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Abstract—Anomaly target detection methods for hyperspectral
images (HSI) often have the problems of potential anomalies and
noise contamination when representing background. Therefore, a
spectral–spatial hyperspectral anomaly detection method is pro-
posed in this article, which is based on fractional Fourier transform
(FrFT) and saliency weighted collaborative representation. First,
hyperspectral pixels are projected to the fractional Fourier domain
by the FrFT, which can enhance the capability of the detector to
suppress the noise and make anomalies to be more distinctive. Then,
a saliency weighted matrix is designed as the regularization matrix
referring to context-aware saliency theory and combined with the
FrFT-based collaborative representation detector. The saliency-
weighted regularization matrix assigns different pixels with differ-
ent weights by using both spectral and spatial information, which
can reduce the influence of the potential anomalous pixels embed-
ded in the background when applying collaborative representation
theory. Finally, to further improve the performance of the proposed
method, a spectral–spatial detection procedure is employed to
calculate final anomaly scores by using both spectral information
and spatial information. The proposed method is compared with
nine state-of-the-art hyperspectral anomaly detection methods on
six HSI datasets, including two synthetic HSI datasets and four
real-world HSI datasets. Extensive experimental results illustrate
that the proposed method’s detection performance outperforms
other nine well-known compared methods in terms of area under
the receiver operating characteristic (ROC) curve values, visual
detection characteristics, ROC curve, and separability.

Index Terms—Collaborative representation, context-aware
saliency, fractional Fourier transform, hyperspectral anomaly
target detection, spectral–spatial information.
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I. INTRODUCTION

IN RECENT years, hyperspectral remote sensing has at-
tracted much attention on distinguishing different land sur-

face materials. Hyperspectral image (HSI) is a 3-D data cube
that contains rich spectral and spatial information simultane-
ously [1]. The spectral resolution of an HSI is no more than 10
nm, and the spectral range is from visible to even far-infrared
spectrum. Therefore, an HSI usually has hundreds of spectral
channels and can provide continuous spectral curves of the
materials. Compared with traditional visible or multispectral
remote sensing data, hyperspectral data contain richer spectral
information, which are more suitable for many remote sens-
ing applications, such as classification, target detection, and
anomaly detection [2], [3].

Hyperspectral anomaly detection can be seen as a special
type of target detection, where there is no prior information for
the target object. Therefore, a target is called as an anomaly in
the anomaly detection task. For the pixel under test (PUT) in
an HSI, it is classified as an abnormal pixel or a background
pixel by a hyperspectral anomaly detection method. As there
is no requirement for any prior information [4], hyperspectral
anomaly detection is viewed as an unsupervised binary clas-
sification problem [5]. As there is not enough information in
practical applications, hyperspectral anomaly detection has been
successfully applied in many important areas and scenarios [6],
such as environmental scenes monitoring, mineral exploration,
and military investigation [7].

In general, anomalies usually occur with low probabilities
in an HSI and their spectral curves are significantly different
with those of the background pixels [8]. To detect anomalies in
HSIs correctly, many kinds of hyperspectral anomaly detection
methods have been designed and proposed in the past decades.
The well-known Reed–Xiaoli (RX) method is the most typical
anomaly detection algorithm for HSIs in this field [9]. The RX
method uses Mahalanobis distance to calculate the difference be-
tween the PUT and the background pixels. When the whole HSI
is directly used for estimating the distribution of the background,
the RX method is called as the global version of RX (GRX) [10].
And if a local sliding window is adopted to estimate the reference
background, it is called as the local RX (LRX) [11]. Although
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the RX method is used as a benchmark method for hyperspectral
anomaly detection, its false-alarm rate (FAR) is usually high and
its detection performance is not satisfactory. The main reason is
that the RX method assumes that the distribution of the back-
ground is the multivariate normal Gaussian distribution [12],
but the Gaussian distribution is too simple to model complex
characteristics of the real HSIs accurately [13]. Besides, the
problem that some anomalies and noise may contaminate the
background can also reduce its detection performance [14].

In order to reduce the influences of the problems mentioned
above, many revisions of the RX method have been proposed to
get a high detection performance. For example, the weighted-
RXD (WRX) method aimed to reduce the influence of anomalies
on the covariance matrix when estimating background statis-
tics [15]. The blocked adaptive computationally efficient outlier
nominator (BACON) method was proposed in a paper by Billor
et al. [16], which updates the background information based
on an iteration strategy to solve the background contamination
problem [17]. By taking advantage of nonlinear kernel function,
the kernel-RX (KRX) is proposed to map the original data to a
high-dimensional space, which can distinguish anomalies from
the background pixels more easily in that feature space [18]. Fur-
thermore, a modified KRX method was proposed in apaper by
Khazai and Mojaradi [19] to improve the calculation efficiency
of the traditional KRX. Du and Zhang [20] proposed the random-
selection-based anomaly detector method, which adopted a
sample random selection process to get a purified background
set by picking out some representative pixels iteratively. The
cluster-based anomaly detector, proposed by Carlotto [21], uses
the k-means clustering method to segment the whole HSI and
get a purer background. In order to suppress the noise in the
background, the principal component analysis (PCA) technique
is employed as a preprocessing procedure before using the RX
method [22].

