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Abstract—One of the vital growth nutrient parameters of crops
is soil Nitrogen (N) content. The ability to accurately grasp soil
nutrient information is a prerequisite for scientific fertilization
within the field of precision agriculture. Information pertaining to
soil macronutrients, such as N, may be obtained quickly through
hyperspectral imaging techniques. Objective of this research is to
explore the use of a deep learning (DL) network to estimate the
abundance of urea fertilizer mixed soils for spectroradiometer data.
The proposed approach was tested for silt clay and loamy types
of soils. Spectral regions of 1899.2 nm for urea and 2195.1 nm
for soils were identified as optimum spectral absorption features.
The accuracy evaluation was performed using a linear regression
model between actual and estimated abundances. At 1899.2 nm,
the coefficient of determination (R2) for mixed samples of urea
and silt clay soil was found to be 0.945, while R2 for urea mixed
loamy soil were 0.954. Similarly, at 2195.1 nm, R2 obtained 0.953
for urea mixed silt clay soil and 0.944 for urea mixed loamy soil.
The results show that the estimated abundances obtained through
the derivative analysis for spectral unmixing (DASU)-based DL
network facilitated a greater accuracy in comparison to the sole
use of DASU. These results were then verified through conventional
chemical analysis methods. The outcome of this article determines
the abundance of urea mixed soils. Therefore, it is inferred that the
hyperspectral imaging technique may be utilized in-situ to assess
the agricultural land’s soil fertility status.

Index Terms—Deep learning (DL) network, hyperspectral
remote sensing, precision agriculture, soil macronutrients, spectral
unmixing.

I. INTRODUCTION

A S DEFINITIVE measures of soil fertility, soil macronu-
trients play an essential role in sustainable development

in agrarian productivity, food security, agricultural ecosystems,
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and precision agriculture [1]. Fertilization consistent with the
richness or poorness of macronutrients in the soil is the basis for
high-yield and high-quality agricultural products [2]. However,
fertilization is often done mechanically or blindly to reap a high
crop yield. The use of excessive fertilizer not only reduces the
rate of fertilizer utilization and causes extreme macronutrient
content in crops but also causes financial losses and severe
environmental pollution [3]. Nitrogen (N) fertilizer is taken
into consideration via growers as a primary macronutrient for
plant growth and development because it is directly related
to the photosynthesis process [4]. Subsequently, the optimiza-
tion of N for different crops has emerged as a topic of many
spectroscopic studies [5], [6]. Estimating N’s soil composi-
tion is an effective way to optimize N fertilizer management
and improve crop yield [7]. Computation of N composition
in soil may be divided into two main types: destructive and
nondestructive methods. Destructive methods for estimating soil
macronutrients are laboratory-based chemical analysis tests [8].
However, these traditional methods are laborious, complicated,
lengthy, and costly to operate. Also, acid-base waste may cause
environmental pollution [9]–[11]. Researchers worldwide are
attempting to develop ways for on-the-go in-situ sensing and
assessment of soil properties, so as to optimize the amount of
fertilizers applied. This will increase crop productivity while
mitigating any detrimental environmental effects.

Consequently, researchers have sought real-time nondestruc-
tive methods for estimating the composition of N in soils. Hy-
perspectral technique is a nondestructive optical remote sensing
technique, and it provides an abundance of spectral informa-
tion, which recommends a potential approach for computing
soil macronutrients. Hyperspectral data (due to their numerous
contiguous bands) are particularly suited for in-situ measure-
ments and can lower the required number of field samples and
eliminate the need for chemical reagents [12]. Consequently,
this will reduce the time and cost implications associated with
field data collection and analysis. Thus, soil macronutrients
can be analyzed in real-time over a larger spatial area [13],
[14]. Therefore, hyperspectral remote sensing has attracted the
attention of a wide range of recent agricultural studies [15]–[20],
thus advocating for its continued use within precision agricul-
ture. Several researchers have attested to the nondestructive
capabilities of hyperspectral remote sensing in determining N
fertilization levels within the soil [21]–[34]. Extensive reviews
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on the use of hyperspectral remote sensing for predicting soil
properties can be found in [35]–[40].

