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Abstract—Associative learning-based domain adaptation ap-
proach is investigated for the classification of hyperspectral remote
sensing images in this article. It employs the criterion of cycle
consistency to achieve features that are both domain-invariant
and discriminative. Two cross-domain similarity matrices based on
network-generated features and probability predictions are intro-
duced in the two-step transition procedure. The associative learning
with feature and prediction-based similarity metrics is referred to
as augmented associative learning (AAL). The AAL-based domain
adaptation network does not require target labeled information and
can achieve unsupervised classification of the target image. The
experimental results using Hyperion and AVIRIS hyperspectral
data demonstrated the efficiency of the proposed approach.

Index Terms—Associative learning, -classification, domain

adaptation, hyperspectral remote sensing.

I. INTRODUCTION

URING the past years, a large number of research efforts

have been spent on remote sensing applications, such as
classification [1]-[4], feature extraction [5], target detection
[6], etc. Due to the high spectral resolution, hyperspectral im-
ages (HSIs) are superior to other remote sensing images in
classification-based tasks when spectral features are similar.
Thanks to the developed hyperspectral sensor, it is easy to
collect a large number of HSIs. However, the acquisition of
labeled samples is costly, labor-consuming, or even infeasible.
Therefore, it motivated us to train an effective classifier on
available labeled HSI, which may work well on another image
with few or without labeled data. However, spectral features may
vary significantly between multitemporal images or spatially
disjoint images because of changed soil moisture, vegetation
composition, topography, and sun angle [7], [8]. Inevitably, it
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will cause a poor classification performance when a classifier
trained on other images is directly applied to a new image. This
problem can be tackled by domain adaptation (DA) [9], [10]
which attempts to train a model by transferring knowledge from
a label-rich source domain to a target domain with few or no
labels [11].

DA methods can be classified into semisupervised and unsu-
pervised forms according to the availability of target labeled
data [12]. Suppose there exist abundant source labeled data.
When a few target labeled data are available, the DA method
is identified as a semisupervised method, and when target labels
are not accessible, itis an unsupervised approach. For semisuper-
vised DA methods, the common DA strategies include utilizing
both source labels and target labels to train a classifier [13],
pretraining a network with source labeled data and fine-tuning it
with target labeled data [14], learning a common feature space
by using the corresponding data pairs [15], and so on. Unsu-
pervised DA has no access to the target labels which is a more
challenging task. In this article, we focus on the unsupervised
domain adaptation.

Unsupervised DA methods can be approximately di-
vided into three categories: divergence-based adaptation,
adversarial-based adaptation, and reconstruction-based adapta-
tion. Reconstruction-based adaptation methods are achieved by
constraining that one domain can be well reconstructed by the
other domain. Wang et al. proposed a classwise reconstruction-
based adaptation method, which fully exploited intraclass de-
pendence and interclass independence [16]. Jhuo et al. presented
a low-rank reconstruction method to reduce the domain dis-
parity [17]. Divergence-based adaptation relied on divergence
measures between the source and target domains. Maximum
mean discrepancy (MMD) [18] is the most popular DA strat-
egy. Gopalan et al. first used MMD to reduce the distribu-
tion mismatch between two hidden layer representations in the
context of neural network [19]. Tzeng et al. proposed a new
convolutional neural network, which used an adaptation layer
along with a domain confusion loss based on MMD to learn
domain-invariant representations [20]. In [21], three adapta-
tion layers based on multiple kernel variant of MMD (MK-
MMD) were utilized to learn task-specific features and enhance
adaptation effectiveness in a deep adaptation network (DAN).
Similarly, correlation alignment (CORAL) [22] can match the
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distribution of representation by minimizing the difference be-
tween their covariance matrices. Furthermore, Sun et al. ex-
tended CORAL to incorporate it directly into deep networks
(D-Coral) by constructing a differentiable loss function that
minimizes the difference between source and target correla-
tions [23]. In addition, adversarial-based adaptation methods
have also achieved outstanding performance. Bousmalis et al.
employed the original generative adversarial network (GAN)
framework to generate fake target data from source data to
acquire the relations between domains [24]. Ganin et al. pro-
posed a domain adversarial neural network (DANN) for feature
alignment by maximizing the domain classification loss [25].
Multiadversarial domain adaptation (MADA) method achieved
conditional distribution adaptation by using multiple domain
discriminators [26]. Recently, deep learning methods have at-
tracted the most attention in DA field due to its powerful feature
representation ability. It can achieve adaptive classification for
both domains by learning a shared common feature space.

