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Abstract—Hyperspectral unmixing is an important step to learn
the material categories and corresponding distributions in a scene.
Over the past decade, nonnegative matrix factorization (NMF)
has been utilized for this task, thanks to its good physical in-
terpretation. The solution space of NMF is very huge due to its
nonconvex objective function for both variables simultaneously.
Many convex and nonconvex sparse regularizations are embedded
into NMF to limit the number of trivial solutions. Unfortunately,
they either produce biased sparse solutions or unbiased sparse
solutions with the sacrifice of the convex objective function of NMF
with respect to individual variable. In this article, we enhance
NMF by introducing a generalized minimax concave (GMC) sparse
regularization. The GMC regularization is nonconvex and nonsep-
arable, enabling promotion of unbiased and sparser results while
simultaneously preserving the convexity of NMF for each variable
separately. Therefore, GMC-NMF better avoids being trapped into
local minimals, and thereby produce physically meaningful and
accurate results. Extensive experimental results on synthetic data
and real-world data verify its utility when compared with several
state-of-the-art approaches.

Index Terms—Generalized minimax concave (GMC)
regularization, hyperspectral unmixing, nonnegative matrix
factorization (NMF), sparse representation.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) simultaneously records
2-D spatial information and 1-D spectrum indexed by

numerous narrow spectral bands of the target. The spectral bands
significantly augment the discriminative ability, making HSI
widely adopted in both remote sensing and computer vision
tasks [1], [2]. However, due to the limited spatial resolution
of hyperspectral sensors and long-distance imaging, many HSI
pixels contain more than one type of materials, causing many
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problems in practical applications. By decomposing a pixel into
the combination of a bundle of constituted materials (endmem-
bers) and corresponding fractions (abundances), hyperspectral
unmixing provides an attractive way to tackle this problem,
therefore benefiting subsequent applications.

Hyperspectral unmixing models can be broadly categorized
into linear type and nonlinear type. Nonlinear spectral mixture
models assume multiple-order physical interactions between
lights scattered by more than one material. Representative mod-
els include bilinear models [3], multilinear models [4], and
graphical models [5], just to name a few. Linear spectral mixture
model (LMM) describes the light interacting with one material
and linearly represents a pixel with endmembers. Under the
framework of LMM, pure pixel-based methods such as pixel
purity index [6] and vertex component analysis (VCA) [7]
extract endmembers from the data by assuming the presence of
pixels which include only one type of material. Subsequently,
linear regression with nonnegativity and sum-to-one constraints
can be adopted for abundance estimation [8]. The assumption
of the pure pixels may not be realistic in complex scenarios,
in which all the pixels are highly mixed with no pure pixels
existing. Alternatively, the unmixing can be considered as a
blind source separation problem, which simultaneously infers
the endmembers and the abundances with no assumption of
the presence of pure pixels. Nonnegative matrix factorization
(NMF), which decomposes the data into the product of two
matrices, stands out among these methods [9]–[11]. Thanks to
its inherent advantages of learning parts-based representation of
the data, the produced results are more physically interpretable
and understandable, i.e., two matrices can be considered as
endmember matrix and abundance matrix, respectively.

However, the solution space of NMF is very huge due to
its nonconvex objective function. Many constraints are added
to NMF to reduce the number of trivial solutions. So far, var-
ious constraints, such as minimum simplex volume [12] and
endmember dissimilarity [13], were embedded into NMF for
more physically meaningful endmember spectral signatures.
Since hyperspectral images feature local/nonlocal similarity
property, similar pixels are very likely to maintain this property
in abundance maps. Following this property, some studies aim to
integrate the spatial/spatial-spectral contextual information into
NMF to guide accurate abundance estimation [14], [15]. Lu et al.
[16] assumed hyperspectral data lie on a low-dimensional man-
ifold subspace embedded in high-dimensional spectrum and
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added manifold regularization to enforce local geometry struc-
ture information preserved in abundance maps. Yao et al. [17]
encoded nonlocal total variation as spatial structural information
explorer and added it to NMF to make nonlocal similar patches
share smooth structure. Moreover, Peng et al. [10] employed
self-paced NMF to selectively determine appropriate atoms, i.e.,
bands or pixels or elements for unmixing, so as to suppress the
effect of noises.