Spectral unmixing is an essential step for categorizing the
land cover classes of mixed pixels within hyperspectral data
[41], [42]. In this process, the measured spectral reflectance
curve (SRC) of a mixed study sample is decomposed into
products of different pure spectra (endmembers) and their
corresponding proportions (abundance coefficients), that im-
plies the fraction of each endmember within the mixed pixel
[43]. Endmembers may be collected from the study sam-
ples or obtained from readily available spectral data libraries
[44]. Several studies have demonstrated the progression of
spectral unmixing within the domain of hyperspectral remote
sensing [45]–[51]. More precisely, the following approaches
have been used widely for spectral unmixing, namely, mixing
models, geometrical-based, sparse-regression-based, statistical-
based, soft-classification-based, machine-learning-based, and
the combination of spectral and spatial information [46], [52].
The contemporary spectral unmixing methods for soil macronu-
trients categorized into linear and or nonlinear mixing model
(LMM/NLMM) [53]–[59]. The LMM constructs linear math-
ematical relationships between spectral variables derived from
hyperspectral datasets and soil macronutrient contents [34], [31].
In LMM, the partial least squares regression and the multiple
linear regressions are often used [60]–[62]. The NLMM assumes
that the incident light follows multiple scattering phenomena
[63]. Many researchers have used LMM and NLMM to analyze
the spectral unmixing of hyperspectral data [64]–[70]. This
article focuses on the spectral unmixing method with LMM.
Because the LMM has simplicity and clear physical meaning, it
is widely used for spectral unmixing of hyperspectral data [41].

Machine learning techniques that are efficient for handling
large amounts of input variables have been tested for estimating
the soil spectra [71]–[74]. These techniques, including artifi-
cial neural networks, random forests, back-propagation neu-
ral networks, and support vector machines, have been widely
used to compute the compositions of soil and N fertilizer [75],
[76]. Moreover, wavelength selection models have also been
found competent [77], [78]. Neural networks are recognized
as very effective techniques for spectral unmixing of hyper-
spectral data [79]–[81]. Further advancements in computing
technology have encouraged the development of powerful deep
learning (DL) techniques [82]. These techniques have demon-
strated promising results in spectral unmixing of hyperspectral
data [83]–[88].

The objective of this article is, therefore, to explore the use
of a DL technique and in situ hyperspectral data in estimating
the abundance of soil and urea fertilizer combinations. First, we
introduced an integrated model of spectral derivative and spec-
tral unmixing named derivative analysis for spectral unmixing
(DASU) approach for estimating the abundances of mixed pixels
of hyperspectral data. Second, we proposed a DASU-based DL
network that was trained using the DASU estimated abundance.
Third, we computed the abundance of compositions of soil and
urea fertilizer in complex mixtures using the DASU alone and
proposed the DASU-based DL network. Fourth, the accuracy
assessment of the output of both approaches was examined.

Eventually, the findings of the chemical analysis of mixed sam-
ples of urea fertilizer and soil were assessed.

II. MATERIALS

A. Soil Sampling Sites

The two types of soil samples (loamy and silt clay based on
the soil texture) used in this article were collected from Roorkee,
Uttarakhand, India. The site for loamy soil is located 29° 51’
N, 77° 54’ E and for silt clay soil 29° 56’ N, 78° 9’ E [34].
The study region is at ∼268 m above sea level. The climate is a
semi-humid continental type with an average annual temperature
of about 23.7°C and relative humidity at ∼61%. Since soil
macronutrients are mostly concentrated on the surface of the
earth, soil samples were collected within the soil horizon at a
depth of 15–20 cm, as per conventional soil sampling techniques
[89]. Approximately 5 kg of each soil type was collected in a
polythene bag, packed, labeled, and brought in the lab for further
analysis. The soil samples were dried in an oven at 105°C for
24 h, taken after by grinding. A 2 mm sieve (IS No. 10) was
used for the sieving to remove the study samples’ unwanted
impurities [90].

B. Inorganic Component

The commercially available inorganic urea fertilizer has been
used, which contains 46% of N. The chemical formula of urea
fertilizer is CO(NH)2. Urea is the most abundant source of N
among the conventional dry fertilizers. Nitrogenous fertilizers
are manufactured and synthesized artificially in chemical in-
dustries. The principal source of N in fertilizers is ammonium
nitrate, anhydrous ammonia, and urea [91]. Crops absorb N as
a mineral nutrient mainly from the soil, and it is distributed in
the form of nitrate (NO3

−) and ammonium (NH4
+) [92]. As

compared to other soil nutrients, N is a limiting plant nutrient,
which is required in higher concentrations (mmol/kg dry mass)
to stimulate optimum crop growth.

C. Mixed Sample Preparation

Each soil sample was mixed with urea fertilizer at a definite
composition to obtain a hyperspectral data with varying abun-
dance of two soil types (loamy and silt clay) and urea fertilizer.
A pure sample of each soil type and urea fertilizer along with
the 15 mixed samples for each soil type were prepared, as
shown in Fig. 1(a)–(d). Mixed samples were made using the
dry, sieved soil along with urea fertilizer. In order to ensure a
homogenous nature of the prepared mixed samples, it was kept
at room temperature for four days prior to further analysis. The
proportion of N in the urea fertilizer and mixed study samples
was determined using conversion factor with their molecular
mass. According to [93], 1.5 cm thick soil is considered as
optically infinite soil; therefore, the mixed samples were kept
in a rectangular plastic case with a profundity of 3 cm, as shown
in Fig. 1(d). Among all the 100 gms of prepared samples, three
pure study samples (two soil types and urea fertilizer) were used
for qualitative analysis. Thirty mixed study samples were used
to quantify the abundance of N and soil.