Deep learning-based DA methods have been successfully
applied to the classification of HSIs. Wang et al. improved
the generalization ability of the classifier on target domain by
minimizing the MMD between domains [27]. Li et al. minimized
the distance between source domain and target domain based on
MMD and learned a more discriminative feature space in a two-
stage deep DA model [28]. Deng et al. employed the adversarial
approach and constrained the target embeddings to form similar
clusters with the source ones [29]. To preserve the geometric
information of original tensors, Qin ef al. employed a manifold
regularization term for core tensors into the optimization process
[30]. Liu et al. achieved classwise distribution adaptation by
using multiple domain classifiers and MMD strategy [31]. A
self-attention generative adversarial adaptation network used a
GAN equipped with self-attention mechanism to generate high-
quality hyperspectral samples, and employed MMD strategy to
constrain the generated samples to be more similar to the original
ones [32].

For classification of hyperspectral remote sensing images,
most DA strategies aim to reduce the distribution shift between
domains. Since good classification performance also relies on
the discriminability of the features in the common feature space,
the DA method that considers both feature alignment and feature
discriminability is more desirable. In this article, we focus on
associative learning (AL)-based DA [33], which is able to yield
features that are both domain-invariant and discriminative. As-
sociation means the normalized similarity relationships between
two embeddings. When AL is applied to domain adaptation, it
is able to learn the cross-domain relations and achieve cross-
domain feature alignment. The cross-domain similarity matrix
summarizes the relationships between source and target data,
and thus an accurate similarity matrix indicates the achievement
of class-conditional distribution adaptation between domains.
To our best knowledge, the AL-based DA has not been applied
for classification of hyperspectral remote sensing images.

AL is achieved by employing the cycle consistency criterion
in a two-step transition procedure [33]. The first-step transition
indicates the departure walk from source data to target data with
the first transition probability matrix. The second-step transition
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denotes the return walk from target data back to source data with
the second transition probability matrix. The two-step transitions
produce a cycle that starts from source data and ends up getting
back to source data. Since the source data are labeled, we can
use the labeled information of the starting and ending source
data to determine if a circle is consistent. If a starting source
sample belongs to the same class as the ending source sample,
the cycle is consistent. Otherwise, the cycle is inconsistent. Since
the inconsistent cycles may be produced by the spectral drift or
the overlapping spectra between source classes, with a walking
loss that is defined to penalize the inconsistent cycles, domain-
invariant, and discriminative features can be achieved.

Cross-domain similarity matrix plays an important role in the
AL-based DA methods. In this article, we utilize two similarity
metrics for the two-step transitions in the cycle. One is calculated
by the features as in [34], and the other is obtained by the
probability prediction results. The source labels and the target
prediction results contain category information and are suitable
to describe the relationships between source and target data.
With the cycle consistency constraint, the predictions of target
data will be aligned with the source labels and tend to have
a peak distribution. The AL with feature and prediction-based
similarity metrics is referred to as augmented AL (AAL), and
the AAL-based DA is denoted as AALDA in this article. It is
expected that combining the two similarity metrics can result in
a superior DA performance.

The main contributions of this article include the following.

1) We combine the feature-based and probability-prediction-
based similarity metrics to describe the relationships between
domains, which promotes the feature alignment from different
views and obtains a superior DA performance.

2) Applying the proposed cross-domain similarity metrics in
the cycle consistency criterion, the AALDA network is able to
obtain features that are both domain-invariant and discrimina-
tive.

3) To the best of our knowledge, this article is the first attempt
to introduce the AL with cycle consistency criterion to DA for
hyperspectral remote sensing image classification.

The organization of rest of this article is as follows. Section II
presents the proposed AALDA network in detail. Experimental
results are discussed in Section III and the conclusion is drawn
in Section IV.

II. PROPOSED DA METHOD

An unsupervised DA approach attempts to learn a model,
which transfers knowledge from a fully labeled source domain
to an unlabeled target domain. The labeled source dataset is
denoted as Dy = {(x],y5)} 2, . where X{ € x,, y§ is the
one-hot encoding of the label information and y; € y, and n,
is the total number of samples on the source dataset. Target
dataset is denoted as D; = {<X§)}?;1’ where x! € x; and n;
is the total number of samples on the target dataset. Both the
source and target data have the same dimensionality D and there
are C classes in both domains denoted by 2 = [€)4, ..., Q¢l.

The flowchart of the proposed approach is shown in Fig. 1.
The network contains a feature extractor G and a classifier G,
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Fig. 1. Flowchart of the augmented AL-based domain adaptation (AALDA) method.
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results of the two domains.
The loss function of AALDA is defined as

L(XS7YS7Xt; efa 90) = Lclf(XsaYs§ 9f79c)
+ Blealk(X& Xt; ef, 90)
+ BoLyisit (X, X3 0¢) (D

where Ly represents the classification loss of the labeled source
data, L, denotes the walking loss for the inconsistent cycle,
and L,;; represents a regularization term to enforce every
sample in target domain to be “visited” by source samples. The
tradeoff hyper-parameters 1 and [ denote the importance of
the walking loss and visiting loss, respectively. The notation
0 represents the parameter of the feature extractor Gy and 0,
denotes the parameter of the classifier G.. The feature extractor
Gy is trained by all the three losses and G, is trained by the
classification loss and walking loss. It is worth noting that the
AALDA network is only composed of full connected layers for
pixel-level classification.