Besides spatial information, sparsity is another widely rec-
ognized prior to narrow the solution space of NMF [18], [19].
Sparsity constraint assumes that a pixel is the mixture of only a
small subset of endmembers, i.e., there are many zero entries in
abundances. In the literature, most sparse regularizations belong
to the class of additively separable functions, i.e., they take the
form of Φ(x1, x2, . . . , xn) =

∑n
i=1 φi(xi), with φi : R→ R

being the sparse-inducing regularization. Particularly, L0 regu-
larization directly minimizes the number of nonzero components
and can yield a sparse solution, but leads to NP-hard optimiza-
tion. To overcome the drawbacks of L0 norm, it is a common
practice to employ L1 norm for sparse abundances because of
its convex property, simplifying the optimization problem [20].
Though convex, L1 norm-based sparse regularization tends to
punish more on high-amplitude elements of variables which yet
take up the majority of target signals, thereby producing biased
estimation of abundances [21], [22]. Alternatively, improved
sparse solutions are achieved by replacingL1 regularization with
nonconvex sparse regularizations [17], [18], [23]–[25], as they
can better approximate L0 norm and punish large amplitudes
less than convex L1 regularization does. For example, Qian
et al. [26] added L1/2 regularization to NMF (L1/2-NMF)
for sparse unmixing and yielded more accurate abundance es-
timation. Taking advantages of an iterative half-thresholding
algorithm, L1/2-NMF was further enhanced to overcome the
complex nonconvex optimization problem of the original L1/2

regularization [18]. Afterwards, Sigurdsson et al. [27] gen-
eralized L1/2 sparse regularization to Lp(0 < p < 1) sparse
regularization and obtained sparser and less-biased solutions in
low signal-to-noise ratio (SNR) cases.

The major limitation of the above nonconvex separable sparse
regularizations is that they induce sparsity by generally giving
up the attractive convex characteristic of original NMF with
respect to the individual variable. As a consequence, they intro-
duce extraneous suboptimal local minimizers, making extended
NMFs highly rely on the initializations and parameter settings
[28]–[30]. Therefore, it is always expected that the sparse regu-
larization can promote less-biased sparsity while simultaneously
maintaining the benefits of the convex objective function. Some
nonconvex nonseparable penalties can satisfy this requirement
by coupling the sparse regularization with data fidelity term
so that the objective function remains convex even though the
penalty itself is nonconvex [31]. The nonconvexity leads to
unbiased and sparser results and the nonseparability enables
the regularization to consider the statistical relationships among
the sparse signals [28]. Generalized minimax concave (GMC)
penalty is such a nonconvex nonseparable sparse regularization
with preserved convex objective function under mild condition
[32]. Mathematically, GMC penalty is defined as a smooth

nonconvex function via infimal convolution subtracted from
the L1 norm. Compared with L1 norm, it avoids systematic
underestimation of high components of sparse vectors so that
more accurate sparse approximation can be achieved. Unlike
traditional nonconvex regularization, GMC penalty preserves
the convex formulation of the sparsity-regularized objective
function, making it share the attractive benefits of convex opti-
mization such as the absence of spurious local minima. Thanks to
these superior merits, GMC has been successfully applied in sig-
nal smoothing, bearing fault diagnosis, image registration, low-
rank approximation, and more [22], [33]–[35]. To be specific,
a convexity-edge-preserving smoother was developed in [22]
by replacing L1 norm-based total variation with GMC penalty,
showing more favorable sharp edges in recovered signals. Brbic
and Kopriva extended the GMC penalty to a low-rank sparse
subspace clustering problem [21]. With the help of the GMC
penalty, the rank and sparsity of data representation can be more
accurately estimated than traditional nuclear and L1 norms.

In this article, we introduce the GMC penalty to NMF, named
GMC-NMF, to reduce the solution space of NMF-based unmix-
ing. The advantages of GMC penalty in sparsity promoting and
merits of convexity preserving make it more capable of deriv-
ing sparser abundances with less local minimal. Moreover, we
derive the update rule under the framework of the multiplicative
update and forward–backward splitting. Experimental results on
synthetic data and real-world data show dominant advantages of
the proposed GMC-NMF by comparing with alternative sparsity
regularized NMFs.

The rest of this article is organized as follows. Sec-
tion II introduces the background of the proposed method. In
Section III, the details of the proposed GMC-NMF are presented
and its properties are also highlighted. Section IV reports the
experimental results on both synthetic and real-world data. The
conclusion is drawn in Section V.

II. BACKGROUND

A. Linear Spectral Mixture Model

Based on the assumption that the incoming light undergoes
interactions with a single material, LMM considers the observed
spectrum as the linear combination of a set of endmembers.
Given an HSI with L bands, LMM can be mathematically
formulated as

x = As+ e (1)

where x ∈ RL×1 is the spectral vector, A ∈ RL×R is the end-
member matrix containing R materials, s ∈ RR×1 is the abun-
dance vector corresponding to the contribution of each endmem-
ber, and e ∈ RL×1 is an additive error vector accounting for the
measurement errors. Under matrix notation, (1) is denoted by

X = AS+E (2)

where X is the HSI with L bands and N pixels, S is an
R×N abundance matrix whose each column is the fractional
abundance for each pixel, and E ∈ RL×N is an additional noise
matrix.