PATEL et al.: DEEP-LEARNING-BASED APPROACH FOR ESTIMATION OF FRACTIONAL ABUNDANCE OF NITROGEN IN SOIL 6497

Fig. 1. Digital camera images of (a) loamy soil, (b) silt clay soil, (c) urea
fertilizer, and (d) mixed study samples of soil, and urea fertilizer.

D. Spectral Data Acquisition

A portable spectroradiometer SVC XHR-1024i (manufac-
tured by Spectra Vista Corporation) was used in the laboratory
for the SRCs determination of the study samples. The spec-
troradiometer covers the visible to shortwave infrared (SWIR)
wavelength range of 350 to 2500 nm with 994 bands. It is
equipped with an improved spectral resolution of 2.8 nm at 700–
1500 nm, 8 nm at 1500–2100 nm, and 6 nm at 2100–2500 nm.
SRCs of three endmembers, two for each soil type and one for
urea fertilizer are shown in Fig. 2(a). SRCs were acquired for
prepared mixed samples (n = 15) of each soil type (n = 2) in
11 replicates, totaling to 330 scans. The average of 11 scans per
study sample was calculated to minimize the instrumental noise
and considered as final SRCs, as shown in Fig. 2(b) and (c).
The SRCs of the study samples were imported through PC data
acquisition software (SVC XHR-1024i) version 1.19.3. Two sets
of abundances were generated from Dirichlet distribution, one
for the combinations of urea fertilizer and pure silt clay soil
and second for the combinations of pure loamy soil and urea
fertilizer. A total number of 10 000 each mixed SCRs for both
the datasets were generated to evaluate the performance of a
DL network, as shown in Fig. 2(d) and (e). Additive zero-mean
Gaussian noise with a signal-to-noise ratio set at 10, 20, and
30 dB is applied to the results.

III. METHODOLOGY

A. Spectral Derivative Features

Spectral derivatives of reflectance signatures may occupy
prominent features of different constituents of the land surface.
Such information has been utilized for the spectral unmixing
of the hyperspectral remote sensing data along with SRCs [94].
Spectral derivative generally acquires the acute changes in the
neighboring spectral bands, and such disparities may help to
increase the efficiency of spectral unmixing by enhancing the
absorption features in SRCs. The finite approximation was used
to compute the spectral derivatives [95]. The benefit of finite

approximation stems from its ability to estimate spectral reso-
lutions at varying finite spectral resolutions, while extricating
spectral features of interest [96]. A derivative of SRC is the
rate of change of reflectance in relation to the spectral region of
interest. The estimation of the first-order spectral derivative can
be represented by the following equation:

∂S

∂λk
=

S (λk)− S (λl)

λl − λk
(1)

where S is the SRC and λk and λl are the wavelength regions
of bands k and l. S(λk) and S(λl) are the reflectance values at
wavelength regions of λk and λl. We assume λl > λk without
any loss of generality. The loss of spectral details and attenuation
of significant spectral features in SRC may occur because of
extensive spectral band separation (λl − λk). Under other con-
ditions, spectral band separation smaller than the instrument’s
spectral resolution may cause some aberration in the output. In
this article, we adopt the second-order spectral derivative. High-
order differentiation enhances excessive frequency noise while
reducing small frequency background noise; subsequently, this
effect may be amplified as the spectral derivative order increases.

B. Continuum Removal

To define the absorption characteristics of a material within
a particular spectral region, assuming that no other component
has high absorption characteristics around that wavelength, con-
tinuum removal (CR) is often applied [97]. The continuum is
commonly estimated using local maxima to generate a hull of
boundary points. All the boundary points are shaped by a straight
line joining the two local spectral reflectance maxima of the peak
absorption wavelength. Thus, CR was written as a function of
spectral reflectance values at a particular region of wavelength,
with the constraint that its maximum value could not exceed 1.0
[98].