A. Source Classification Loss

In DA methods, labeled source data are used to train the
model so that it can capture the relevant and more discriminative
features. Meanwhile, the feature extractor Gy will generate do-
main invariant features by utilizing the adaptation loss. Thus, the
classifier G, can be directly used to classify the target features.

The cross-entropy loss is often used as source classification
loss in multicategory classification task. Given a labeled source
sample (X, y), its cross-entropy is defined as

C

Lc(p, Y) = - Z yc logpc (2)
c=1

po=Softmaz(Go(Gy(x)),) ——uPCelGr ) 3,

25:1 exp(Ge(G(x));)

where y is the one-hot label of sample x, p is the predicted
probability output calculated by the output of the classifier G,

Consistent
Cycle

Inconsistent

Cycle

Fig. 2. Illustration of the walking procedure.

G (G (x)). is the cth output of the classifier on the feature
Gy (x), and p¢ denotes the probability of x belonging to the cth
class. Thus, the source classification loss is defined as

Lclf(Xqus;afaec) =

D>

¥ (xiyi) (Xs,Y5)

Lo(Softmax(Ge(Gy(xi))),yi) (4

where n is the number of samples on the source domain.

B. Walking Loss

We first describe the cycle consistency criterion and the
walking loss, and then present the two cross-domain similarity
metrics.

1) Cycle Consistency Criterion and Walking Loss: Cycle
consistency constraint is imposed to obtain the domain-invariant
and discriminative features. Let the network-generated features
be denoted as Gy (X;) and Gy (X;) for source and target data,
respectively. A walker starts from Gy (X;) to Gy (X;) with the
first-step transition and then goes back to the source data Gy
(X;) with the second-step transition. If the starting point and
ending point in source domain belong to the same class, the
walk is correct and the cycle is consistent. Otherwise, the walk
is incorrect or the cycle is inconsistent. The walking procedure
is illustrated in Fig. 2.
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Tllustration of the inconsistent cycles yielded by spectral drift between domains and the overlapping spectra between source classes. (a) Spectral drift of

class 9 in BOT July-May data pairs. (b) Scatterplot to show the spectral drift of class 9 in BOT July-May data pair. (c) Overlapping spectra of class 5 and class 7
in source domain. (d) Scatterplot to show the overlapping spectra of class 5 and class 7 in source domain.

Let the matrix P* denote the association between source
data, with P{}ts denoting the probability of starting at the source
sample Gy (x;") and ending up at the sample Gy (x;*). With the
two-step transitions, P;5/* is defined as

nt
sts __ stpts
Pij _E szij
k=1

where the superscript “sts” in P sts denotes the round-trip from
source to target and back to source P* and P* represent two
transition probability matrices, P’ represents the transition
probability from source sample Gy (x;%) to target sample Gy
(xx),and Plfj represents the transition probability from the target
sample G (x) to source sample G (x;°). It can be seen that the
similarity PS"s between Gy (x;*) and Gy (x;°) is expressed by
summing thelr relations to all the target data points. If the two
source points are from the same class, there should exist walking
path and the PSts should be large. Otherwise, they should not
be connected v1a target data and Pffs should equal to zero. An
indicator matrix T is defined as

®)

1

T, — )7
J
0

x;,X; € Qe
(6)

else

where n,° denotes the number of points in class Q.. T;; is a
constant variable, which equals to 1/n,° when the two source
data points x*; and x°; are from the same class 2. and is equal
to zero if they belong to different class. Therefore, the matrix T
is an indicator matrix that accurately characterizes the category
relationships between source data points. Then, the matrix T is

used to evaluate the accuracy of matrix P***. The walking loss of
all the source data pairs are then defined as

Lwalk (Xsa Xt; 9f7 ec) = Lc (PSts7 T)

= Z —P;!* log Ty (7)
where L. is the standard cross-entropy loss function. If the
starting and ending source samples are from different classes
(T;; = 0) but there is a walk between them (Pfjts>0), then the
cross-entropy loss will be very large.

There are two reasons for yielding inconsistent cycles. One
is due to the spectral drift between domains and the other one
is yielded by the undistinguishable source classes. By using the

Algorithm 1: AALDA Approach.

Input: Source domainDS = {(x7,y7)}=,, Target
domainD; = {(x})}}~,, N denotes the batch size, M is
the max number of iteration, B"and B}" denote the batch
data for two domains, m = 1, ...,M.