6090 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Abundance nonnegativity constraint (ANC) and abundance
sum-to-one constraint (ASC) are usually added to LMM to
satisfy the geometric interpretation that the acquired spectra are
in the convex hull spanned by the endmembers. ANC indicates
no endmember has negative fractions. ASC means the total
contribution of all the endmembers should equal one.

B. Sparse Nonnegative Matrix Factorization

NMF seeks to approximate the original data matrix by decom-
posing it into the product of two low-dimensional nonnegative
matrices. NMF provides a tractable model to automatically
extract meaningful components and estimate associated pro-
portions, which is respectively in line with endmembers and
abundances in hyperspectral unmixing. Mathematically, NMF
targets to solve the following objective function:

min
A,S

1

2
‖X−AS‖2F s.t. A,S ≥ 0. (3)

The objective function of NMF is convex with respect to
either A or S but not both, making the solution space very huge.
Therefore, various priors are embedded into factor matrices to
reduce the searching space, so as to achieve more interpretable
factorization. Among them, abundance sparsity is commonly
used due to the fact not all the endmembers but a subset of end-
members contribute to a pixel. Imposing the sparsity constraint
on S, the sparse NMF, in general, takes the following form:

min
A,S

1

2
‖X−AS‖2F + λR(S) s.t. A,S ≥ 0 (4)

where R(S) is a sparsity-inducing regularization and λ ≥ 0
balances the data fidelity and sparse regularization.

The sparse regularizations can be broadly divided into convex
and nonconvex ones. L1 norm earns its popularity among the
convex regularizations as it yields sparse solutions very ef-
fectively. However, L1 sparsity violates abundance sum-to-one
constraint and always causes underestimation of target abun-
dances, dramatically limiting its practical utility. Beyond convex
regularizations, nonconvex sparse ones such as L1/2 norm [26],
reweighed L1 norm [23], and log-sum penalty [17] have shown
better sparsity-inducing ability by producing less-biased esti-
mations. Nevertheless, nonconvex penalties promote sparsity
regardless of the convexity of NMF with respect to individual
factor matrix, making the optimization more intractable. This
possibly conflicts with their initial goal of shrinking the solution
space of NMF. Therefore, it is necessary to find a new sparsity-
promoting regularization which simultaneously maintains the
convexity of NMF with respect to individual factor matrix and
avoids underestimation of target abundances.

III. GMC-NMF UNMIXING MODEL

In this section, we introduce the proposed GMC-regularized
NMF for hyperspectral unmixing and address the associated
implementation and optimization issues.

Fig. 1. Scaled minimax-concave penalty with respect to γ values.

A. GMC-NMF

Before a comprehensive introduction of the GMC penalty, we
first analyze its unbiased sparsity-inducing ability based on its
scalar version, i.e., scaled minimax-concave (SMC) penalty.

Definition 1: Parameterized by a positive scalar γ, the scaled
minimax-concave penalty function φγ : R→ R is defined as

φγ(x) =

⎧⎨⎩
|x| − γ

2x
2, |x| ≤ 1

γ

1
2γ , |x| ≥ 1

γ

(5)

SMC penalty can be identically represented as a Moreau
envelope [36], i.e.,

φγ(x) = |x| −min
v∈R

{
|v|+ γ

2
(x− v)2

}
. (6)

Fig. 1 plots the SMC penalty for different values of γ. It
can be observed from the figure that first, the SMC penalty
is nonconvex and γ controls its nonconvex level, i.e., larger γ
indicates higher nonconvexity. Specially, when γ approaches
zero, the SMC penalty gradually degrades to L1 sparse penalty.
Second, SMC is able to promote sparsity. Like L1 and L1/2

penalty, the SMC penalty is not differentiable when x = 0. As
discussed in [37], zero becomes the only solution when the
regularization parameter is large enough. Third, SMC penalty
produces unbiased sparse solution. The gradient of GMC penalty
decreases with the increasing ofx, meaning that large-amplitude
components are less likely to be shrunk to 0. This is different
fromL1 penalty which treats all the values equally as its gradient
is constant for x �= 0.

Based on SMC, the GMC penalty is an extended version for
multivariate cases whose definition is as follows.