C. Spectral Derivative Linear Mixing Model

Spectral unmixing seeks to evaluate the fractional abundance
of the diverse materials occurring within the mixed pixels of
hyperspectral data [99]. A classical approach for spectral un-
mixing is the linear mixing model, which assumes that the SRC
of a mixed pixel is a linear combination of the constituent of
the pure classes (endmembers) [100]. Linear mixing model is
described by

Sm (λ) =

p∑
k=1

fkesk (λ) (2)

p∑
k=1

fk = 1.0, 0 ≤ fk ≤ 1.0 (3)

where Sm(λ) is the SRC of a mixed sample, esk(λ) is the SRC
of kth endmember, fk is the abundance of kth endmember in
a mixed sample, and p are the endmembers that exist in the
hyperspectral data [99]. If the endmembers present in mixed
samples are linearly mixed, then its derivative will also follow
the linearity [96]. Spectral derivative linear mixing model is
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Fig. 2. SRCs of (a) two soil type and urea fertilizer, (b) mixed study samples of urea fertilizer and silt clay soil, (c) mixed study samples of urea fertilizer and
loamy soil, (d) total number of 10 000 mixed pixels SRC of two endmembers (loamy soil and urea fertilizer), and (e) total number of 10 000 mixed pixels SRC of
two endmembers (silt clay soil and urea fertilizer) are generated from Dirichlet distribution.

expressed by

∂nSm (λ)

∂λn
=

p∑
k=1

(
fk

∂nesk (λ)

∂λn

)
(4)

where ∂nSm(λ)/∂λn is the nth-order-derivative SRC of a study
mixed sample, �nesk(λ)/�λn is the nth-order-derivative SRC of
the kth endmember (esk(λ)), fk is the fractional abundance of
the kth endmember in the study mixed sample. The advantage

of the spectral derivative is the ability to resolve absorption
features and determine their characteristic shapes and specific
wavelength region. These absorption features are related to the
SRCs of land cover classes; consequently, the endmembers and
their abundance present in a mixed sample may be estimated. It
may be needed to select more than one wavelength position to
compute the fractional abundance of a mixed SRC which have
more than two endmembers. Equation (4) can be used to deter-
mine the fractional abundance (fk) of each selected endmember
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Fig. 3. Flow diagram of the DASU employed to estimation of abundance of composition of soil and urea fertilizer.

Fig. 4. (a) Input data: spectral reflectance curve. (b) Architecture of a fully connected DL network having one input layer with 994 nodes, three hidden layers
with 2000, 1000, and 400 nodes, and an output layer with two nodes.

in an observed mixed pixel. In this article, a constrained linear
unmixing approach (nonnegative and additivity) is employed as
represented in (3) [101]. Fig. 3 expresses the flow diagram of the
DASU technique, which was applied to compute the abundance
of mixed soil and urea fertilizer samples.

D. Deep Learning Network

DL network was trained to estimate the abundance of mixed
samples of urea fertilizer and soil. The DL network architecture
is a multilayer perceptron such that the one input layer contains

994 nodes (spectral bands), three hidden layers with 2000,
1000, and 400 nodes, and an output layer with two nodes,
as shown in Fig. 4(a) and (b). The dataset was divided into
three categories, i.e., training, validation, and testing in order
to train the network (70/15/15 split used). The training set
was used to determine the parameters of the network (weights
and biases). To train the algorithm, 10 000 mixed pixel SRCs
of soil and urea fertilizer were generated using the Dirichlet
distribution [70]. The validation set was used to minimize the
over-fitting (generalization error). Thereafter, testing sets were
used to test the final results of the network with the laboratory
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Fig. 5. Spectral derivative curves of urea fertilizer, silt clay soil, loamy soil at regions of wavelength (a) 989.3 nm, (b) 1899.2 nm, (c) 2195.1 nm, and
(d) 2346.9 nm.

spectra results in order to evaluate the performance of the neural
network [102].

E. Mixed Soil Sample Validation

In the laboratory, chemical analysis of study mixed samples
was performed according to the standard method proposed by
[103]. The 850 Professional Ion Chromatograph Anion-MCS
(manufactured by Metrohm, Herisau, Switzerland) was used for
computing the amount of inorganic N, as explained in [104].
Ion chromatography is a well-established technique, employed
in the estimation of high or low molecular weight organic and
inorganic ions, and ionizable organic compound [105]–[107].
Quantitative analysis of the output signal was processed using
software named the MagIC Net 2.4 version (Metrohm).