Output: The predictions of target data

1. Initialization:

Randomly initializing the parameters of feature extractor
Gy and the classifier G..

2. Loading batch data:

B?"= BatchSample(Dg, N)
B} = BatchSample(D;, N)
3. Training: for m = 1 — M do
(1) Generating embeddings of both domains:
G/(BI"). G4(B")

2) Obtalnmg the first-step transition matrix:

Wst «+ G (BT)!G¢(B}), P + softmax (W*')

(2) Obtaining the second-step transition matrix:

Y+ Softmax(G (Gf(B™)))

W Z Y!#6 (y5, ), P« softmax(W**)

“4) Obtalnlng the associations of source
data:P5t* « Pstpts
(5) Minimizing the objective loss function:

I'Illé’l Lclf + ﬁlealk+ /B2Lvisit
fiYe
end for
4. Inference: Predicting target data by the feature extractor

Gy and the classifier G..

walking loss to penalize the inconsistent cycles, an aligned and
discriminative feature representation can be achieved.

If there exists spectral drift between domains, one target class
may become spectrally similar to two different source classes. As
a result, two different source classes are falsely associated with
the target class, resulting in inconsistent cycles and walking loss.
By minimizing the loss using the network, feature alignment can
then be achieved. Using the multitemporal Hyperion HSIs on
Botswana (BOT), Fig. 3(a)—(b) shows an example to illustrate
the spectral drift of class 9 in BOT July—May data pairs. Fig. 3(a)
plots the mean spectra with variances of source class 7 and class
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9, and plots the target mean spectra with variances from class
9. It can be seen that the target spectra from class 9 are similar
to two different source classes due to the spectra drift. We also
show the scatterplot of all the points in these classes using two
spectral bands in Fig. 3(b). The relationships between all the
points can be better visualized. In this case, source data from
class 7 and class 9 will be falsely associated with the target data
of class 9, and thus inconsistent cycles between the two source
classes are produced.

If two source classes have overlapping spectra and are difficult
to distinguish, their associations with target data will be similar.
If a target class is spectrally similar to one of the source class,
it will be similar to the other one as well. Therefore, the two
source classes will be falsely associated with the target class.
This false association is yielded due to the undistinguishable
source classes, and therefore by minimizing the walking loss
using the network, the features of the two source classes become
discriminative. Fig. 3(c) and (d) illustrates two “similar” source
classes and the resulted false association using BOT May-July
data pairs. Fig. 3(c) includes the mean spectra of source class 5
and class 7, and target class 5. It can be observed that the two
source classes have very similar spectral properties (blue curve
and pink curve). Fig. 3(d) shows the scatterplot of these classes
with two spectral bands. The overlapping between the two source
classes can be clearly observed, and the target samples are close
to both of them. Therefore, the two source classes will be falsely
associated with the target class.

2) Cross-Domain Similarity Metrics: The two-step transi-
tion probability matrices P and P* play the most important
role in the AALDA method, which are calculated from the
cross-domain similarity matrices W* and W®, respectively.
Using the network-generated features, the W* is expressed as

Wi =Gp(x5) " (Gr(x)). (8)

Then, the first-step transition P* can be defined by softmaxing
W+ over rows
exp (W3t
Pff = (softmax (WSt))jj = M C))
‘ T Doy exp (ijt,)

The second similarity matrix W* is obtained from the
source labels and the target probability prediction results. Let
Y,/€R'*€ denotes the probabilistic prediction result of target
data x;/, and Y, represents the probability of x,’ belonging to
the cth class. The similarity between x;* and x;’ is expressed as

C
Wi =" Y15 (yi, ).
k=1

(10)

If x;* belongs to 2y, the similarity equals to the probability
of x; belonging to the cth class. The value of W;f also equals
the inner product of the labeled encoding y,;* and probability
prediction y;'.

Then, the second-step transition probability is

Wis
P's = (softmax (W™)) = exp (W0)

T e (W) (1)
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With these two different similarity matrices, the cycle consis-
tency criterion is augmented to be more robust. And the model
will generate domain-invariant and discriminative features by
alleviating the spectral drift between domains and the spectral
overlapping between source classes.

C. Visiting Loss

The walking loss promotes the correct associations be-
tween source data and target data, but it cannot guarantee that
every target sample have connections with source data. If some
target samples are not associated with source data, these samples
will not participate the network training, and the feature extrac-
tion is only determined by a portion of target data. Therefore,
it is expected that all the target samples are aligned to the
corresponding source data. The visiting loss is thus introduced
to enforce every target sample to be “visited” by source samples

[33], which is defined as
Luisit = Le(p"", v) (12)

where L. denotes the cross-entropy loss function. The jth ele-
ments in v€ R"*! and p** € R"*! are defined as

13)

v = —
J
Ty

visit __ st
D; = E Pij

x;€XS

(14)

where P?;- denotes the transition probability from the ith
source sample x;* to the jth target sample x;’. The p;"" is
the summation of the transition probabilities between x; to
all the source samples. It represents the summarized asso-
ciation with sample x;’ to the source domain. The vector
puisit — [pyisit pyisit | prisit] ¢ R™*! denotes the asso-
ciations with all the target samples to source domain. By using
the visiting loss function, all the target samples are constrained
to be associated with source samples. The procedure of AALDA
is summarized in Algorithm 1.