Definition 2: Given B ∈ RM×N and x ∈ RN×1 and λ ≥ 0.
GMC penalty function: RN×1 → R is defined as

RB(x) = ‖x‖1 − min
v∈RN×1

{
‖v‖1 + 1

2
‖B(x− v)‖2F

}
. (7)

Different from most sparse penalties which are additively
separable for each component of a vector, GMC penalty is
nonseparable, i.e., RB(x) �=

∑
n φγn

(xn) when BTB is non-
diagonal. This property also makes the GMC penalty capable
of maintaining the convexity of regularized objective function
when B is appropriately selected.
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Lemma 1: Let y ∈ RM×1, A ∈ RM×N and λ ≥ 0. F :
RN×1 → R

F (x) =
1

2
‖y −Ax‖2F + λRB(x) (8)

is convex provided that B =
√

γ
λ
A, where 0 ≤ γ ≤ 1.

Proof:

F (x)=
1

2
‖y−Ax‖2F +λ‖x‖1−min

v

{
λ‖v‖1+ γ

2
‖A(x−v)‖2F

}
=max

v

{
1

2
‖y−Ax‖2F +λ‖x‖1−λ‖v‖1− γ

2
‖A(x−v)‖2F

}
= max

v

{
xT

2
(ATA− γATA)x+ λ‖x‖1 + g(x,v)

}
=

xT

2
(ATA− γATA)x+ λ‖x‖1 +max

v
{g(x,v)}

(9)

where g(x,v) is affine in x and convex since it is the point-wise
maximum of a set of convex functions. As 0 ≤ γ < 1, ATA−
γATA is positive semidefinite, meaning that xT

2 (ATA−
γATA)x is convex. Considering convex nature of ‖x‖1, F (x)
is convex. �

In summary, GMC penalty is able to produce unbiased spar-
sity while simultaneously maintaining the convexity of the
regularized problem. This makes the GMC-regularized sparse
problem share the favorable merits of convex optimization such
as unique minimum and robustness while producing stronger
sparsity than the standard convex sparse regularization options.
Thanks to these advantages, GMC penalty has been success-
fully applied to signal denoising [38] and low-rank approxima-
tions [35].

As discussed earlier, sparsity is an important prior for abun-
dance and is beneficial to limit the solution space of NMF. Con-
sidering the attractive properties of the GMC penalty in strong
sparsity promoting and convexity preserving, we introduce this
penalty to abundance matrix for robust unmixing. Replacing
R(S) in (4) with the GMC penalty, we have a new sparse NMF
unmixing model abbreviated as GMC-NMF whose objective
function can be derived as follows:

F (A,S,V) =
1

2
‖X−AS‖2F + λ‖S‖1 −min

V

{
λ‖V‖1

+
γ

2
‖A(S−V)‖2F

}
s.t. A,S ≥ 0. (10)

Unlike separable L1 and L1/2 penalties, A is coupled with
both data fidelity and sparse-inducing terms. More importantly,
A captures the relationship among the elements in abundance
maps. AsA represents the endmember matrix, the sparse unmix-
ing model in (10) actually simultaneously builds the semantical
correlation between the abundance distribution of different ma-
terials. This is consistent with the fact that the abundance maps of
different materials such as trees and grass should be correlated,
thereby facilitating more accurate abundances estimation, which
in turn benefits endmember extraction.

B. Optimization Procedure

The minimization problem of F (A,S,V) can be rewritten as
a saddle-point problem, i.e.,

argmin
A,S

max
V

1

2
‖X−AS‖2F + λ‖S‖1 − λ‖V

‖1 − γ

2
‖A(S−V)‖2F . (11)

The update rule of each variable can be derived separately. Fixing
S and V, the subproblem of A is

argmin
A

1

2
‖X−AS‖2F −

γ

2
‖A(S−V)‖2F . (12)

The updated rule of A is deduced under the framework of
Lagrange multipliers. The Lagrange function Φ of A is as
follows:

Φ =
1

2
‖X−AS‖2F −

γ

2
‖A(S−V)‖2F +Tr(ΓA) (13)

where Γ is the Lagrange multiplier of A. Taking the partial
derivatives of Φ with respect to A, we get

XST −ASST − γA(S−V)(S−V)T + Γ = 0. (14)

Defining D = SST + γ(S−V)(S−V)T, (14) can be identi-
cally expressed as

XST −AD = 0. (15)

According to Karush–Kuhn–Tucker conditions, the following
equation is met:

Γ. ∗A = 0 (16)

in which .∗ denotes element-wise multiplication.
Similar to [39], by introducing D = D+ −D− where D+ =