IV. RESULTS AND DISCUSSION

A. Optimum Wavelength for Estimation of Abundance

In general, changes in soil albedo and soil chromophores
affect the characteristic spectral reflectance of the soil. Albedo is
defined as the proportion of the incident light that is reflected by a
surface, and it depends on the physical properties of the soil, such

as texture, particle size, surface roughness, and moisture content.
The chromophore is a chemical functional group that absorbs
incident light. A change in soil chromophore is dependent on the
chemical composition such as organic matter, iron oxides, and
carbonates [108]–[111]. The most common iron-oxide minerals
in the soil are goethite and hematite. These minerals are the
main active components in the visible and near-infrared (VNIR)
region (350–1000 nm) since various kinds of iron oxides cause
the majority of electron transitions. Goethite and hematite min-
erals exhibit diagnostic spectral features in the VNIR region;
therefore, the absorption bands are generally broad and smooth,
as shown in Fig. 2(a) [112]. The three broad spectral absorption
regions are mainly centered at around 1400, 1900, and 2200
nm [113]. These spectral absorption regions are due to O–H
group in water molecules, aliphatic C–H group, and N–H group
in amide [114]. Further, spectral absorption features include
CO2−

3 in carbonate minerals at 2330 nm spectral region [115],
Fe3+ and Fe2+ in iron oxide minerals between at around 500 to
900 nm wavelength regions [116], and various functional groups
in organic matter throughout the entire spectral region 400 to
2500 nm [117]. A thorough delineation for each of the spectral
absorption features are explained in [118]–[120]. Clay miner-
als in soil are chlorite, illite, kaolinite, and montmorillonite.
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Fig. 6. (a) Continuum removal of the SRC of a silt clay type soil. (b) Continuum-removed SRC of a silt clay type soil. (c) Continuum removal of the SRC of a
loamy type soil. (d) Continuum-removed SRC of a loamy type soil. (e) Continuum removal of the SRC of a urea fertilizer. (f) Continuum-removed SRC of a urea
fertilizer.

The dominant clay type in soil shows diagnostic absorptions in
the SWIR region (1500–2500 nm) [121]. These absorption bands
are caused by the vibrational transitions, and commonly display
sharp and narrow features, as shown in Fig. 2(a). Other few
weak absorption bands in the 2300–2500 nm region are related
to the presence of iron-hydroxide (Fe–OH) and/or magnesium
hydroxide (Mg–OH) in the clay minerals [122]. The spectral
derivative outcomes of SRCs for soil and urea fertilizer revealed
significant absorption features, as shown in Fig. 5. Spectral

derivative results for pure urea fertilizer show high positive
peaks at 989.3 and 1899.2 nm wavelength regions since these
wavelength regions are related to the amide functional group,
N–H [123]. Whereas, the spectral derivative results of soils
appear negative with short peaks at these wavelength regions,
as shown in Fig. 5(a) and (b). Similarly, the spectral derivative
results of all soil types display positive high peaks at 2195.1 and
2346.9 nm spectral regions due to the presence of clay minerals
within the soil [124]. On the contrary, the spectral derivative
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Fig. 7. Box plots of spectral derivative results of silt clay type soil, loamy type soil, and urea fertilizer at regions of wavelength (a) 989.3 nm, (b) 1899.2 nm,
(c) 2195.1 nm, and (d) 2346.9 nm.

Fig. 8. Linear regression between the actual abundance and DASU alone estimated abundance at different wavelength regions. (a) At 989.3 nm, for abundance
of urea fertilizer with silt clay type soil. (b) At 1899.2 nm, for abundance of urea fertilizer with silt clay type soil. (c) At 2195.1 nm, for abundance of silt clay type
soil with urea fertilizer. (d) At 2346.9 nm, for abundance of silt clay type soil with urea fertilizer. (e) At 989.3 nm, for abundance of urea fertilizer with loamy
type soil. (f) At 1899.2 nm, for abundance of urea fertilizer with loamy type soil. (g) At 2195.1 nm, for abundance of loamy type soil with urea fertilizer. (h) At
2346.9 nm, for abundance of loamy type soil with urea fertilizer.
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Fig. 9. Linear regression between the actual abundance and DASU-based DL network estimated abundance at different wavelength regions. (a) At 989.3 nm, for
abundance of urea fertilizer with silt clay type soil. (b) At 1899.2 nm, for abundance of urea fertilizer with silt clay type soil. (c) At 2195.1 nm, for abundance of silt
clay type soil with urea fertilizer. (d) At 2346.9 nm, for abundance of silt clay type soil with urea fertilizer. (e) At 989.3 nm, for abundance of urea fertilizer with
loamy type soil. (f) At 1899.2 nm, for abundance of urea fertilizer with loamy type soil. (g) At 2195.1 nm, for abundance of loamy type soil with urea fertilizer.
(h) At 2346.9 nm, for abundance of loamy type soil with urea fertilizer.

result of urea fertilizer shows an almost linear shape; thus, the
derivative values are closer to zero at these wavelength regions,
as shown in Fig. 5(c) and (d).