However, although these methods show their ability to im-
prove the performance of RX, the basic distribution assumption
for the background is not changed. Generally speaking, this
assumption is not in line with the fact that the background
distribution is very complicated in real-world HSIs and cannot
be simply described as the Gaussian distribution [23]. To avoid
estimating the statistical distribution of the background, other
anomaly detection methods have been successfully proposed for
real-world HSIs. As sparse representation (SR) theory has been
successfully applied to image processing applications, some
anomaly detection methods based on SR have been proposed
for HSIs. For instance, a sparse representation hyperspectral
anomaly detector was proposed by Chen et al. [24]. This method
is based on the assumption that a background pixel can be
well represented by only a few atoms from a sparse dictionary.
Zhang et al. [25] proposed a hyperspectral anomaly detection
method by using the low-rank and sparse matrix decomposition
technique. This method decomposes the HSI data matrix into
three parts: a low-rank matrix, a sparse matrix, and a noise
matrix, which can provide more comprehensive information
about the background pixels and anomalies. The SR-based
methods have the advantage that there is no need to set up
an assumption for the statistical data distribution of the HSI

dataset [26]. To preserve the local geometrical structure and spa-
tial information in the HSI, an anomaly detection method based
on graph and total variation regularized low-rank representation
(GTVLRR) is proposed [27]. But they also have a drawback
that it is hard to select a suitable sparsity level as there is no
prior information that can be used. Li and Du [28] proposed
a collaborative representation-based anomaly detector (CRD)
for HSIs. Compared to SR-based methods, the CRD method
utilizes the constraint of l2 norm minimization, and the pixel
under test is represented by all background pixels, which is
easier to implement. Su et al. [29] combined PCA with CRD
to propose a new anomaly detection method, in which the usage
of PCA is to extract the main information of the background and
to remove anomalies and noise in the background.

There are still other hyperspectral anomaly detection methods
proposed in the related literature, such as the supporting vector
data description (SVDD) method [30]. In SVDD, a minimum
hypersphere boundary is calculated according to the HSI data,
and pixels beyond the boundary are decided as anomalies. The
anomaly detection methods mentioned above are most only
based on spectral signatures. As an HSI is viewed as a 3D data
cube [31], it not only contains abundant spectral information,
but also contains the spatial information. By taking advantage
of these characteristics, anomaly detection methods have been
designed by making use of both spatial information and spectral
information [32]. For example, local sparsity divergence (LSD)
detector proposed in paper [33] is a spectral–spatial anomaly
detection method. The assumption of the LSD method is that an
anomaly pixel cannot be represented by only a few background
pixels selected from its spectral neighbors or its spatial neighbors
simultaneously.

Although these hyperspectral anomaly detection methods
have proven their effectiveness in related studies, some other
important issues can also affect the detection performance of
these methods. The first problem is that the background infor-
mation is usually contaminated by the anomalies or noise [34].
As real-world HSIs commonly contain various materials with
different spectral properties, noise is inevitably included, which
can deteriorate the detection performance when modeling the
background. Besides, when using the whole HSI to extract
background pixels, anomalies may interfere the estimation of
the background. To reduce these effects, a sliding rectangular
window or dual window is adopted to select reliable background
pixels. However, some anomalies can also be selected as back-
ground pixels, which will reduce the detection performance of
the method. The second problem is how to make use of the
rich spatial information of HSIs, as taking advantage of both
spatial information and spectral information can improve the
performance of an anomaly detection method [35].

In order to solve these two issues, a novel spectral–spatial
anomaly target detection method based on fractional Fourier
transform (FrFT) , context-aware saliency, and collaborative
representation theory (SSFSCRD) is proposed for HSIs in this
article. First, an FrFT-based CRD is designed and the original
HSI data are projected to the FrFT domain. By taking advantage
of the fractional Fourier transform, the noise suppression and
discrimination capability of the detector between anomalies and
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background can be enhanced [36]. Then, a saliency-weighted
matrix is proposed for the FrFT-based CRD as the regularization
matrix. Inspired by the visual saliency theory, the similarity of
two pixels are not only depended on their spectral informa-
tion, but also related with their spatial position information.
The new saliency-weighted regularization matrix used in the
collaborative representation theory is designed based on this
idea, which can reduce the effect of the abnormal pixel infor-
mation mixed in the background when applying collaborative
representation theory. Hence, the background can be represented
more accurately and precisely. Finally, the SSFSCRD method
also contains a spectral–spatial detection procedure to get the
final results, which can use both spectral information and spatial
information to enhance the anomaly detection performance.
All of these three parts can ensure that the performance of
the proposed SSFSCRD method is better when compared with
other state-of-the-art detection methods. Extensive experiments
on two synthetic HSI datasets and four real-world HSI datasets
are carried out to show the effectiveness and performance of the
proposed method. When compared with nine state-of-the-art hy-
perspectral anomaly detectors, the detection performance of the
proposed method outperforms other compared detectors in terms
of area under the receiver operating characteristic (ROC) curve
(AUC) values, visual detection characteristics, ROC curves, and
separability. The main contributions of the proposed SSFSCRD
method are as follows.

1) The FrFT is employed to design the FrFT-based CRD in
the proposed method. By taking advantage of the FrFT,
not only the influence of noise on the detection accuracy
can be reduced, but also the discrimination between the
background and anomalies can be improved to some ex-
tent.

2) Learning from the relevant principles of visual saliency
theory, a saliency-weighted regularization matrix is pro-
posed according to context-aware saliency and combined
with the FrFT-based CRD. The new regularization ma-
trix uses both spectral and spatial information to set
the weights for the background pixels. By adjusting the
weights of each pixel in the selected background, the in-
terference of potential anomalies to the detection accuracy
is reduced.

3) A spectral–spatial detection procedure is designed and
integrated in the proposed method to get the final detection
results. Through the comprehensive utilization of both
spectral information and spatial information, the detection
performance of the proposed SSFSCRD method is further
improved.

The remainder of this article is structured as follows. Section II
introduces the details of the proposed method. The experimental
datasets, settings and results of the proposed method and other
methods are given in Section III. Section IV discusses and
analyzes the parameters of the proposed method. Finally, the
conclusion of this article is outlined in Section V.

II. THE PROPOSED METHOD

The proposed SSFSCRD method mainly includes three parts.
In the beginning, the HSI data is projected to fractional Fourier

domain by using FrFT. Then, a saliency-weighted FrFTCRD is
used to get the preliminary detection result of the HSI. Finally,
a spectral-spatial detection procedure is applied to get the fi-
nal anomaly detection result. The framework of the proposed
method is shown in Fig. 1.