(|D|+D)/2 andD− = (|D| −D)/2 and substituting (16) into
(15), the update rule of A can be derived as

A← A. ∗ (XST +AD−)./(AD+). (17)

As for the minimization problems of S and V, both of them
are convex and can be decomposed into two parts, i.e., one of
which is differentiable and the other is nondifferentiable with
a fast proximal operator. Forward–backward splitting algorithm
is an effective tool to solve such problems. For the forward step,
taking S for example, gradient decent with step size α can be
used to get

S
′ ← S− α(AT(AS−X)− γATA(S−V)). (18)

Afterwards, backward step applies the proximal operator on S
′

to yield the update rule for S:

S← max
(
S
′ − λ, 0

)
(19)

where max is a proximal function guaranteeing the nonnegativ-
ity of S.

Similarly, V is first updated using gradient decent in the
forward step, resulting in

V
′ ← V − αγATA(S−V). (20)
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Algorithm 1: GMC-NMF-Based Unmixing Procedure.
Input: Hyperspectral image X, parameters λ and γ;
Output: A, S, and V.
1: Initialize A, S, V
2: repeat
3: Update A with (15)
4: repeat
5: Forward step:
6: Obtain S′ with (18)
7: Obtain V′ with (20)
8: Backward step:
9: Update S with (19)

10: Update V with (21)
11: until The stopping condition is met.

12: until GMC-NMF converges

Subsequently, the soft shrinkage function is applied on V
′

to
obtain the update rule of V, i.e.,

V←
⎧⎨⎩

v − λ, v ≥ Δ
v + λ, v ≤ Δ
0, otherwise

(21)

where v ∈ R is an element in V. Selesnick [32] has suggested
setting 0 < α < 2/ρ, where ρ = max{1, γ/(1− γ)}‖ATA‖2.
Due to the convex nature of solving S and V, α theoretically
has no impact on the solution accuracy. Generally, larger α
contributes to accelerating the convergence; therefore, α is set
to 1.9/ρ in practice.

C. Algorithm Implementation

Algorithm 1 summarizes the optimization procedure of the
proposed unmixing method. Here, we address the following
significant issues regarding the implementation of the algorithm.

Algorithm initialization: The initialization of A, S, and V is
important due to the nonconvex nature of (10). Generally, non-
random initialization can produce more favorable unmixing re-
sults than random initialization. To this end, we use VCA-FCLS
(fully constrained least squares) to initialize the optimization
procedure. Specifically, we first use VCA [7] to obtain the initial
estimation of A. Afterwards, S is assigned with the abundances
obtained by FCLS [8]. As for V, it is experimentally set as
V = S.

ASC Constraint: ASC constraint is helpful to reduce the
searching space of optimization. As in [26], we satisfy ASC
constraint by augmenting the observed data matrix X and end-
member matrix A as

X←
[
X
δ1T

N

]
A←

[
A
δ1T

R

] (22)

where δ controls the influence of the ASC constraint. As sug-
gested in [16], we set δ = 15.

Endmember Number: The number of endmembers R in-
dicates the dimensionality spanned by endmembers. On the

synthetic data, the number is the same as the one used to produce
the data. As for the real-world data, we adopt hyperspectral
signal subspace identification by minimum error (Hysime) [40]
to estimate R.

Convergence Condition: Since (10) does not have a simple
explicit formula, it is difficult to calculate the detailed nu-
merical value. Instead, we define two stopping conditions to
check whether the optimization converges. By defining L(k) =
1
2‖X−A(k)S(k)‖2F , where k denotes the iteration number, the
first condition is that the relative reconstruction error of X is
less than 10−4, i.e.,

abs
(
L(k+1) − L(k)

)
L(k)

< 10−4. (23)

The second one is that the maximum iteration number exceeds a
preset number of 3000. The optimization terminates when either
condition is met.

IV. EXPERIMENTS

In this section, we compare proposed GMC-NMF against a
series of alternative unmixing approaches on both synthetic data
and real-world data to thoroughly demonstrate its effectiveness.
Specifically, L1/2-NMF [26], NMF, TV-RSNMF [23], Arctan-
NMF [41], and VCA-FCLS are selected. Their parameters are
automatically set as suggested values in the original implemen-
tation.

A. Performance Evaluation Criteria

The spectral angle distance (SAD) and root-mean-square error
(RMSE) were used to qualify the unmixing performance. SAD
computes the similarity between reference endmembers Ar and
corresponding estimation Âr, whose definition is

SADr = arccos

(
AT

r Âr

‖Ar‖‖Âr‖

)
. (24)

RMSE describes the error between ground-truth abundance map
and estimated map, which is defined as

RMSEr =

(
1

N
|Sr − Ŝr|2

) 1
2

(25)

where Ŝr is the estimated abundance map of the rth endmember.