The CR spectra of both soil type and urea fertilizer are shown
in Fig. 6. CR spectra may be used to identify and isolate the
characteristic absorptions features of macronutrients, minerals,
and water in soil [125]. The output of CR spectra for both the soil
types revealed high absorption peaks near 1400, 1900, 2200, and
2350 nm, as shown in Fig. 6(a)–(d). Similarly, the CR spectra
of urea fertilizer generate high absorption features near 1000,
1500, and 1950 nm, as shown in Fig. 6(e) and (f).

Box plots were calculated for the spectral derivative results
based on an average of seven pure SRCs of each study endmem-
bers (i.e., seven pure SRCs of loamy soil, seven pure SRCs of
silt clay soil, and seven pure SRCs of urea), as shown in Fig. 7.
The outcomes of mean, median, minima, maxima, and standard
deviation of the spectral derivative values revealed that SRC of
a urea fertilizer dominates at 989.3 and 1899.2 nm wavelength
regions, as shown in Fig. 7(a) and (b). Whereas SRCs of both
soils are overrepresented at 2195.1 and 2346.9 nm wavelength
regions, as represented in Fig. 7(c) and (d). As per the above
findings, spectral absorption features at 989.3 and 1899.2 nm
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wavelength regions were selected for further estimation of the
abundance of urea fertilizer present in the mixed study samples.
Similarly, spectral absorption features at 2195.1 and 2346.9 nm
wavelength regions were selected for further evaluation of the
abundance of soils present in the mixed study samples. Unique
spectral absorption features (dominating spectral region) has
been selected to distinguish urea fertilizer from the two soil
types.

The spectroradiometer data was analyzed using the DASU
approach. The fractional abundances were estimated at 989.3,
1899.2, 2195.1, and 2346.9 nm wavelength regions for 30 mixed
samples prepared in the laboratory, which are composite of each
soil type and urea fertilizer using (4). For synthetically generated
10 000 mixed pixels, the abundance of soil and urea fertilizer
was estimated at the aforementioned wavelength regions. The
DASU estimated abundances were used to train the DL network.
Finally, using a trained DL network, the fractional abundances
of study mixed samples (laboratory samples) were estimated
and compared with actual abundance. Further, the computed
abundances of study mixed samples were used to evaluate the
performance of the DASU and DASU-based DL network. The
correlation between the DASU computed, and real abundance
for 30 mixed samples were examined using the ordinary least
square (parametric regression) model, as shown in Fig. 8. The
coefficient of determination (R2) for mixed samples contain-
ing silt clay soil type along with urea fertilizer was 0.298 at
989.3 nm, 0.878 at 1899.2 nm, 0.888 at 2195.1 nm, and 0.479
at 2346.9 nm, respectively. Similarly, R2 results for the mixed
samples containing loamy soil type with urea fertilizer were
0.488 at 989.3 nm, 0.864 at 1899.2 nm, 0.857 at 2195.1 nm,
and 0.613 at 2346.9 nm. These results suggest that the DASU
computed abundance for all endmembers yield the least variation
at 1899.2 nm for urea fertilizer and 2195.1 nm for both soil
types, as compared with the actual abundance (0 < slope < 1),
and formed a linear correlation among themselves, as depicted in
Fig. 8(b), (c), (f), and (g). On the other hand, the DASU computed
abundance yield relatively higher differences at 989.3 nm for
urea fertilizer and 2346.9 nm for both soil type, as compared
to the actual abundance (slope > 2), and formed a nonlinear
correlation between them, as shown in Fig. 8(a), (d), (e), and (h).

The DL network used in this article has one input layer (994
nodes), three hidden layers (2000, 1000, 400 nodes), and an
output layer (two nodes). The rectified linear unit was used as
an activation function [126] and stochastic gradient descent
with 0.005 learning rate as an optimizer. The training was
done for 1000 epochs. The correlations between the network
computed abundance and the actual abundance was analyzed
using a parametric regression model, as shown in Fig. 9. The R2

for mixed study samples containing urea fertilizer and silt clay
soil type was 0.325 at 989.3 nm, 0.945 at 1899.2 nm, 0.953 at
2195.1, and 0.643 at 2346.9 nm. Similarly, R2 for mixed study
samples containing urea fertilizer and loamy soil type was
0.524 at 989.3 nm, 0.954 at 1899.2 nm, 0.944 at 2195.1, and
0.83 at 2346.9 nm. These results suggest that the DASU-based
DL network computed abundance for all the endmembers
yield negligible variation at 1899.2 nm for urea fertilizer and
2195.1 nm for both soil types, as compared with the actual

Fig. 10. Box plots for relative error distribution computed by subtracting
the DASU-based DL network estimated abundance from the actual abundance
of mixed study samples at 989.3, 1899.2, 2195.1, and 2346.9 nm wavelength
regions.

abundance (0 < slope < 1), and formed a linear correlation
among themselves, as depicted in Fig. 9(b), (c), (f), and (g). In
contrast, the DASU-based DL network computed abundance at
989.3 nm for urea fertilizer and 2346.9 nm for both soil type,
yield relatively higher differences, as compared to the actual
abundance (slope > 2), and formed a nonlinear correlation
between them, as shown in Fig. 9(a), (d), (e), and (h).