III. EXPERIMENTAL RESULTS AND ANALYSIS

Experiments are conducted on two hyperspectral remote sens-
ing images, i.e., Botswana (BOT) dataset and Kennedy Space
Center (KSC) dataset, to validate the effectiveness of the pro-
posed approach. The experiments were implemented with the
deep learning framework TensorFlow and were executed on
NVIDIA GeForce RTX 2080.

A. Experimental Datasets

The BOT dataset was acquired by the NASA EO-1 Hype-
rion instrument. The Hyperion sensor on EO-1 acquires data
at 30 m pixel resolution over a 7.7 km strip in 242 bands
covering the 400-2500 nm portion of the spectrum in 10-nm
spectral resolution. Uncalibrated and noisy bands that cover
water absorption features were removed, and the remaining 145
bands were included as candidate features. Three multitemporal
images were collected by the Hyperion over the Okavango
Delta, Botswana, in May, June, and July 2001. Two of them,
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TABLE I
CLASS NAME AND NUMBER OF SAMPLES OF BOT AND KSC IMAGES

BOT KSC
ID Class Name May June July ID Class Name KSCl1 KSC2
Water 297 361 185 Scrub 761 422
2 Primary Floodplain 437 308 96 2 Willow Swamp 243 180
3 Riparian 448 303 164 3 Cabbage Palm 256 431
Hammock
. Cabbage
4 Firescar 354 335 186 4 Palm/Ouk 252 132
5 Island Interior 337 370 131 5 Slash Pine 161 166
6 Woodlands 357 324 169 ¢  OakBroadleaf ), 274
Hammock
7 Savanna 330 342 171 7 Hardwood 105 248
Swamp
8 Short Mopane 239 299 152 8 Graminoid 431 453
Marsh
9 Exposed Soils 215 229 96 9 Salt Marsh 419 156
10 Water 927 1392
Total 3014 2871 1350 3784 3854
TABLE II
OA (OA%) OF DIFFERENT UNSUPERVISED DA ALGORITHMS
Data sets SO DANN MADA DAN D-Coral ST ADA AALDA
May-June 87.86 88.23 90.54 89.91 90.32 92.84 92.61 93.79
June-May 79.21 78.15 80.19 84.97 87.36 85.60 86.89 91.14
May-July 84.56 86.79 89.97 87.48 89.48 90.86 90.95 91.25
BOT
July-May 66.77 68.69 72.93 73.78 75.30 82.45 82.16 83.59
June-July 94.81 94.47 94.93 91.84 94.49 95.27 95.13 95.30
July-June 89.75 89.40 89.80 90.13 91.47 94.83 93.66 94.50
KSCI1-KSC2 62.78 65.12 71.79 64.82 68.56 67.02 71.89 73.53
KSC
KSC2-KSCl1 61.26 61.00 74.85 63.26 61.99 69.39 71.54 75.03

June and July images, have the same field-of-view. And the
other one, the May image, was acquired over a neighboring
but overlapping area. The three images with 1476 x 256 pixels
include nine identified classes which have been shown in Table I
. We can pick out two of the three images as source and target
data, respectively. Thus, six data pairs are available for our DA
experiments. The pseudo-color image and label information in
May, June, and July are shown in Fig. 4.

The NASA AVIRIS (Airborne Visible/Infrared Imaging Spec-
trometer) instrument acquired data over the Kennedy Space
Center (KSC), Florida, on March 23, 1996. AVIRIS acquires
data in 224 bands of 10 nm width with center wavelengths
from 400-2500 nm. The KSC data, acquired from an altitude
of approximately 20 km, have a spatial resolution of 18 m. After
removing water absorption and low SNR bands, 176 bands are
used for the analysis. KSC data contain two spatially disjoint

images, where one image includes a protected wildlife area and
the other one has experienced anthropogenic impacts. The two
images are named as Areal and Area2 of KSC and are denoted
as KSC1 and KSC2. Both of the two images contain ten classes
which have been listed in Table 1. Discrimination of land cover
for this environment is difficult due to the similarity of spectral
signatures for certain vegetation types. The pseudocolor image
and label information are shown in Fig. 5.

For BOT dataset, we chose multitemporal images for source
and target data. Thus, there are six data pairs that were used
for DA experiments, which are named as “May-June,” “June—
May,” “May-July,” “July-May,” “June—July,” and “July—June.”
In the scheme of “May—June,” there are 3014 samples and 2871
samples in source data and target data, respectively.