B. Experiments on Synthetic Data

The synthetic data is produced following the method provided
in [42]. Six pure signatures (Carnallite, Ammonio-jarosite, Al-
mandine, Brucite, Axinite, and Chlonte) containing 224 bands
with wavelengths in the range of 0.38–2.5 μm are first selected
from the USGS library [43] to generate endmembers. Fig. 2
shows the spectral signatures of these endmembers. Afterwards,
the abundances are yielded as follows: 1) A synthetic image
size of z2 × z2 is partitioned into z2 disconnected regions,
each of which covers z × z pixels. 2) Two randomly selected
endmembers are used to fill each pixel of a region, with ratios
set to β and 1− β, respectively. 3) Each abundance map is
convolved with a Gaussian filter whose variance is set to 2,
producing highly mixed data. 4) The fractions of all endmembers
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Fig. 2. Spectral signatures of six endmembers used in the synthetic data.

Fig. 3. Convergence curve of GMC-NMF.

in each pixel are rescaled to meet the ASC constraint. Finally,
the synthetic data is generated using the above abundances and
endmembers.

In order to test the sensitivity of methods to noise, the gener-
ated clean HSI is also degraded by zero-mean additive Gaussian
noise whose SNR is defined as

SNR = 10 log10
E[yTy]

E[eTe]
(26)

where y and e are the clean signal and the noise at a pixel and
E[·] denotes the expectation operator.

1) Convergence Analysis: This experiment aims to charac-
terize the convergence property of our method. The synthetic
data was generated under the configuration of z = 8, β = 0.8,
SNR =∞. As mentioned earlier, it is rather difficult to get
the explicit objective function of GMC-NMF. Alternatively,
we plot the values of reconstruction error, i.e., L(k) = 1

2‖X−
A(k)S(k)‖2F to present its convergence property. As shown in
Fig. 3, the values drop quickly before iteration 100 and gradually
decrease thereafter until convergence.

2) Parameter Setting: The synthetic data was produced by
setting z = 8, β = 0.8, SNR=25 dB in this experiment. λ and γ
are two parameters controlling the sparsity-inducing capability
of GMC regularizer. In the experiments, we set λ in the set of
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 3, 5} and change γ
in the range of {0.02, 0.04, 0.06, 0.08, 0.1, 0.3, 0.5, 0.7, 0.9}.

Fig. 4 shows the unmixing performance with respect to all the
combinations of two parameters. Except very small values of
γ, both SAD and RMSE almost stay steady regardless of the
settings of λ. The main reason is that GMC regularizer is able
to preserve the convexity of original objective function, making
the optimization less possible trap in local minimals and less
sensitive to parameter settings. When two parameters are close
to 0, the RMSE increases, implying the positive effect of GMC
sparsity regularizer. Moreover, as the growth of γ is in the range
of 0.1–0.9, the corresponding SAD and RMSE first slightly
increase, and then sharply when γ ≥ 0.7. Since the promising
SAD and RMSE are achieved at γ = 0.1, this value is suggested
for more favorable unmixing accuracy. Except very small γ, both
SAD and RMSE are robust to λ settings. Based on the above
observation, we set λ = 1 in the following experiments.

3) Robustness to Noise: Hyperspectral images are easily cor-
rupted in the acquisition. This experiment aims to evaluate the
influence of different levels of noises on unmixing. The clean
HSI was generated under the setting of z = 8 and β = 0.8. We
then added different levels of SNR, i.e., 15, 20, 25, and 30 dB,
and∞ (noise free), to the clean HSI to produce noisy HSIs.

Fig. 5 shows a comparative unmixing performances of all
the methods. Overall, most unmixing methods show descending
trend as the SNR increases. The limited consideration of sparsity
property of abundances maps results in the worst SAD and
RMSE provided by VCA-FCLS. Theoretically, sparse represen-
tation has the capacity of filtering the noise, making the methods
less affected by the noises. Thanks to the sparsity-promoting
ability of L1/2 and arctan regularization, better results are
achieved especially in the noisy cases. Moreover, with the ability
of inducing unbiased sparsity while simultaneously preserving
convexity, GMC-NMF offers the most promising unmixing re-
sults in both SAD and RMSE. This experiment further verifies
the effectiveness of GMC-NMF in unmixing.

