
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020 6029

Robust Radiometric Normalization of Multitemporal
Satellite Images Via Block Adjustment Without

Master Images
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Abstract—Determining appropriate master images, reducing ra-
diometric error accumulation, and eliminating outliers from the
cloud, water, and land changes, are three main issues in radiometric
normalization of multitemporal high-resolution satellite images
(HRSI) during mosaicking. However, these three issues have not
been simultaneously considered by the existing methods. This arti-
cle presents a comprehensive radiometric normalization method
for multitemporal HRSI using a radiometric block adjustment
without master images. Pseudoinvariant features (PIFs) extracted
from image pairs using the iteratively reweighted multivariate
alteration detection are used as the corresponding pixel observa-
tions and organized to form radiometric tie points according to
the corresponding horizontal space coordinates. Radiometric error
equations are subsequently constructed, and the linear radiometric
transformation parameters are solved by a global adjustment. The
time-invariant PIFs generally represent the true corresponding fea-
tures and naturally avoid the cloud, water, and land changes, which
can eliminate the effects of outliers. Furthermore, the pixel values of
tie points calculated from the weighted average of the correspond-
ing pixel observations are used as virtual radiometric control points
to eliminate the dependency on master images. Moreover, a global
optimum can be achieved by the global adjustment, effectively over-
coming the error accumulation, which is severe in large datasets.
Four groups of HRSI datasets from various satellites are used to
validate the performance of the proposed method. Experimental
results demonstrate that the proposed method outperforms two
state-of-the-art methods and has good applicability and stability,
considering both visual effects and quantitative performance.

Index Terms—Global radiometric block adjustment,
multitemporal satellite images, multivariate alteration detection
(MAD), radiometric normalization.

I. INTRODUCTION

RADIOMETRIC normalization aims at reducing the radi-
ation differences between images by adjusting the color

of each image [1]. Satellite images that form a block are of-
ten acquired at a different time or even by different satellites,
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so their colors are different. Radiometric normalization is es-
sential when using satellite images to produce some products
which require seamless geometric and radiometric mosaick-
ing. Radiometric normalizations can be categorized into two
types: absolute and relative radiometric normalizations. Abso-
lute radiometric normalization methods aim to obtain surface
reflectance by eliminating the errors in radiation transmission
with a series of treatments, such as radiometric calibration and
atmospheric correction [2], [3]. This type of method requires
external information, namely, simultaneous meteorological data
and ground-measured reflectance of objects. Instead of the
quantitative inversion of ground objects, relative radiometric
normalization methods are devoted to obtaining continuous and
consistent radiations between adjacent images [4], [5]. Thus,
relative radiometric normalization methods are widely used for
the color balancing of multitemporal high-resolution satellite
images (HRSI) mosaic in various cases.

Determining appropriate master images, reducing error accu-
mulation, and eliminating outliers are three main challenges for
relative radiometric normalization. However, existing methods
can only solve one or two problems. For example, the path-based
pairwise techniques (PTs) suffer from the error accumulation
[6], [7], and the statistics-based global optimization algorithms
cannot eliminate outliers well [8], [9]. Thus, the article presents
a comprehensive relative radiometric normalization method for
HRSI via radiometric block adjustment without selecting master
images to solve three problems simultaneously. Modified itera-
tively reweighted multivariate alteration detection (IR-MAD) is
used to select time-invariant features between adjacent images as
radiometric tie points (RTPs), which represent the observations
of the same ground feature on different images [10]. Then with
the error equations conducted by observations of RTPs, the IR
radiometric block adjustment is adopted to obtain the global
optimum, which avoids error accumulation. Furthermore, the
virtual radiometric control point (VRCP), which is the weighted
average of the corrected radiation observations of the RTP, is
introduced as the true value corresponding to the observation in
radiometric block adjustment, to reduce the dependence of the
proposed method on the master images.