For KSC dataset, images at different locations are chosen for
domain adaptation. We name two data pairs as “KSC1-KSC2”
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TABLE III
KAPPA COEFFICIENTS OF DIFFERENT UNSUPERVISED DA ALGORITHMS

Data sets SO DANN MADA DAN D-Coral ST ADA AALDA
May-June 0.865 0.869 0.893 0.886 0.891 0.920 0.922 0.923
June-May 0.762 0.748 0.776 0.830 0.857 0.838 0.855 0.901
May-July 0.825 0.850 0.886 0.858 0.881 0.897 0.884 0.897

BOT

July-May 0.628 0.647 0.695 0.704 0.721 0.800 0.772 0.808

June-July 0.942 0.937 0.943 0.908 0.938 0.947 0.936 0.949

July-June 0.880 0.881 0.885 0.889 0.904 0.944 0.926 0.938

KSCI1-KSC2 0.545 0.577 0.673 0.575 0.616 0.601 0.670 0.675

KSC
KSC2-KSCl1 0.556 0.545 0.698 0.564 0.555 0.648 0.646 0.705
TABLE IV
CLASSIFICATION ACCURACY OF EACH CLASS OF BOT “MAY-JUNE” DATA
1D Class SO DANN MADA DAN D-Coral ST ADA AALDA

1 Water 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
2 Primary Floodplain 83.44 94.48 96.85 98.38 99.35 96.75 98.38 98.70
3 Riparian 92.07 89.11 90.83 90.43 87.13 92.08 93.40 91.42
4 Firescar 100.00 99.70 99.43 100.00 99.10 100.00 100.00 100.00
5 Island Interior 96.49 99.73 98.92 98.11 100.00 98.65 99.73 99.19
6 Woodlands 43.83 62.04 59.07 50.93 62.65 60.80 55.86 61.73
7 Savanna 99.12 92.11 97.95 93.57 82.75 99.12 99.12 99.42
8 Short Mopane 95.65 86.62 98.63 98.33 94.31 99.33 99.67 99.33
9 Exposed Soils 68.12 59.83 63.14 70.31 79.91 86.90 82.10 86.03
OA 87.86 88.23 90.54 89.91 90.32 92.84 92.61 93.79

AA 89.19 87.07 89.43 88.84 89.47 92.53 92.06 93.20

kappa 0.865 0.869 0.893 0.886 0.891 0.920 0.922 0.923

TABLE V
RUNNING TIME(S) OF ONE STEP TRAINING OF DIFFERENT METHODS ON TWO DATASETS
Dataset SO ‘ DANN ‘ MADA ‘ DAN ‘ D-Coral ‘ ST ‘ ADA ‘ AALDA
May-June 0.012 0.029 0.049 0.026 0.024 0.047 0.055 0.071
KSC1-KSC2 0.016 0.030 0.051 0.027 0.025 0.048 0.058 0.074

and “KSC2-KSC1.” For “KSC1-KSC2” data pairs, we use the
3784 samples and 3854 samples as source data and target data,
respectively.

For HSIs, spectral drift often occurred in the spa-
tially/temporally separate images, due to different conditions
such as illumination, topography, soil moisture, and vegeta-
tion composition. Using BOT May-June, May-July, and KSC1-
KSC2 data pairs, Fig. 6 illustrates the spectral drift between
domains and its influence on classification. Fig. 6(a) shows the
mean spectra of source classes 2 and 5 and target class 2. The
spectral drift can be observed between the pink curve (source
class 2) and the orange curve (target class 2). Moreover, the
target spectra become closer to another source class (class 5,

blue curve), and thus the target data from class 2 may be falsely
predicted as class 5 if the classifier is only trained by source
labeled data. Fig. 6(b) and (c) obtain the similar observations
that spectral drift of a category may yield misclassification and
the DA can be applied to solve the problem.

B. Implementation Detail

The compared DA networks include the multikernel MMD
strategy-based DAN [21], CORAL-based network [23], class-
wise centroid alignment-based semantic transfer (ST) [35],
adversarial learning-based DANN [25], multiple domain
discriminators-based MADA network [26], and the associative
domain adaptation (ADA) network [33].
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Fig. 4. Hyperion images of BOT in May (a), June (c), and July (e). (b) Ground truth of image in May. (d) Ground truth of image in June. (f) Ground truth of
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Fig. 7.

Alignment performance of AALDA for BOT “May-June,” “June—May,” and “July-May” data. (a) “May-June” data pair before alignment. (b) “June—-May”

data pair before alignment. (c) “July-May” data pair before alignment. (d) “May-June” data pair after alignment. (e) “June—-May” data pair after alignment.