A. Collaborative Representation-Based Detector

In order to explain the CRD method clearly, some math-
ematical definitions and notations are given first. Let X =
{xi}M×N

i=1 ∈ RL×M×N be a 3D HSI data cube, where L is the
number of spectral bands. xi is the ith spectral vector which can
be written as xi = (xi1, x

i
2, . . . , x

i
L)
T . Denote the total number

of pixels inX asD, whereD =M ×N , andX can be rewritten
as a 2-D matrix X = {xi}Di=1 ∈ RL×D.

The basic idea of collaborative representation theory is that a
pixel belonging to the background of an HSI can be represented
by its spatial neighborhoods, while an anomaly cannot. The
spatial neighborhoods of a PUT form its background set, which
can be considered as a reconstruction dictionary used in the SR
theory. A sliding dual-window is adopted to select the spatial
neighborhoods of a PUT, and the pixels between the inner
window and the outer window are used as the background set, or
as atoms of the dictionary. For an under test pixely, letwin be the
size of the inner window andwout be the size of the outer window,
and the pixel number of the background set can be calculated
as s = wout × wout − win × win. Therefore, the background set
can be denoted as a matrix Xs = {xj}sj=1, where xj represents
a pixel between the outer and inner windows.

For an under-test pixel y, its collaborative representation
weight vector α is minimized by the following formulation:

argmin
α

||y −Xsα||+ λ||α||22 (1)

where λ is a Lagrange multiplier.
(1) is equivalent to the following formulation:

argmin
α

[αT (XT
sXs + λI)α− 2αTXT

s y]. (2)

The weight vector α can be calculated by taking derivative
with regard to α of (2) and setting the resultant equation to zero,
which can be written as the following equation:

α = (XT
sXs + λI)−1XT

s y. (3)

Considering the spectral similarity among the under-test pixel
and its each surrounding pixels in the matrix is different, so a
regularization matrix Γy is introduced as

Γy =

⎡
⎢⎢⎣
||y − x1||2 . . . 0

...
. . .

...

0 . . . ||y − xs||2

⎤
⎥⎥⎦ (4)

where x1,x2, . . . ,xs are the elements of the set Xs.
Adding the regulation Γy to (1), the optimization function is

modified as

argmin
α

||y −Xsα||+ λ||Γyα||22. (5)

Accordingly, the final result of α can be written as

α = (XT
sXs + λΓTyΓy)

−1XT
s y. (6)
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Fig. 1. Framework of the proposed method.

With the matrix Xs and the weight vector α, the PUT y can
be reconstructed as

ŷ = Xsα (7)

where ŷ is the reconstructed pixel of y.
The residual error between y and its reconstructed pixel ŷ can

be calculated as

r1 = ||y − ŷ||2 = ||y −Xsα||2. (8)

If r1 is larger than a given threshold σ, then the PUT is
determined as an anomaly.

B. Fractional Fourier Transform-Based CRD

The FrFT is an extension version of the traditional Fourier
transform (FT) [37]. By using FrFT, HSI pixels can be trans-
ferred into the fractional Fourier domain, and the features ob-
tained in this domain contains the information of both original
spectral domain and frequency Fourier domain. Projecting HSI
data to the fractional Fourier domain can not only suppress the
noise in the background, but also increase the discrimination
of anomalies. By taking advantage of these merits mentioned
above, FrFT is combined with CRD (FrFTCRD) to process the
HSI data in the proposed method.

Let xi = (xi1, x
i
2, . . . , x

i
L)
T be a pixel in X = {xi}M×N

i=1 ,
and its representation through FrFT is denoted as ϕ(xi), where
ϕ(xi) = (xip(1), (x

i
p(2), . . . , x

i
p(L))

T can be calculated by the
following equation:

xip(u) =
1

L

L∑
f=1

xifKp(f, u) (9)

in which u and f are indices and p is the fractional order of FrFT.
In (9), Kp(f, u) is defined as

Kp(f, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Aφexp[jπ(f
2cotφ− 2fucscφ+ u2cotφ)]

, φ �= nπ

δ(f − u), φ = 2nπ

δ(f + u), φ = (2n± 1)π

(10)

where the rotation angle φ is related to p as φ = pπ
2 [38], and

Aφ can be figured out by

Aφ =
exp[−jπsgn(sinφ)/4 + jφ/2]

|sinφ| 12 . (11)

To implement FrFT into CRD, the new optimization problem
can be written as

argmin
α

||ϕ̃(y)− ϕ̃(Xs)α||+ λ||Γϕ̃(y)α||22 (12)

where ϕ̃(y) is the amplitude of ϕ(y), ϕ̃(Xs) = {ϕ̃(xj)}sj=1,
and Γϕ̃(y) is defined as

Γϕ̃(y) =

⎡
⎢⎢⎣
||ϕ̃(y)− ϕ̃(x1)||2 . . . 0

...
. . .

...

0 . . . ||ϕ̃(y)− ϕ̃(xs)||2

⎤
⎥⎥⎦ .

(13)

The weight vector α can be calculated by the following
equation:

α = (ϕ̃T (Xs)ϕ̃(Xs) + λΓTϕ̃(y)Γϕ̃(y))
−1ϕ̃T (Xs)ϕ̃(y). (14)

Then, the anomaly score is represented by

r1 = ||ϕ̃(y)− ϕ̃(Xs)α||2. (15)

C. Saliency-Weighted FrFTCRD

The regularization matrix Γy used in the CRD can assign
pixels in the background with different weights. These weights
are only calculated based on the spectral information, which
cannot well eliminate the influence of potential anomalies on the
background. To solve this problem, a new regularization matrix
is designed referring to the relevant principles of context-aware
saliency. The new regularization matrix can use both spectral and
spatial information to set the weights for the background pixels,
which can further reduce the influence of potential anomalies.
Combined with FrFT and CRD, a saliency-weighted FrFTCRD
is proposed for hyperspectral anomaly detection.

Detecting the salient regions of an image is a challenging
issue in the filed of computer vision. The context-aware saliency
detection method was proposed by Goferman et al. [39], and its
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basic idea is that salient regions are distinctive with respect to
both their local and global surroundings [40]. From the psycho-
logical point of view, human visual attention mechanism follows
four basic principles: local considerations, global considera-
tions, visual organization rules, and some prior information.