The salient features of the observed results are 1) the DASU
and DASU-based DL network computed abundance for urea fer-
tilizer gives better results at 1899.2 nm as compared to 989.3 nm,
2) the DASU and DASU-based DL network calculated abun-
dance for the two soil types provide better results at 2195.1 nm as
compared to 2346.9 nm. The results for DASU and DASU-based
DL network estimated abundance at optimal wavelength for both
the soil types are shown in Tables I– IV. A relatively significant
R2 values for DASU-based DL network computed abundance
as compared to DASU alone suggests that the later approach is
more efficient as compared to the former. The relative errors for
DASU-based DL network computed abundance was calculated
by subtracting the estimated abundance from the actual abun-
dance of mixed study samples (Fig. 10, Tables III and IV).

In this article, a constrained linear unmixing approach (non-
negative and additivity) was used for the spectral unmixing
process. All estimated abundance of mixed study samples were
assumed only positive to follow the nonnegative constrained
(fk ≥ 0, k = 1, . . . , p), and the summation of the abundance
of mixed study samples were taken equal to one to follow the
additivity constraint (

∑
fk = 1, k = 1, . . . , p) [99]. There-

fore, the DASU-based DL network computed abundance has
pursued the constraints at 1899.2 and 2195.1 nm wavelength
regions for analysis of mixed study samples of urea fertilizer
and both soil type, respectively. Consequently, (5) and (6) may
provide an estimation of abundance in mixed samples of urea
fertilizer and both soil types:

fUrea_estimate ≈ ∂2Sm/∂λ2

∂2SNPK/∂λ2
at 1899.2 nm (5)

fsoil_estimate ≈ ∂2Sm/∂λ2

∂2Ssoil/∂λ2
at 2195.1 nm. (6)



PATEL et al.: DEEP-LEARNING-BASED APPROACH FOR ESTIMATION OF FRACTIONAL ABUNDANCE OF NITROGEN IN SOIL 6505

TABLE I
RELATIVE ERROR WAS ESTIMATED FOR THE MIXED STUDY SAMPLES OF UREA FERTILIZER AND SILT CLAY SOIL TYPE BY SUBTRACTING THE DASU ESTIMATED

ABUNDANCE (EA) FROM THE ACTUAL ABUNDANCE (AA) AT DIFFERENT WAVELENGTH REGIONS

TABLE II
RELATIVE ERROR WAS ESTIMATED FOR THE MIXED STUDY SAMPLES OF UREA FERTILIZER AND LOAMY SOIL TYPE BY SUBTRACTING THE DASU ESTIMATED

ABUNDANCE (EA) FROM THE ACTUAL ABUNDANCE (AA) AT DIFFERENT WAVELENGTH REGIONS

In the processing of the DASU model alone and the DASU-
based DL network requires at least one input SRC of each
land cover class. In this article, we have used two soil types
and urea fertilizer. All of these SRCs were spread across the
wavelength region of 350–2500 nm. However, based on the
analysis of spectral features of these SRCs, wavelength regions

of 1899.2 and 2195.1 nm were selected for a qualitative in-
vestigation of endmembers of urea fertilizer and soil, followed
by a constrained linear unmixing approach. Last, it was found
that the DASU-based DL network functions well for the com-
putation of abundances of mixed study samples at 1899.2 and
2195.1 nm wavelength regions. Therefore, these experimental
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TABLE III
RELATIVE ERROR WAS ESTIMATED FOR THE MIXED STUDYS OF UREA FERTILIZER AND SILT CLAY SOIL TYPE BY SUBTRACTING THE DASU-BASED DL

NETWORK EVALUATED ABUNDANCE (EA) FROM THE ACTUAL ABUNDANCE (AA) AT DIFFERENT WAVELENGTH REGIONS

TABLE IV
RELATIVE ERROR WAS ESTIMATED FOR THE MIXED STUDY SAMPLES OF UREA FERTILIZER AND LOAMY SOILT BY SUBTRACTING THE DASU-BASED DL

NETWORK EVALUATED ABUNDANCE (EA) FROM THE ACTUAL ABUNDANCE (AA) AT DIFFERENT WAVELENGTH REGIONS

results revealed that the DASU-based DL network approach can
be used for qualitative and quantitative analysis of mixed pixels
hyperspectral data.