(f) “July-May” data pair after alignment.

In the proposed AALDA, the feature extractor is composed of
three fully connected layers (128, 64, and 32 units in sequence).
The classifier is composed of a softmax output layer with di-
mensionality being set to the number of classes. Each hidden
layer employs the Leaky ReLU [36] activation function. Note
that we did not use BN [37] or dropout [38] to avoid affecting
the performance of adaptation. All the compared methods used
the feature extractor and classifier with the same architecture.

Data preprocessing is applied before training to normalize
each spectral band with standard normal distribution N(0,1).
Thus, the overall distribution shift across domains will be partly
reduced. The same data preprocessing method was also applied
to the compared approaches.

We used Adam [39] to optimize the network in all experi-
ments. In AALDA, the cycle associations may be affected if
a mini-batch does not include all classes. Thus, we propose to
select a larger batch so that all classes can be included. The
mini-batch size is set as 128 in AALDA and all the comparison
approaches. The learning rate is set 0.001 initially and decay
by a factor of 0.33 every 4000 steps. The model trained on
all datasets can converge in less than 800 epochs. The tradeoff
hyper-parameters 31 and S5 control the ratio between walking
loss and the visiting loss. We tested the ratio in the range 1:2,
1:1, 2:1, and 3:1. Meanwhile, we introduced a factor « to alter
the value of 81 and (5. The factor o was selected from 0.5,
1.0, 1.5,2.0, 2.5, 3.0, 3.5, and 4.0. In the compared approaches,

DAN and deep CORAL have a weight for the MMD loss and
CORAL loss, respectively, DANN and MADA has a weight
for the domain confusion loss, ST contains a parameter for the
semantic transfer loss, and ADA has a ratio in the associate loss.
Their recommended values were used.

C. Alignment Performance of AALDA

The alignment performance of AALDA is shown in Fig. 7.
We used t-SNE [40] method to visualize the high-dimensional
embedding in 2-D. As shown in Fig. 7, source embeddings
and target embeddings are represented by dots and pentagrams,
respectively, and different classes shown in different colors.
In Fig. 7(a)—(c), we plotted the embedding generated by the
feature extractor which is trained on labeled source domain
only. As a contrast, we plotted the embedding obtained from the
feature extractor, which employed the AALDA training scheme
in Fig. 7(d), (e), and (f). There are biases between each source
class and target class. By employing the AALDA method, the
distribution of each source class and each corresponding target
class are well aligned. The comparison verified the outstanding
alignment performance of the proposed AALDA method.

D. Experiment Results and Comparison

The evaluation criteria used in this article include overall
accuracy (OA), average accuracy (AA), and kappa coefficients
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(2)

Classification results of the target image in BOT “June-May” and “June-July” data pairs. (a) SO result without any adaptation for “June-May” data pair.

(b) AALDA result for “June-May” data pair. (c) Reference obtained by using target labeled data as training data for “June-May” data pair. (d) SO result without any
adaptation for “June-July” data pair. (¢) AALDA result for “June-July” data pair. (f) Reference obtained by using target labeled data as training data for “June-July”

data pair. (g) Class legend.

(Kappa). OA is aratio between the number of correctly classified
testing samples and the number of testing samples. AA is the AA
of all the classes. Kappa is a statistic that is used to measure the
agreement of classification for all classes. The OA and Kappa
of all above algorithms on BOT and KSC dataset can be found
in Tables II and III, respectively. The unsupervised adaptation
results on eight data pairs as adaptability may vary across
different transfer tasks. In addition, “Source only” (SO) refers
to method which trained only on source domain. The gap on OA
between SO and other algorithms represent the transferability
of these algorithms. The results verify that our method achieves
promising performance and outperforms the compared methods.
It can be seen that the SO scheme without any transfer strategy
still achieved satisfactory performance on some data pairs with
small spectral drift, such as BOT “June-July” and “July-June.”
The SO scheme obtained low accuracies on some data pairs with
big spectral drift, such as BOT “July-May,” “KSC1-KSC2,” and
“KSC2-KSC1.” Almost all the compared methods can obtain
higher accuracies than the SO scheme, which demonstrates their
positive transfer learning ability. The proposed AALDA out-
performs DANN, MADA, DAN, and D-Coral. It demonstrates
that enforcing the cycle consistency between domains obtains
better feature alignment than other methods which only align the
marginal distribution of two domains. AALDA obtained almost
5%-15% improvement on the accuracy with respect to the
SO scheme. AALDA utilizes both the feature-based similarity

Fig. 9. Classification results of local regions. (a) SO result without any
adaptation for “June-May” wetland area. (b) AALDA result for “June-May”
wetland area. (c) Reference obtained by using target labeled data as train-
ing data for “June-May” wetland area. (d) SO result without any adaptation
for “June-July” upland area. (¢) AALDA result for “June-July” upland area.
(f) Reference obtained by using target labeled data as training data for “June-
July” upland area.

and the similarity based on probabilistic prediction results to
construct the roundtrip transitions. The AALDA performs better
than ADA, demonstrating the effectiveness of introducing the
prediction-based similarity measurement.
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Fig. 10.  Sensitivity analysis of parameters in our adaptation using BOT data pairs. (a) BOT “May-June.” (b) BOT “June-May.” (c) BOT “July-May.”