The remainder of the article is organized as follows.
Section II reviews the related works. Section III describes the
proposed radiometric normalization method in detail. Section IV
presents the experimental results on four datasets. Section V
presents the discussions. Section VI draws the conclusion.
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II. RELATED WORK

The automatic radiometric normalization for HRSI remains
challenging due to the radiation differences between images
caused by changes in atmospheric scattering and absorption,
illumination conditions, and land changes [11]. The direct nor-
malization methods are first proposed, which usually adjust the
radiations of images to make them consistent with those of
the master images through transformation. The representative
algorithms include mean-standard deviation normalization [12],
[13], Wallis transformation [14], [15], and histogram matching
[16], [17]. The direct methods are simple and effective but are not
suitable for datasets with numerous images because the radiation
continuity of target images is not considered.

Then, PTs are proposed. They adopt a regional growth strat-
egy, starting from the master image and following a specific
propagation path, for radiometric normalization from an image
to another based on the overlapping information. As solutions
to minimizing the cost of error propagation, Dijkstra shortest
path [18] and dynamic programming [19] are used to deter-
mine transformation paths. PTs perform well in digital aerial
orthophotos, but the results rely on the master image and suffer
from error accumulation, which is especially serious on large
datasets [20]–[22]. Thus, researchers use global optimization
to avoid error accumulation. One solution is the least-squares
network radiometric homogenization method [5]. This method
assumes that the overlapped areas of adjacent images should
have the same means and standard deviations and uses template
images with ideal radiation as radiation controls [23]. However,
template images must be selected manually or obtained by
pre-processing works; this requirement limits the automation
of processing. Thus, automatic global optimization methods
(GOMs) without master images have attracted increasing re-
search attention; these methods include the variance-preserving
mosaicking method [24], the global colorimetric harmonization
method [25], the novel color consistency correction method [26],
the auto-adapting global-to-local method [27], and radiometric
bundle block adjustment [10]. These GOMs can effectively
avoid error accumulation, but whether they can avoid outliers
when counting pixels or not has yet to be revealed. Therefore,
GOMs might perform poorly when large areas of water, clouds,
and land cover changes appear between images [27].

Except for the determining of the processing strategy and
master image, the detection of outliers from the cloud, water,
and land cover changes is also a critical issue for radiometric
normalization. It is ignored in many existing methods, especially
in most GOMs based on mathematical statistics [26], [27]. Meth-
ods based on pseudoinvariant features (PIFs) are investigated to
address this problem. Schott et al. [4] use manually selected
invariant objects to conduct radiometric correction for Landsat
TM and high-resolution aerial images. The experimental results,
which indicate an approximately 1% error in reflectance, prove
that the PIF-based methods are effective to improve the qual-
ity of radiometric correction. Subsequently, several automatic
methods for detecting PIFs such as principal component analysis
(PCA) [11]–[28], MAD [27]–[29], IR-MAD [30], [31], iterative
slow feature analysis [32], and Hybrid Canonical Correlation

Fig. 1. Workflow of the proposed radiometric normalization method.

Analysis [33] have been proposed. Besides, a robust linear model
estimator can also reduce the effects of outliers to a degree [34];
examples include orthogonal linear regression [29], Theil–Sen
regression [35], and automatic scattergram controlled regression
[36]. Methods based on PIFs can suppress outliers, but they are
mainly used in PTs [21]. Hence, their results are generally local
optimal and will be influenced by error accumulation in large
datasets.

Stated thus, relying on master images, suffering from radia-
tion error accumulation and outlier pixels are the major problems
in radiometric normalization of HRSI. The current work aims to
consider these three factors simultaneously, which to the best of
our knowledge is achieved by few existing methods. This article
proposes a novel method that uses IR block adjustment based
on PIFs. The PIFs in the overlaps are automatically extracted
as sample pixels using the modified IR-MAD, and all features
are organized according to the horizontal space coordinates to
increase redundant observations. The PIFs can automatically
detect and exclude outlier pixels to ensure robust radiometric
normalization results. Different from the existing radiometric
bundle block adjustment methods, which establish the super
large normal equations of all radiometric observations [10], the
proposed method introduces VRCPs to establish independent
equations for each image, which can reduce the calculation
memory and can eliminate the need for the master images.
Finally, an IR block adjustment is then used to obtain a global
optimum.

