no. 3,
pp. 711–716, Mar. 2011.

[31] Z. Wang, A. Bovik, H. Sheikh, and E. P. Simoncelli, “Image quality
assessment from error visibility to structure similarity,” IEEE Trans. Image
Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[32] F. Qin et al., “Radar jamming effect evaluation based on AdaBoost
combined classification model,” in Proc. IEEE 4th Int. Conf. Softw. Eng.
Service Sci., 2013, pp. 910–913.

[33] S. Peng, et al., “Study on quantitative efficiency evaluation for deception
jamming to ISAR,” in Proc. 2nd Asian Pacific Conf. Synthetic Aperture
Radar, Oct. 2009, pp. 544–547.

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[35] G. Hinton et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

[36] A. Krizhevsky, I. Sutskever, and E. Hinton, “ImageNet classification with
deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, Jun. 2017.

[37] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221–231, Jan. 2013.

[38] Y. Liu, W. Wang, X. Pan, L. Xu, and G. Wang, “Influence of estimate
errors of radar kinematic parameters on deceptive jamming against SAR,”
IEEE Sens. J., vol. 16, no. 15, pp. 5904–5911, Aug. 2016.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Symp. ICLR, May. 2015,
pp. 1–14.

[40] L. N. Smith and N. Topin, “Deep convolutional neural network design
patterns,” in Proc. Int. Symp. ICLR, Apr. 2017, pp. 1–13.

[41] F. Rosenblatt, “A probabilistic model for visual perception,” Acta Cytol.,
vol. 15, pp. 296–297, 1959.

[42] O. Ciftcioglu, M. S. Bittermann, and I. S. Sariyildiz, “Towards computer-
based perception by modeling visual perception: A probabilistic theory,”
in Proc. IEEE Int. Conf. Syst., Man Cybern., Nov. 2006, pp. 5152–5159.

Tian Tian was born in Shaanxi, China, in 1992. She
received the B.S. degree in electronic science and
technology and Ph.D. degree in signal and informa-
tion processing from Xidian University, Xi’an, China,
in 2014 and 2020, respectively.

She is currently a Lecturer with the Ministry Key
Laboratory of Electronic Information Countermea-
sure and Simulation, Xidian University. Her research
interests include signal processing, radar imaging,
and SAR countermeasure.

Feng Zhou (Member, IEEE) was born in Henan,
China, in 1980. He received the M.S and Ph.D.
degrees in signal and information processing from
Xidian University, Xi’an, China, in 2004 and 2007,
respectively.

He is currently a Professor and the Director of the
Ministry Key Laboratory of Electronic Information
Countermeasure and Simulation, Xidian University.
His research interests include radar imaging and jam-
ming suppression.

Prof. Zhou was granted the program for New Cen-
tury Excellent Talents in University in China and was the recipient of the Young
Scientist Award from XXXI URSI GASS Committee.

Yuchen Li was born in Jinzhou, China, in 1994. He
received the B.S. degree in electrical information en-
gineering from University of Electronic Science and
Technology of China, Chengdu, China, in 2016, and
the M.S. degree in signal and information processing
from Xidian University, Shaanxi, China, in 2019.

His research interests include machine learning.



TIAN et al.: PERFORMANCE EVALUATION OF DECEPTION AGAINST SAR BASED ON MULTIFEATURE FUSION 115

Bin Sun was born in Liaoning, China, in 1985. He received the M.S and Ph.D.
degrees in information and communication engineering from National Univer-
sity of Defence Technology, Changsha, China, in 2012 and 2016, respectively.

He is currently an Assistant Research Fellow with Jinzhou Test Research
Center, China. His research interests include radar signal processing and perfor-
mance evaluation.

Weiwei Fan was born in Shanxi, China, in 1991.
He received the B.S. degree in information coun-
termeasure techniques and Ph.D. degree in signal
and information processing from Xidian University,
Xi’an, China, in 2014 and 2019, respectively.

He is currently a Lecturer with the Ministry Key
Laboratory of Electronic Information Countermea-
sure and Simulation, Xidian University. His research
interests include target detection, radar imaging, in-
terference mitigation, and PolSAR.

Chen Gong (Senior Member, IEEE) received the
B.S. degree in electrical engineering and mathematics
(minor) from Shanghai Jiaotong University, Shang-
hai, China, in 2005, the M.S. degree in electrical en-
gineering from Tsinghua University, Beijing, China,
in 2008, and the Ph.D. degree in electrical engineering
from Columbia University, New York City, NY, USA,
in 2012.

He was a Senior Systems Engineer with the Qual-
comm Research, San Diego, CA, USA, from 2012
to 2013. He is currently a Faculty Member with the

University of Science and Technology of China. His research interests include
wireless communications, optical wireless communications, and signal process-
ing.

Dr. Gong received Hongkong Qiushi Outstanding Young Researcher Award,
in 2016.

Shuang Yang was born in Shandong, China, in 1994.
She received the M.S. degree in information and
communications engineering from Xidian University,
Xi’an, China, in 2020.

Her major research interests include radar image
classification and target detection.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