The performance of classification on per-class basis shows
transfer ability in a detailed way. We picked BOT “May-June”
data pair to conduct this experiment and the results showed in
TableIV.Itcanbe seen that the AALDA algorithm outperformed
on almost all classes, suggesting that the AALDA can transfer
knowledge in different classes. Moreover, the AALDA achieved
the most improvement on some classes which are different to be
classified correctly, such as class 6 and class 9.

E. Classification Results of the Whole Image by the AALDA

We selected BOT “June-May” and “June-July” data pairs to
illustrate the performance of the classification on the whole im-
ages. The classification results of the whole images are shown in
Fig. 8. The results of the SO scheme without adaptation strategy
for BOT “June-May” and “June-July” are shown in Fig. 8(a) and
(d), respectively. Fig. 8(b) and (e) shows the classification results
of the proposed AALDA approach. Due to the lack of ground
truth for the whole image, we train a classifier with target labeled
data and regard the output of the classifier as “reference.” As
shown in Fig. 8, we can observe that the results of AALDA are
very similar to the “reference,” which demonstrate the transfer
ability of the AALDA approach.

To observe the details, we chose two local regions from the
two data pairs in Fig. 8 and enlarged in Fig. 9. The BOT dataset
includes two major eco-systems: upland and wetland [41]. We
selected a wetland and an upland in the BOT “June-May” and
“June-July” data pairs, separately. For the BOT “June-May”
data pair, the most part of the selected wetland local region are
samples from class 1 (Water, black), class 2 (Primary Flood-
plain, yellow), and class 3 (Riparian, light green). As shown
in Fig. 9(a)—(c), the most of samples in class 3 (Riparian, light
green) were misclassified as class 6 (Woodlands, purple) in the
results of SO scheme without any adaptation. Fig. 9(b) shows the
results of AALDA and is similar to the “reference” in Fig. 9(c).
Similarly, Fig. 9(d)—(f) are results for an upland local area, which
mainly contains samples from class 6 (Woodlands, purple). But
many samples were misclassified as class 3 (Riparian, light
green). After AALDA, most of samples in class 3 (Riparian,
light green) can be correctly classified. It demonstrates that the
AALDA provided satisfactory classification performance for the
HSIs.

E. Sensitivity Analysis of the Parameters

In the proposed AALDA, two hyper-parameters [3; and [
control the importance of the walking loss and the visiting loss.
We set the ratio 31 : (5 as 1:2, 1:1, 2:1, and 3:1. Meanwhile, «
alters the value of 31 and (35, and can balance the weight between
adaptation loss and the source classification loss. The perfor-
mance of different hyper-parameters on the BOT “May-June,”
“June-May,” and “July-May” data pairs is shown in Fig. 10.
Specifically, when the ratio 31 : [39 is set as 2:1, AALDA can
achieve superior performance. Therefore, we suggest setting the
ratio 31 : [ as 2:1 in the AALDA approach.

G. Computation Cost

The running time (training) of each method on BOT May-June
data pair and KSCI-KSC2 data pair are shown in Table V.
We implemented all the experiments with the TensorFlow deep
learning library on a workstation equipped with an Intel Core
i7-8700 CPU (16GB RAM) and a Nvidia GTX 2080 GPU with
8 GB memory. As shown in Table V, MADA and ST that employ
conditional distribution adaptation is more time-consuming than
DANN, DAN, and D-Coral that perform margin distribution
adaptation. ADA and AALDA cost more than the other meth-
ods due to the calculation of the transition probability matrix.
AALDA costs the most since two different transition probability
matrixes need to be computed, but the computational time is still
acceptable.

IV. CONCLUSION

In this article, we proposed a novel method for cross-domain
classification of remote sensing images by utilizing two simi-
larity metrics to describe the relations between domains. The
proposed AALDA approach employs the criterion of cycle con-
sistency to generate features that are both domain-invariant and
discriminative. Experiments on hyperspectral remote sensing
images demonstrate its effectiveness compared to other unsuper-
vised DA methods. Moreover, the proposed AALDA approach
outperforms ADA, indicating that the proposed prediction-based
similarity metric is able to promote consistent cycles. In the
future work, we may use other novel similarity metric to conduct
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the cycle consistency. In addition, attention mechanism can also
be introduced to DA network [32].
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