III. METHOD

A. Overview

The workflow of the proposed method is shown in Fig. 1.
It consists of the following two steps.
1) Selecting RTPs.
The digital numbers of the corresponding pixels are consid-

ered as observations to obtain a global optimum, which should
be as cloudless, waterless, and free from land cover changes
as possible [11] [37]. Corresponding pixels are automatically
selected by the modified IR-MAD and then organized based on
horizontal space coordinates to increase redundant observations,
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thereby enhancing the insensibility to outliers and strengthening
the stability of the radiometric block adjustment.

2) Conducting iteratively reweighted radiometric adjustment
(IRRA).

We assume that a virtual mosaic image is with continuous
radiation. The radiation of images should be consistent with
that of the virtual mosaic image in the corresponding positions
as much as possible. To achieve this goal, an IR block adjustment
is adopted. We first calculate the VRCPs using RTPs. A linear
model estimator is then used to fit a linear model between the
radiation observations and the corresponding VRCPs for each
image. A global constraint, that is, the sum of the means and
the sum of the standard deviations of all images should be
maintained before and after correction, is used to ensure that the
dynamic range and visual contrast of images are not reduced.
The weights are updated according to the root mean square error
(RMSE) of each image.

The above calculations are iteratively conducted until the
RMSE of all images σ0

k (k is the current number of iterations)
is greater than that of the last iteration σ0

k−1 or the change of the
RMSE of all images is less than a predefined threshold t. The
above iterative process is called IRRA in our method, which
represents the method proposed in Section IV.

B. Selection of RTPs Using Modified IR-MAD

IR-MAD transformation is first proposed to detect changed
pixels [38] and is then used by Canty [31] to extract time-
invariant pixels for radiometric normalization of two adjacent
images. Linear combinations of the intensities for allN channels
in the two images are formed as{

uTF = u1 f1 + u2f2 + . . .+ uN fN

vTG = v1 g1 + v2g2 + . . .+ vNgN

(1)

where F and G are N dimensional vectors and represent the
intensities of pixel pairs in the overlapping area of two images,
fi and gi represent the intensities of the ith channel of F and G,
respectively, and u and v are constant vectors. To maximize
the difference image uTF− vTG, the canonical correlation
analysis is used to find two sets of canonical variates to minimize
the positive correlation between two images. After gettingN sets
of constant vectors uc and vc, the N difference components
are defined as the MAD components madc of the combined
bitemporal image by

madc = uc
TF− vc

TG, c = 1 . . . N. (2)

And the variances of the MAD components are calculated by

Var
(
uc

TF− vc
TG

)
= σ2

madc
. (3)

Then the standardized MAD variable for one-pixel pair is
defined as

Z =

N∑
c

(
madc

σmadc

)2

. (4)

Because theMAD components are approximately Chi-square
distributed χ2

N,H with N degrees of freedom, so the PIFs can be

selected by

Z < χ2
N,H = 0.01 (5)

where H is the probability of observing a value of χ2
N,H or

lower.
The above processes describe the MAD method. IR-MAD

is the weighted iteration of MAD; it redefines the weight of
observations in each iteration to obtain more accurate PIFs.

The threshold H is the key parameter of IR-MAD, which is
related to the number, dynamic range, and confidence level of
PIFs. Generally, the lower the H , the greater the number and
the dynamic range, but the lower the confidence. Therefore,
in [31], H was set to 0.01 to get high-confidence PIFs, but
the obtained PIFs may be gathered in a small dynamic range,
and the remaining number of PIFs may be very small in some
extreme cases. Since the linear model is only estimated in the
image pair, this unstable phenomenon will not affect the results
of PTs. But it will affect the accuracy of the radiometric block
adjustment, and even cause iterative calculations to diverge [39].
Therefore, the original IR-MAD must be modified to fit our
method. First, we use the original IR-MAD to obtain candidate
PIFs. To get enough PIFs with a large dynamic range, H needs
to be set larger (it is set to 0.2 in our work based on the
experience of several experiments). Then, to get high-confidence
PIFs while maintaining the dynamic range, we reselect the first
100 candidate PIFs with the smallest Z for each digital number.
This process is conducted for every band of two images. The
union of all PIFs is the final result for an image pair.