4) Generalization to Mixing Levels: β is an indicator of
mixing degree, i.e., larger values of β imply less mixing degree.
In the experiment, the pixel size and SNR were, respectively,
fixed as 64× 64 and 25 dB. Varying β from 0.5 to 1 with
an interval of 0.1, Fig. 6 shows the unmixing ability of all
the competing methods. Overall L1/2-NMF and GMC-NMF
dominate among all the methods because of more capability
of promoting sparser abundances. Compared with L1/2-NMF,
GMC-NMF performs better, especially in RMSE. The main
reason is that GMC regularization induces sparsity and preserves
the attractive convex characteristic of NMF with respect to each
variable at the same time, better helping NMF get rid of many
local minimals.

5) Running Time Comparison: All the methods were run on
a Windows 10 machine equipped with Intel(R) Xeon(R) Silver
4114 CPU@2.20 GHz and 32 GB RAM. The running time is
shown in Table I. Except TV-RSNMF, GMC-NMF requires the
most running time due to additional computational cost for unbi-
ased sparse solutions. In most scenarios, unmixing is performed
offline and it is worthwhile to spend more time improving the
unmixing accuracy. Moreover, thanks to the graphics processing
unit and parallel computing, the running time can be significantly
shortened.
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Fig. 4. Performance of GMC-NMF with respect to λ and γ settings (best viewed by zooming in) .

Fig. 5. SAD and RMSE with respect to different noise levels.

Fig. 6. SAD and RMSE with respect to different mixing levels.

Fig. 7. Three real-world datasets shown in gray. (a) 140th band image of
Samson. (b) Third band image of Jasper Ridge. (c) 150th band image of
Washington DC Mall.

TABLE I
RUNNING TIME OF ALL THE METHODS

C. Experiments on Real-World Data

In this section, we evaluate all the methods on three real-world
hyperspectral images for more comprehensive comparison.
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TABLE II
MEANS AND STANDARD DEVIATIONS OF THE SAD ON SAMSON DATA

The entries in bold imply best unmixing performance.

Fig. 8. Estimated endmembers by six unmixing methods on the Samson dataset. From top to bottom, the rows are the spectral signatures of soil, tree, and
water, respectively. Solid lines denote the reference endmembers and dashed lines denote the estimated endmembers. (a) VCA-FCLS. (b) NMF. (c) L1/2-NMF.
(d) Arctan-NMF. (e) TV-RSNM. (f) GMC-NMF.

Fig. 9. Estimated abundance maps by six unmixing methods on the Samson dataset. From top to bottom, the rows are the abundance maps of soil, tree, and water,
respectively. (a) VCA-FCLS. (b) NMF. v (c) L1/2-NMF. (d) Arctan-NMF. (e) TV-RSNMF. (f) GMC-NMF. (g) Reference.

1) Samson Dataset: The Samson dataset is an HSI
containing 952× 952 pixels and 156 spectral bands ranging
from 0.4 to 0.89 μm.1 A subscene size of 95× 95 is cropped

1[Online]. Available: Link:http://opticks.org/confluence/display/opticks/
Sample+Data

for the experiments, whose 140th band is shown in Fig. 7(a).
Previous studies [41], [44] suggest that there should be three
kinds of targets of interest, i.e., soil, tree, and water, respectively.
Table II presents a quantitative comparison of all the methods
on SAD criteria. The proposed GMC-NMF offers the best mean
SAD. Fig. 8 shows a qualitative comparison with endmember

http://opticks.org/confluence/display/opticks/Sample+Data
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TABLE III
MEANS AND STANDARD DEVIATIONS OF THE SAD ON JASPER RIDGE DATA

The entries in bold imply best unmixing performance.

Fig. 10. Estimated endmembers by six unmixing methods on the Jasper Ridge dataset. From top to bottom, the rows are the spectral signatures of tree, water, soil,
and road, respectively. Solid lines denote the reference endmembers and dashed lines denote the estimated endmembers. (a) VCA-FCLS. (b) NMF. (c) L1=2-NMF.
(d) Arctan-NMF. (e) TV-RSNMF. (f) GMC-NMF.

TABLE IV
MEANS AND STANDARD DEVIATIONS OF THE SAD ON WASHINGTON DC MALL DATA

The entries in bold imply best unmixing performance.

signatures generated by all the competing methods and those
of reference endmembers. As can be seen, the endmembers
extracted by the proposed method are more accurate by closely
matching the reference ones, especially for water target. The
experimental results provide clear support for the effectiveness
of GMC-NFM in unmixing. Fig. 9 visualizes the abundance
maps generated by all the methods. The abundance maps
produced by GMC-NMF are closer to the reference ones and

go beyond alternative methods, confirming that our method is
effective in unmixing.