According to these four principles, the context-aware saliency
detection method defined a dissimilarity measure d between two
patches pi and pj of an image as [41]

d(pi, pj) =
dcolor(pi, pj)

1 + c× dposition(pi, pj)
(16)

where dcolor is the euclidean distance between patches pi and pj
in the color space, and dposition is the euclidean distance between
the positions of patches pi and pj .

It is easy to find that the dissimilarity measure is proportional
to the appearance difference and inversely proportional to the
positional distance. Based on this idea of saliency, we proposed
a hyperspectral dissimilarity measure to quantitatively represent
the dissimilarity between the under-test pixel y and a pixel xi in
the background set Xs. Let dposition be the relative positional dis-
tance between y and xi, the hyperspectral dissimilarity measure
dh can be defined as

dh(y,x
i) =

||y − xi||2
dposition(y,xi)

. (17)

By taking advantage of the hyperspectral dissimilarity mea-
sure dh, a new saliency-weighted regularization matrix ΓSy is
defined as

ΓSy =

⎡
⎢⎢⎢⎣

||y−x1||2
dposition(y,x1) . . . 0

...
. . .

...

0 . . . ||y−xs||2
dposition(y,xs)

⎤
⎥⎥⎥⎦ . (18)

This new saliency-weighted regularization matrix is com-
bined with FrFT and CRD to form a saliency-weighted
FrFTCRD method. The optimization function of the saliency-
weighted FrFTCRD method can be written as

argmin
α

||ϕ̃(y)− ϕ̃(Xs)α||+ λ||ΓSϕ̃(y)α||22 (19)

where ΓSϕ̃(y) is defined as

ΓSϕ̃(y) =

⎡
⎢⎢⎢⎣

||ϕ̃(y)−ϕ̃(x1)||2
dposition(ϕ̃(y),ϕ̃(x1)) . . . 0

...
. . .

...

0 . . . ||ϕ̃(y)−ϕ̃(xs)||2
dposition(ϕ̃(y),ϕ̃(xs))

⎤
⎥⎥⎥⎦ . (20)

Accordingly, the weight vector α can be calculated by the
following equation:

α = (ϕ̃T (Xs)ϕ̃(Xs) + λ(ΓSϕ̃(y))
TΓSϕ̃(y))

−1ϕ̃T (Xs)ϕ̃(y).
(21)

Then, the anomaly score of the saliency-weighted FrFTCRD
method can be figured out by

r1 = ||ϕ̃(y)− ϕ̃(Xs)α||2. (22)

Algorithm 1: The Framework of SSFSCRD Algorithm.
Input:
X: Three-dimensional hyperspectral image; win: the
inner window size; wout: the outer window size; p: the
fractional order; the regularization parameter λ; the
weighting coefficient β.

Output:
Anomaly detection map.

1: forall Pixels do
2: For each under test pixel y, obtain its background set

Xs

3: Project y and Xs to the fractional Fourier domain
by using (9)

4: Calculate the new saliency weighted regularization
matrix by using (18)

5: Calculate the weight vector α by using (21)
6: Calculate the anomaly score according to (22)
7: endfor
8: for all pixels do
9: For each under test pixel y, calculate its final

anomaly score according to (23)
10: endfor

D. Spectral–Spatial Detection Procedure

Many studies have proved that taking advantage of spatial
information can improve the performance of a hyperspectral
anomaly detection method. Although the saliency-weighted
FrFTCRD has comprehensively utilized both spectral and spatial
information, a spectral–spatial detection procedure is proposed
in this section to make further use of spatial information.

According to the characteristics of hyperspectral remote sens-
ing, a pixel and its surrounding pixels in an HSI usually reflect
the same or similar ground objects. Therefore, when these pixels
are represented by CRD, their residual errors should be approx-
imately the same [42]. Based on this assumption, the spatial
information can be incorporated for HSI anomaly detection by
considering the relative position of a PUT and its neighbors. The
closer relative position between the PUT and a neighbor pixel
means their residual errors are more similar.

In this spectral–spatial detection procedure, the anomaly score
of an under-test pixel is assigned as the weighted value of its
residual error and the weighted average value of its adjacent
pixels’ residual errors. For a PUT y, this strategy can be written
as the following formula:

ry = βry1 + (1− β)
∑
i∈ψ

1

e
dposition((y),(xi))+|ry

1
−ri

1
|∑

j∈ψ
1

e
dposition((y),(xj))+|ry

1
−r

j
1
|

ri1

(23)
where ry is the final anomaly score of the PUT y, ψ is the set
of its adjacent pixels, β is the weighting coefficient, and ry1 and
ri1 are the residual errors calculated by formula (22).

This spectral–spatial detection procedure uses relative posi-
tional information and anomaly scores of PUT and its adjacent
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Fig. 2. First synthetic dataset. (a) False-color image. (b) Ground truth.

pixels calculate anomaly score of the PUT, and can reduce the in-
fluence of noise contamination in the background. Furthermore,
this strategy is independent of the detection process, with less
calculation and easy to implement. The main steps of SSFSCRD
are summarized in Algorithm 1.

III. EXPERIMENTAL RESULTS

In this section, a number of experiments are conducted to show
the performance and effectiveness of the proposed method from
different perspectives. The details of two synthetic HSI datasets
and four real-world HSI datasets used in the experiments are
introduced first. Next, the relevant settings of the experiment
and the selected evaluation criteria are given. Finally, the ex-
perimental results of the proposed method and the compared
methods are analyzed.

A. Experimental Datasets

There are totally six hyperspectral datasets selected for con-
ducting experiments, which include two synthetic HSI datasets
and four real-world HSI datasets. These HSI datasets were cap-
tured by two different sensors over different kinds of scenes, and
their spatial resolution and spectral resolution are also different.
With the help of these different datasets, the performance and
effect of the proposed method can be tested more comprehen-
sively. The details of these HSI datasets are described in the
following part.