Fig. 2 shows the histograms of PIFs of the original IR-MAD
and the modified IR-MAD, the y-axis represents the ratio of
PIFs on a specific digital number to all PIFs. Compared with
the original IR-MAD, whose 70% PIFs are concentrated in the
dynamic range of 10 digital numbers, the modified IR-MAD
is evenly distributed in the dynamic range of nearly 40 digital
numbers. Moreover, the standard deviations of the PIFs of the
modified IR-MAD are triple that of the original IR-MAD, but
they have almost the same linear transformations. This indicates
that the modified IR-MAD can effectively help to obtain more
evenly distributed PIFs with a larger dynamic range.

In the existing PIFs-based radiometric normalization meth-
ods, the linear transformation is performed between two images,
only double coverages in space are used for estimation of the
linear model. However, multiple coverages exist in actual cases,
they could provide more than two observations of the same
object to detect the outliers and improve the accuracy of the
radiometric block adjustment [10].

The selection of PIFs is similar to image matching. However,
for image matching, features are extracted from each image
before matching, and each feature point can be assigned a unique
identification which is then used to construct tie points from
the corresponding feature pairs. While in the selection of PIFs,
features are not extracted from each image in advance but depend
on the image pairs. Using the horizontal space coordinates of the
PIFs as their identification information to construct RTPs is more
direct and easier. Considering that the pixels of the same ground
position on different images are not completely coincident due
to the errors of geometric correction, a certain error tolerance
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Fig. 2. Histograms of PIFs between two images. Std is the standard deviation.
For the convenience of display, the HRSI in our experiments are resampled to
8-bit, so the dynamic range is 0–255.

is required when organizing RTPs. For two PIFs PIF1(i1, i2)
and PIF2(i

′
1, i

′
2) from image pairs (i1, i2) and (i′1, i

′
2), they are

taken as an RTP if

‖C (PIF1 (i1, i2))− C (PIF2 (i
′
1, i

′
2)) ‖ < gsd/

√
2 (6)

whereC(·) is the function to calculate the ground coordinate (X,
Y) of a PIF from its image position, which is easily accessible
by using the geographic transformation parameters of the image,
and gsd is the ground sampling distance for all images.

C. Mathematical Model of Radiometric Adjustment

The empirical linear correction model is widely used for
radiometric normalization [4], [9], [10], [9], which is shown
as

y = a∗x+ b (7)

wherex represents the digital number of the corresponding pixel
of satellite images, which is the radiation observation of the
radiometric block adjustment in this article, y does not represent
the corresponding observation on the adjacent image or the real
measured radiation as other references but refers to the VRCP in

our method, and a and b are the intercept and slope of the linear
model, respectively.

The proposed method uses the image as the calculation unit, so
as long as the VRCPs corresponding to all observations of the im-
age are obtained, the (ai, bi) of each band can be calculated using
a linear estimator, such as ordinary least squares regression [40],
orthogonal least squares regression, PCA, and Theil–Sen linear
regression [35]. Due to extremely less sensitiveness to outliers,
Theil–Sen linear regression can tolerate arbitrary corruption of
up to 29.3% of the input data-points without degradation of its
accuracy [41]. Thus, the Theil–Sen linear regression is adopted
in this work.

In the Theil-Sen regression, the slope a is defined by the
median of the slopes determined by all observations and cor-
responding VRCPs (x, y)

a = median

{
yj1 − yj2
xj1 − xj2

|j1 �= j2

}
. (8)

After the slope a is determined, the intercept b could be
determined by the median of the all (y − a ∗ x).