2) Jasper Ridge Dataset: Jasper Ridge dataset is a widely
used HSI in the unmixing task. It was acquired by AVIRIS
(Airborne Visible/Infrared Imaging Spectrometer) sensor,
consisting of 512× 614 pixels and 224 bands from 380 to
2500 nm. After removing the bands corrupted by water vapor,
i.e., bands 1108–1112 and 154–166, we used a subimage with
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Fig. 11. Estimated abundance maps by six unmixing methods on the Jasper Ridge dataset. From top to bottom, the rows are the abundance maps of tree, water,
soil, and road, respectively. a) VCA-FCLS. (b) NMF. (c) L1/2-NMF. (d) Arctan-NMF. (e) TV-RSNMF. (f) GMC-NMF. (g) Reference.

Fig. 12. Estimated endmembers by six unmixing methods on the Washington DC Mall dataset. From top to bottom, the rows are the spectral signatures of
tree, grass, street, roof, and water, respectively. Solid lines denote the reference endmembers and dashed lines denote the estimated endmembers. (a) VCA-FCLS.
(b) NMF. (c) L1/2-NMF. (d) Arctan-NMF. (e) TV-RSNMF. (f) GMC-NMF.
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Fig. 13. Estimated abundance maps by six unmixing methods on the Washington DC Mall dataset. From top to bottom, the rows are the abundance maps of tree,
grass, street, roof, and water, respectively. (a) VCA-FCLS. (b) NMF. (c) L1/2-NMF. (d) Arctan-NMF. (e) TV-RSNMF. (f) GMC-NMF. (g) Reference.

205 bands and 100× 100 pixels for experimental evaluation.
Fig. 7(b) shows the third band image from the figure, the dataset
contains heavy noises, which threat challenges to unmixing. In
the experiment, we set four kinds of materials as endmembers,
including tree, water, soil, and road.

Table III presents the quantitative comparison of all the
competing methods with respect to SAD. As the data contains
heavy noises, VCA-FCLS provides the worst SADs. The sparse
regularization is beneficial to reduce the solution space of
NMF and suppress the negative effect of noises, yielding better
SADs of L1/2-NMF, Arctan-NMF, TV-RSNMF, and GMC-
NMF. Thanks to the inherent merits of promoting unbiased spar-
sity with maintained convexity of original problem, even better
results are achieved when using GMC-NMF. The endmembers
produced by all the methods are shown in Fig. 10. Superior
results are seen for GMC-NMF by providing the best-matched
signatures. Fig. 11 illustrates a visual comparison resulted in
abundances. It is worth mentioning that our method also gives
very competitive results and provides the most effective results
on water and road.

3) Washington DC Mall Dataset: This dataset was collected
by the urban hyperspectral digital imagery collection experi-
ment sensor over the Washington DC Mall. The original raw

image contains 1208× 307 pixels and 210 bands, but we used
a cropped subimage of 150× 150 pixels. Moreover, the low
SNR bands (103–106, 138–148, 207–210) were removed from
the subimage, yielding 191 bands for the experiments. It was
assumed that the image includes five endmembers, i.e., tree,
grass, street, roof, and water.

Table IV summaries the unmixing results of all the algorithms.
All the methods provide very similar SADs and our method
produces slightly better SAD than alternative methods. Fig. 12
presents the resulted endmembers. From the figure, it can be seen
that none of the methods gives a good estimate of the grass and
street target. This is probably because their spectra are similar
to those of trees and water, respectively, which brings difficulty
for finding the subspace spanned by the endmembers. The same
phenomenon can also be found in the abundance maps shown
in Fig. 13. Overall, GMC-NMF achieves competitive unmixing
performance against alternatives.

V. CONCLUSION

The solution space of NMF-based unmixing is very huge due
to its nonconvex objective function and attempting to estimate
all variables simultaneously, leading to undesirable unmixing
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performance. This issue can be overcome by adding various
prior knowledge on abundances, such as sparsity. Following
this line, in this article, the GMC penalty is embedded into
NMF to limit the number of trivial solutions. Thanks to its
capacity of producing unbiased sparsity while preserving the
convexity of original NMF with respect to individual variable,
the yielded endmembers and abundances are more accurate. Ex-
perimental results on both simulated and real-world data confirm
the powerfulness and effectiveness of the proposed approach.
The method in this article belongs to model-based optimization
families, which require tremendous time to converge. In our
future work, we will combine the model-based optimization
and deep learning methods to develop a model-driven deep
hyperspectral unmixing network for time-efficient unmixing.
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