1) Synthetic HSI Datasets: The first one synthetic HSI
dataset (hereinafter referred to as S1) was collected over Pavia,
Northern Italy, by the Reflective Optics System Imaging Spec-
trometer (ROSIS) sensor [43]. Its size is 105× 100 pixels with
102 spectral bands. The spatial resolution is 1.3 m, and the
spectral resolution is 4 nm. Six anomalies were scattered in the
background with white noise to get the synthetic HSI dataset.
The sizes of these anomalies are 4× 3, 4× 3, 2× 2, 2× 2,
3× 3, and 2× 4, respectively. The false-color image of the
first synthetic data is shown in Fig. 2(a), and positions of six
anomalies are shown in Fig. 2(b).

The second synthetic HSI dataset (hereinafter referred to
as S2) was also collected by the ROSIS sensor, over Pavia
University, Northern Italy. So its spatial resolution and spectral
resolution are the same with those of the S1 dataset. The S2
dataset consists 300× 200 pixels and the number of its spectral
bands is 103. The synthetic anomalies are embedded into the
background by using the following equation [44]:

S = B × (1− p) + T × p (24)

Fig. 3. Second synthetic dataset. (a) False color image. (b) Ground truth.

Fig. 4. First real dataset. (a) False color image. (b) Ground truth.

where T is the pure anomalous pixel, B is the selected back-
ground pixel, and the p is the mixture percentage of the anoma-
lies. The false-color image of the second synthetic HSI data is
shown in Fig. 3(a), and the ground truth is given in Fig. 3(b). It
can be found that there are 25 anomalies in total, and the sizes
of these anomaly targets are 2× 1, 1× 2, 2× 2, and 3× 2,
respectively.

2) Real HSI Datasets: Four different real HSI datasets which
are widely used in many related studies are selected for the
experiment. These HSIs were captured over different locations
by two different imaging spectrometer sensors. Their scenes, the
number of spectral bands, spatial and spectral resolution, and
anomalies selected to be detected are also different. Therefore,
these four real HSI datasets are very suitable for testing the
comprehensive detection performance of the proposed method
under different scenes and circumstances.

The first real HSI dataset (hereinafter referred to as R1)
is collected by airborne visible infrared imaging spectrometer
(AVIRIS). It is a part of the real HSI of the San Diego Inter-
national Airport, USA [45]. The selected image contains 38
anomalies, and its size is 100× 100 pixels with 126 spectral
bands. The spatial resolution is 3.5 m, and the spectral resolution
is 10 nm. The false-color image of this dataset is shown in
Fig. 4(a). The actual distribution of 38 anomalies is shown in
Fig. 4(b).

The second real HSI dataset (hereinafter referred to as R2) is
also collected by the AVIRIS sensor [46]. It is a HSI of an airport
in Los Angeles, USA [47]. The spatial resolution is 7.1 m, and
its spectral resolution is the same as R1’s. The image has 224
spectral channels in wavelengths ranging from 400 to 2500 nm.
After removing the bands severely affected by moisture and the
low-signal-to-noise (SNR) bands, there are 204 spectral bands
remained. The size of the R2 HSI data is 100× 100 pixels, and
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Fig. 5. Second real dataset. (a) False-color image. (b) Ground truth.

Fig. 6. Third real dataset. (a) False-color image. (b) Ground truth.

Fig. 7. Fourth real dataset. (a) False-color image. (b) Ground truth.

there are three anomalies in it [6]. The false color image of the
R2 dataset is shown in Fig. 5(a), and its corresponding ground
truth is shown in Fig. 5(b).

The third HSI dataset (hereinafter referred to as R3) is an
urban scene of Texas coast, USA [48]. It is also captured by the
AVIRIS sensor, and its spatial resolution is 17.2 m. There are
207 spectral bands in this image, whose wavelengths range from
400 to 2500 nm. The image size of the HSI data is 100× 100
pixels, and are chosen as anomalies. The false color image of
the R3 HSI dataset is shown in Fig. 6(a), and its corresponding
ground truth is shown in Fig. 6(b).

The fourth real HSI dataset (hereinafter referred to as R4) was
collected by the ROSIS sensor over the Pavia city in Northern
Italy [49]. The spatial resolution is 1.3 m, and the spectral
resolution is 4 nm. The R4 image’s size is 150× 150 pixels,
and it has 102 spectral bands in wavelengths ranging from 430
to 860 nm. The vehicles in the R4 HSI dataset are selected as
anomalies [50]. The false-color image of the R4 HSI dataset and
the image of its ground truth are shown in Fig. 7(a) and (b).

B. Evaluation Criteria and Experimental Settings

In this part, the evaluation criterion, compared methods, and
parameter settings related to experiments are introduced as
follows.

1) Evaluation Criteria: In order to accurately evaluate and
analyze the performance detection efficiency of a hyperspectral

anomaly detector qualitatively and quantitatively, the ROC curve
and the AUC value are adopted as evaluation criteria [6].

The ROC curve is the most commonly used evaluation crite-
rion used in the area of hyperspectral anomaly detection [51].
It shows the relationship between the FAR and the true positive
rate (TPR) under different threshold. The FAR and TPR can be
figured out as follows, respectively.

FAR =
FP

FP + TN
(25)

TPR =
TP

TP + FN
(26)

where TP is the number of anomalies that were also predicted
as anomalies, TN is the number of background pixels that
were predicted correctly, FN is the number of anomalies but
wrongly predicted as background pixels, and FP is the number
of background pixels but wrongly predicted as anomalies [52].

For a set of methods, a method that has a higher TPR value
when compared with others under the same FAR can be consid-
ered to have better performance. The AUC value is used to show
the average performance of a method, which can be calculated by
carrying out the integral operator for ROC curve [53]. It should
be noted that the larger the value of AUC is, the better a detector
performs.

2) Compared Methods: To verify the performance of the pro-
posed method, nine hyperspectral anomaly detection methods
which are commonly used as compared methods in many studies
are selected for complete comparison. The compared methods
include the GRX method, LRX method, KRX method, CRD
method, KCRD method, PCA-RX method, FrFE+RX method,
GTVLRR method, and LSD method.