D. Iteratively Reweighted Radiometric Adjustment

A radiometric error is defined to present the systematic ra-
diation difference between a radiometric observation and the
corresponding ground truth. We assume that the radiometric
errors of all images are random and all images can be transferred
to the corresponding parts of a virtual mosaic image which is
the radiometric master, through empirical linear models. The
radiometric ground truthRTruth of an RTP on the virtual mosaic
image is estimated by

RTruth =

∑m
i (Ri ∗ ai + bi) ∗ Pi∑m

i Pi
(9)

wherem is the overlap of an RTP,Ri is the radiation observation
in the image i, (ai, bi) are the linear model parameters, andPi is
the weight that reflects the radiometric error of the image. The
weight decreases with the increase of the error and the initial
weights of all images are equal. RTruth is treated as the VRCP
because it is not actually measured, and one RTP corresponds
to one VRCP. Once VRCPs of all RTPs from all overlaps of
image i are obtained during the iteration, the linear model
parameters (ai, bi) of the image i are fitted by the radiometric
block adjustment using the RTPs as observations.

The RMSE of radiation observations for the image i, i. e., σi,
can be calculated by⎧⎨

⎩ σi =

√∑K
j ΔjΔj

K−1

Δj =
RTruth−bi

ai
−Ri,j

(10)

where K is the number of radiation observations of the image
i, Δj is the residual of observation Ri,j for the tie point j,
σi indicates the magnitude of the overall error of the radiation
observations of the image i and it also reflects the radiometric
quality of the image i related to adjacent images. The larger the
RMSE σi, the worse the radiation quality. The RMSE for all
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images is defined as

σ0 =

√∑M
i (σiσi)

M − 1
. (11)

Although IR-MAD can effectively remove image pixels with
cloud, water, and land cover changes, a small number of outliers
will inevitably remain, which will affect the iteration of radio-
metric block adjustment. (12) is used to adaptively calculate
the threshold to detect outliers; here, t is set to 5 for the first
three iterations to avoid the cases where the accurate RTPs are
incorrectly eliminated due to the insufficient initial value of
the linear model in the early iterations and is set to 3 for the
subsequent iterations in this work. A sample pixel is regarded
as a gross error if |Δ| > Toutliers defined as

Toutliers = t ∗max
(
σ0, σi

)
. (12)

In actual cases, the qualities of images acquired in different
periods change in various degrees, and the brightness and local
contrast in different regions of the virtual mosaic image are
significantly different in vision. When this difference increases,
the visual quality and dynamic range of the mosaic image
after radiometric adjustment may decrease, so some quality
constraints on adjustment parameters need to be introduced. To
maintain the radiation model linear, we perform the same linear
transformation (ā, b̄) on all images again after each iteration,
as shown in (13). In this way, the deviations and the RMSE of
all RTPs are scaled the same, so that the effectiveness of the
gross error detection and the weight of the images will not be
changed. The linear parameters (ā, b̄) are the global constraint
in our method {

ai
, = ā ∗ ai

bi
, = ā ∗ bi + b̄

(13)

The designed quality constraints should maintain a balance
between the iteration of block adjustment and the stability of
the method. If the constraints are too strong, iterative divergence
may occur, which will lead to unstable results. For example,
images are worse than the original images [27], while if the
constraints are too weak, the reduction of visual quality and
dynamic range will be inevitable [9]. The global constraint
expressed by (14), which maintains the sum of the means and
the sum of the standard deviations of all images before and after
radiometric correction, is adopted to keep the overall tone of the
images { ∑M

i (ai
, ∗meani + bi

,) =
∑M

i meani∑M
i (ai

, ∗ stdi) =
∑

stdi
(14)

where meani and stdi are the mean and standard deviation of
the image i, respectively, M is the number of all images. The
linear constraint parameters (ā, b̄) can be calculated by using
(13) into (14).

The global constraint shown in (13) can restrain the reduction
of the dynamic range in different regions of the mosaic image.
But it is difficult or only limited to improve the radiation quality
of the mosaic image, especially for the images with very poor
radiometric qualities. Assigning different weights to each image

can effectively suppress poor quality images. Therefore, the
weight of each image is redefined as

Pi =
σ02

σi
2
. (15)

To obtain the global optimum, we iteratively conduct two
steps: recompute the VRCPs and refit the robust linear models
until σ0 is greater than that in the last iteration or the change
of σ0 is smaller than a predefined threshold. This process will
also stop when the times of iterations exceed a certain limit. The
thresholds of σ0 and the maximum number of iterations limit
are set to 1.0e−3 and 20 in our experiments, respectively.