B. Verification

Chemical analysis for silt clay soil, urea fertilizer, and four
mixed study samples was carried out using the well-known
Ion Chromatography technique in the laboratory. The chemical

analysis’s motivation is to compute the amount of N in urea
fertilizer, soil, and mixed study samples. We have calculated
46.6% N for g/100g sample in the study of urea fertilizer.
The measure of N available in study samples was examined
individually; also, the proportion of N in a mixed sample
was estimated using conversion factors. The comprehensive
assessment between the DASU-based DL network evaluated
abundance and chemical analysis outcomes of the study mixed
samples shows negligible differences, as presented in Table V.
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TABLE V
DASU-BASED DL NETWORK AND CHEMICAL ANALYSIS RESULTS OF THE ABUNDANCE OF N INTIMATED WITH THE MIXTURES OF UREA FERTILIZER

AND SILT CLAY SOIL TYPE

The findings of the chemical analysis have been found that the
N computed from the mixed study samples is less as compared
to the N observed through the conversion factor.

V. CONCLUSION

In this article, the DASU approach, accompanied by the DL
network, has been employed to estimate the abundance in mixed
samples of soils and urea fertilizer using hyperspectral data.
The DL algorithm can facilitate a greater accuracy for spectral
unmixing of hyperspectral data. DL algorithms attempt to extract
the endmembers and estimate the abundances of a mixed pixels.
This article combines spectral derivative and spectral unmixing
processes to demonstrate an unmixing model called DASU.
The significant advantages of this technique are that spectral
derivatives are important for the identification of endmembers as
well as abundances of mixed samples, followed by linear spectral
mixing model. Spectral derivative and CR analysis of SRCs of
mixed samples provide various spectral absorption features to
distinguish soils and urea fertilizer efficiently. The abundances
of mixed soil samples for 10 000 synthetically generated mixed
pixels were estimated using DASU approach. Furthermore, these
abundances were used to train the DL network, after which, it
was used to determine the fractional abundances of compositions
of urea fertilizer and soils. Moreover, we have computed the
abundances of mixed pixels originating from 30 combinations
of soil and urea fertilizer using DASU alone. Following which,
we compared the abundance results of the mixed soil samples
estimated by only the DASU approach and the DASU-based DL
network. The results of estimated abundance using both methods
show that the wavelength regions of 1899.2 and 2195.1 nm
were found optimal for the SRCs of urea fertilizer and soils,
respectively. The accuracy assessment was performed through
a linear regression model among the actual and estimated frac-
tional abundance. The R2 analysis of results of estimated abun-
dances using both methods shows that the estimated abundances
through the DASU-based DL network give better accuracy as
compared to DASU alone.

The extensive investigation to identify the optimal spectral
wavelength for computing the abundance of the mixed study
samples at four wavelength regions (989.3, 1899.2, 2195.1, and
2346.9 nm) proclaimed the following:

1) The SRC of urea fertilizer shows higher reflectance at
1899.2 nm, as compared to 989.3 nm. Similarly, for both

soil types, 2195.1 nm show a higher reflectance curve as
compared to 2346.9 nm.

2) The spectral derivatives for urea fertilizer generate signifi-
cant spectral absorption features at 1899.2 nm as compared
to 989.3 nm. The spectral derivative for both soil types
produces notable spectral absorption features at 2195.1 nm
as compared to 2346.9 nm (Fig. 7).

3) The R2 values calculated between the actual and DASU
alone and the actual and DASU-based DL network esti-
mated abundance for mixed study samples (Figs. 8 and 9)
shows that the abundance estimated through DASU-based
DL network gives better accuracy as compared to DASU
alone.

4) The linear regression statistics of the actual and estimated
abundance of mixed study samples for both approaches
show that the abundance of urea fertilizer at 1899.2 nm
has a significant difference as compared to 989.3 nm wave-
length region. Likewise, the abundance of both soil types
at 2195.1 nm has a significant difference as compared to
2346.9 nm wavelength region.

5) The box plot statistics of relative errors calculated be-
tween the actual and DASU-based DL network estimated
abundance, as shown in Fig. 10, revealed that abundances
of urea fertilizer at 1899.2 nm have less absolute errors
as compared to 989.3 nm wavelength region. Likewise,
abundances of both soil type at 2195.1 nm have less
absolute errors as compared to 2346.9 nm wavelength
region.

The results of the chemical analysis further support the
DASU-based DL network as a powerful tool to estimate abun-
dances using hyperspectral remote sensing data. The conclusion
of the present article is that we have successfully developed a
DASU-based DL network to determine the endmembers and
quantify the abundance in a mixed study sample for hyperspec-
tral data. For future development of the proposed algorithm may
be the focus on the incorporation of the DL-based approaches
(such as convolutional neural networks) into the DASU model.
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