These methods are selected as competitors by considering the
diversity and popularity comprehensively. Specially, GRX and
LRX are two versions of the benchmark Reed–Xiaoli method
which are based on the statistical distribution hypothesis of the
background. CRD is the classical CRD. KRX and KCRD are
the RX and CRD methods combined with the kernel function
theory.

As the proposed method used FrFT and context-aware
saliency to suppress noise, reduce the effect of the anomalies
and enhance the discrimination between background pixels and
anomalies, some related detectors are chosen. FrFE+RX is the
combination of FrFT and RX proposed by Tao et al. [36].
In addition, as the proposed method takes advantage of both
spectral and spatial information, a spectral–spatial detector, the
LSD detector, is also added to the set of compared methods.
LSD is based on the assumption that an abnormal pixel cannot
be represented by very few background samples from the local
surrounding both in the spectral and spatial domains. GTVLRR
is the representative of the low-rank and sparse-based methods,
which incorporates the local geometrical structure and spatial
information of an HSI.

In summary, it can be found that different types of anomaly
detectors are chosen as competitors. Therefore, the choice of the
comparison methods is suitable and reasonable, which can be
used to show the performance of the proposed method effectively
and accurately.
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TABLE I
OPTIMAL PARAMETER SETTINGS FOR THE TESTED METHODS

3) Parameter Settings: All the programs and experiments are
run by MATLAB 2017 on a workstation with core i7-7700,
CPU@2.8 GHz and 16-GB RAM. The code for the proposed
SSFSCRD method is available online.1 The optimal parameter
settings of these compared methods are given in Table I. LRX
method has two parameters: inner window size win and outer
window size wout. KRX method has three parameters: inner
window size win, outer window size wout, and kernel parameter
σ. CRD method has three parameters: inner window size win,
outer window size wout, and regularization parameter λ. KCRD
method has four parameters: inner window size win, outer win-
dow size wout, regularization parameter λ, and kernel parameter
σ. PCA+RX method has just one parameter: optimal principal
component n. GTVLRR method has three parameters: tradeoff
parameters λ, β, and γ. LSD method has three parameters:
inner window size win, outer window size wout, and optimal
principal component n. There are five critical parameters in the
proposed method: inner window size win, outer window size
wout, fractional order p, Lagrange multiplier λ, and the weighting
coefficient β. The details of corresponding parameter selection
experiments and the effect of these parameters are conducted
and analyzed in tSection IV.

C. Experimental Results and Analysis

In order to evaluate the performance of the proposed method
comprehensively and convincingly, extensive experimental re-
sults are deeply discussed and analyzed in this part. Table II
shows the AUC values of the respective methods on all syn-
thetic and real HSI datasets, and the best value in each HSI
dataset is highlighted in italics. The AUC values of the proposed
method obtained in two synthetic HSI datasets and four real
HSI datasets are 0.9856, 0.9494, 0.9761, 0.9935, 0.9957, and
0.9989, respectively. It can be clearly found that the proposed
method is superior to all other compared methods on all six

1[Online]. Available: https://github.com/lichuang0529/SSFSCRD

TABLE II
AUC SCORES OF THE GRX, LRX, KRX, CRD, KCRD, PCA+RX, FRFE+RX,

GTVLRR, LSD, AND SSFSCRD METHODS ON SIX DATASETS

TABLE III
AUC SCORES OF THE GRX, LRX, KRX, CRD, KCRD, PCA+RX, FRFE+RX,

GTVLRR, LSD, AND SSFSCRD METHODS ON SIX DATASETS WITH THE

SAME DUAL WINDOW SIZES

datasets. Furthermore, as the spatial and spectral resolution of
the experimental HSIs is different, it can be observed that the
proposed method can provide a much more stable detection
result and have a good performance on datasets with different
spatial and spectral resolution. Results on these different datasets
can show that the proposed SSFSCRD method is suitable for
different kinds of datasets. Besides, AUC scores of SSFSCRD
method and compared methods on six datasets with the same
dual window sizes are shown in Table III. It can be declared
that the AUC values of SSFSCRD method is also superior to all
other compared methods on all six datasets with the same dual
window sizes.

Figs. 8–13 illustrate the visual anomaly detection result maps
of different methods on all six scenarios. In terms of visual
effects, it is obvious that the proposed method has the best
detection performance. As can be seen in Fig. 8, the noise
suppression effect and the discrimination ability between the
background and anomalies of the proposed method is good in
S1 because the fractional transform is employed in the proposed
method. As shown in the Figs. 9 and 12, the proposed method
can detect more pixels in the detection results of S2 and R3.
This phenomenon shows that the interference of the potential
anomalies to the detection results is much reduced by adjusting
the weight of each pixels in the saliency weighted matrix. In
the detection result maps obtained by the LSD method and the
proposed SSFSCRD method as shown in Figs. 9(i) and 10(i),
it is clear that the spectral–spatial postprocessing procedure
integrated in the proposed method can improve the detection
capability more effectively.
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Fig. 8. The visual detection maps of the first synthetic dataset. (a) GRX method, (b) LRX method, (c) KRX method, (d) CRD method, (e) KCRD method,
(f) PCA+RX method, (g) FrFE+RX method, (h) GTVLRR method, (i) LSD method, (j) SSFSCRD method.

Fig. 9. The visual detection maps of the second synthetic dataset. (a) GRX method, (b) LRX method, (c) KRX method, (d) CRD method, (e) KCRD method,
(f) PCA+RX method, (g) FrFE+RX method, (h) GTVLRR method, (i) LSD method, (j) SSFSCRD method.

Fig. 14 illustrates the ROC curves obtained for all methods
with six HSI datasets. For S1 dataset shown in Fig. 14(a), it
is clear that the proposed SSFSCRD method has better perfor-
mance than all the other anomaly detection methods, as the FAR
is about 0.08 when the TPR of the proposed SSFSCRD method
climbs to 1. For the S2 dataset revealed in Fig. 14(b), the result
of SSFSCRD demonstrates a better performance than other
anomaly detection methods. When the TPR of the proposed
SSFSCRD method is up to 1, the FAR is about 0.4. For the
R1 dataset shown in Fig. 14(c), it is easy to find that the ROC
curve of the proposed SSFSCRD method is always above those

of other anomaly detection methods. For the R2 dataset shown
in Fig. 14(d), the ROC curve of the proposed SSFSCRD method
rises more sharply than the other anomaly detection methods.
And when the TPR of the proposed SSFSCRD method is 1, the
FAR of the proposed SSFSCRD method is approximately 0.1.
For the R3 dataset, the ROC curve of the proposed SSFSCRD
and LSD are almost the same and the results of ROC curve are
consistent with the results of AUC value. As for the R4 dataset
shown in Fig. 14(f), the ROC curve of the proposed SSFSCRD
also increases relatively rapidly. And when the TPR of the
proposed SSFSCRD is 1, the FAR of the proposed SSFSCRD
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Fig. 10. Visual detection maps of the first real dataset. (a) GRX method. (b) LRX method. (c) KRX method. (d) CRD method. (e) KCRD method. (f) PCA+RX
method. (g) FrFE+RX method. (h) GTVLRR method. (i) LSD method. (j) SSFSCRD method.

Fig. 11. Visual detection maps of the second real dataset. (a) GRX method. (b) LRX method. (c) KRX method. (d) CRD method. (e) KCRD method. (f) PCA+RX
method. (g) FrFE+RX method. (h) GTVLRR method. (i) LSD method. (j) SSFSCRD method.

Fig. 12. Visual detection maps of the third real dataset. (a) GRX method. (b) LRX method. (c) KRX method. (d) CRD method. (e) KCRD method. (f) PCA+RX
method. (g) FrFE+RX method. (h) GTVLRR method. (i) LSD method. (j) SSFSCRD method.
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Fig. 13. Visual detection maps of the fourth dataset. (a) GRX method. (b) LRX method. (c) KRX method. (d) CRD method. (e) KCRD method. (f) PCA+RX
method. (g) FrFE+RX method. (h) GTVLRR method. (i) LSD method. (j) SSFSCRD method.

Fig. 14. ROC curve of different anomaly detectors. (a) First synthetic dataset. (b) Second synthetic dataset. (c) First real dataset. (d) Second real dataset.
(e) Third real dataset. (f) Fourth real dataset.

method is about 0.01. Above all, the ROC curves show that
the detection probability of the proposed SSFSCRD method is
higher than other compared methods at a lower FAR.

To demonstrate the separability between abnormal targets
and background, we compare SSFSCRD with other methods
by box graphs. As shown in Fig. 15, there are anomaly and
background columns for each method, in which the detection
values are normalized to 0–1. The red and green boxes in Fig. 15
represent the distribution of the abnormal targets’ detection
values and background’s detection values, respectively. And
their positions illustrate the separability of abnormal targets and
background. Furthermore, the black line inside each box is the
median values, and the upper and lower edges of the box reflect

10th and 90th percentiles, respectively. And the whiskers are the
extreme values. For the S1 dataset shown in Fig. 15(a), the gaps
between two abnormal targets and background for the proposed
SSFSCRD method and GTVLRR method are bigger than the
other methods. However, the upper whisker of background box
for SSFSCRD method is lower than GTVLRR’s, which means
that the proposed SSFSCRD method suppresses the background
more effectively than GTVLRR method. For the S2, R1, R3, and
R4 datasets as shown in Fig. 15(b), (c), (e), and (f), it is obvious
that the gaps between two abnormal targets and background for
the proposed SSFSCRD method are bigger than other methods.
For the R2 dataset, the gaps between abnormal targets and
background for the proposed SSFSCRD method are nearly the
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Fig. 15. Separability maps of different anomaly detectors. (a) First synthetic dataset. (b) Second synthetic dataset. (c) First real dataset. (d) Second real dataset.
(e) Third real dataset. (f) Fourth real dataset.

same to those of the KRX method. Therefore, the results of
separability maps of different methods reveal that the proposed
SSFSCRD method has excellent discrimination ability between
anomalies and background.

In summary, through comprehensive analysis of AUC values,
visual detection results, ROC curves, and separability maps,
the proposed SSFSCRD method is a significant and effective
method compared with nine state-of-the-art HSI anomaly de-
tection methods.

D. Capability of Suppressing Noise

By taking advantage of the suppressing noise ability of FrFT,
Tao et al. employ FrFT as the preprocessing for RX detector [36].
To verify the capability of the proposed SSFSCRD method to
suppress the noise, the relevant experiments are conducted in
this section. We use the S1 dataset as the experimental dataset
and add different levels of zero-mean Gaussian white noise into
it. The SNR ranges from 20 to 60 dB and the step size is 10 dB.
Table IV lists the AUC values of all detectors on the S1 dataset
with different levels of zero-mean Gaussian white noise and
the highest value under different levels of zero-mean Gaussian
white noise is highlighted in italics. From Table IV, it can be seen
that the proposed SSFSCRD always get the highest value under
different levels of zero-mean Gaussian white noise. Besides,
with the decreasing of SNR, the AUC values of SSFSCRD
method drop to a small degree. Therefore, it can be concluded
that the proposed SSFSCRD method can suppress the noise
efficaciously.

TABLE IV
AUC VALUES OF ALL DETECTORS ON THE S1 DATASET WITH DIFFERENT

LEVELS OF ZERO-MEAN GAUSSIAN WHITE NOISE

Furthermore, Fig. 18 shows the comparison of the 50th band
between the S1 data with 20 dB SNR and the FrFT domain of
the S1 data with 20 dB SNR. It is clearly found that the FrFT
can suppress the noise and make anomalies to be distinctive. In
particular, the two targets in the bottom left corner cannot be
distinguished under the interference of noise, but they can be
clearly distinguished from the background after FrFT.

E. Computational Efficiency Analysis

The computational efficiency is also a significant criterion for
evaluating the performance of HSI anomaly detector. For the
proposed SSFSCRD method, the FrFT and the calculation of
the weight vector α cost the most running time. Table V lists the
running time of the SSFSCRD method and compared methods.
It can be found that the running time of SSFSCRD is at a medium
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Fig. 16. AUC values of the proposed method with respect to the outer window size wout and the inner window size win. (a) First synthetic dataset. (b) Second
synthetic dataset. (c) First real dataset. (d) Second real dataset. (e) Third real dataset. (f) Fourth real dataset.

TABLE V
RUNNING TIME (S) OF ALL DETECTORS ON SIX DATASETS

level in the running time of all comparison algorithms. However,
considering the excellent detection accuracy of SSFSCRD, the
computational complexity of SSFSCRD is acceptable.

IV. DISCUSSION

The influence of crucial parameters involved in the proposed
method are analyzed and discussed in this section. The proposed
method contains four sensitive parameters in total. They are the
window size, fractional order p, Lagrange multiplier λ, and the
weighting coefficient β, respectively. The AUC value is adopted
as evaluation standard to distinguish the effect of each parameter
on the proposed method’s performance. When analyzing one
sensitive parameter, the values of other parameters are fixed as
default parameters.

To analyze and discuss the effects of these parameters com-
pletely and objectively, explicit experiments are conducted on
all the six HSI datasets. As for the window size parameters win

and wout, their effects are jointly analyzed. The fractional order
p, Lagrange multiplier λ, and the weighting coefficient β are set

as 0.5, 0.5, and 10−6, respectively. The experimental results are
illustrated in Fig. 16.

Taking all the results of all the HSI datasets into considera-
tion, the detection performance of the proposed method stably
changes within a promising range in most cases. Specifically,
for S2, R2, R3, and R4 dataset, when wout is approximately less
than 13, all the AUC values are good and nearly unchanged,
which fully demonstrates the stability of the proposed method.
As for S1 and R1 dataset, the AUC value changes a lot withwout

because the anomalies of these two datasets are close spatially.
Furthermore, it is easy to find that the window size can affect
the detection performance of the proposed method. A large
outer window can provide sufficient background information,
but potential anomalies and noise may also be used to represent
the under test pixel. Therefore, the optimal window size may be
different with different HSI datasets, and the optimal value of
win should be a little larger than the size of anomalies.

For the fractional order p and the weighting coefficientβ, their
effects on the AUC value of the proposed method are given in
Fig. 17. The fractional order p can reflect the amount of original
spectral information contained in the FrFT domain. When the
proposed method gets the best AUC value, the value of p is
0.8, 0.7, 0.3, 0.9, 0.3, and 0.3 on six HSI datasets, respectively.
These results clearly demonstrate that taking advantage of the
FrFT domain information can improve detection performance
of the proposed method. As shown in Fig. 17(a) and (b), for the
synthetic HSI datasets of S1 and S2, the optimal AUC values
are 0.9856 and 0.9494 when β is 1. The anomalies in these
two synthetic datasets are inserted artificially, and the sizes of
these anomalies are very small. This situation does not meet the
assumption that a pixel and its surrounding pixels in an HSI
usually reflect the same or similar ground objects. However, for
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Fig. 17. AUC values of the proposed method with respect to the fractional order p and the weighting coefficient β. (a) First synthetic dataset. (b) Second synthetic
dataset. (c) First real dataset. (d) Second real dataset. (e) Third real dataset. (f) Fourth real dataset.

Fig. 18. Illustration with a hyperspectral band of the S1 dataset. (a) Fiftieth
band of the data with 20 dB SNR. (b) Fiftieth band of the data with 20 dB SNR
after FrFT when p = 0.8.

the real HSI datasets, the optimal AUC value is obtained when
β is 0.1 or 0.2. Then, the AUC value rapidly decreases with the
increase of β, and the smallest AUC value is obtained when β
is 1. From the above analysis, for the real HSI datasets, it can be
found that the best AUC values are reached when β is no larger
than 0.5. This phenomenon shows that the proposed spectral–
spatial postprocessing procedure is effective for improving the
detection accuracy of hyperspectral anomaly detector.

V. CONCLUSION

This article proposes a spectral–spatial anomaly detection
method based on FrFT and context-aware saliency-weighted
collaborative representation for HSIs. The proposed method
aims at solving the unsatisfactory detection performance caused
by two problems. The first problem is that the background
information is usually contaminated by the anomalies or noise,
and the second one is the insufficient use of spatial information.
The proposed method mainly consists of three important parts,
including FrFT, context-aware saliency-weighted FrFTCRD,

and the spectral–spatial detection procedure. Through projecting
all the hyperspectral pixels to the fractional Fourier domain, the
noise can be suppressed and the anomalies can be highlighted.
Referring to the relevant principles of context-aware saliency, a
saliency-weighted matrix is designed as the regularization ma-
trix. The new saliency-weighted regularization matrix uses both
spectral and spatial information to set the weights for the back-
ground pixels, which can further reduce the influence of potential
anomalies. Combining the new saliency-weighted regularization
matrix with FrFT and CRD, a context-aware saliency-weighted
FrFTCRD is designed to explore more accurate and pure back-
ground information. Consequently, collaborative represented
background can not only have low noise influence, but also
benefits from reducing effects of potential anomalies. To take ad-
vantage of the spatial information effectively, a spectral–spatial
detection procedure is designed to calculate the final anomaly
score for each PUT, which can further improve the performance
of the proposed method. In order to evaluate the performance
and effectiveness of the proposed methods, the proposed method
is compared with nine state-of-the-art detectors on two synthetic
HSI datasets and four real HSI datasets captured from different
scenes. Extensive experimental results demonstrate that the
proposed method outperforms other state-of-the-art anomaly
detection methods on all six HSI datasets. Furthermore, through
deeply analyzing and discussing the critical parameters, the
proposed method also has good stability and effectiveness.
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