IV. EXPERIMENTS

The proposed method (IRRA) is compared with two state-
of-the-art methods, namely, the PIF-based PT [18] and a GOM
proposed by Yu et al. [27] to evaluate its performance. Due to
the iterative calculation, the time consumption of the proposed
method is slightly more than those of the other two methods. And
our focus is mainly on the effectiveness of different methods,
so we only conduct visual and statistical evaluations of the
experiments in this article.

A. Experimental Datasets

Four groups of image datasets from various satellites, namely
the Hunan dataset, Xinjiang dataset, Hubei dataset, and Shan-
dong dataset, are used to validate the effectiveness and robust-
ness of the proposed method. After geometric orientation and
ortho-rectification based on the 30-m resolution Earth elevation
data obtained by the Shuttle Radar Topography Mission, the
relative registration errors between the images are less than 1
pixel. And to eliminate the blur caused by the atmosphere, the
Hunan, Hubei, and Xinjiang datasets are preprocessed by simple
atmospheric correction using ENVI, while the Shandong dataset
is left behind without any preprocessing to test the stability of
the methods. The details of the test data are provided in Table I.
Although the Hubei and Shandong datasets are composed of
multisensor satellite images, the multispectral parameters of the
satellites of the two datasets are the same.

The four datasets are located in different provinces in China,
representing woodland, urban and desert areas, respectively,
as seen in Fig. 3. The datasets contain several images col-
lected in different seasons, and some land cover changes in the
overlaps of the Hunan and Shandong datasets, such as roads
under construction and harvested crosses. Moreover, the Hunan,
Hubei, and Xinjiang datasets contain a lot of clouds, snow, and
water. And the Shandong dataset is the largest, with 102 images
covering the entire Shandong province, where there are many
and complex types of features. In addition, due to the inaccuracy
of the parameters in the metafile, the images in the same dataset
have large color differences. These factors make radiometric
normalization very challenging.

B. Qualitative (Visual) Evaluation

Fig. 3 illustrates the results of different methods for the Hunan
dataset. Two different results of PT, which are marked as PT1
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TABLE I
DETAILED DESCRIPTIONS OF TEST DATASETS

Fig. 3. Thumbnails of the results of different methods for 12 TripleSat images in the Hunan dataset. (a) Original. (b) PT1. (c) PT2. (d) GOM. (e) IRRA.

and PT2, are obtained by using different master images in the PT
method, namely images #1 and #2 in Fig. 3(a), respectively. The
radiation differences between the images are reduced at different
levels by different methods. Comparing Fig. 3(b) with 3(c)
reveals that the results of the PT are consistent with the master
image, but they are considerably different from one another. It
indicates that the results of the PT heavily rely on the master
image. Accordingly, the effectiveness of PT is uncertain, and
an inappropriate master image will lead to undesirable results.
GOM can also reduce the radiation differences between images.
However, it cannot completely eliminate the huge radiation
difference between the two images in the red ellipse of Fig. 3(d).

Fig. 4 and 5 show the radiometric normalization results for
the Xinjiang and Hubei datasets using different methods. In the
Xinjiang dataset, PT performs the worst, given the considerable
difference in Fig. 4(b). The images with similar radiations in the
red box become completely inconsistent after radiometric nor-
malization, which shows that the radiation deviation will become
larger along the path due to the transmission and accumulation
of radiation errors in PT. This also appears in the red ellipse of
Fig. 3(b) in the Hunan dataset. In the Hubei dataset, due to the
right green image is used as the master image, the result of PT
is greenish in Fig. 5(b). This indicates the shortcoming of PT,
i.e., the quality of the final result is extremely dependent on the
master image.

The result of GOM has no considerable radiation bias but
appears low visual brightness and contrast in the Xinjiang and
Hubei datasets, as seen in the red boxes of Figs. 4(c) and 5(c),
which indicates that GOM may reduce the dynamic range. More-
over, several radiation differences are observed between images

in Fig. 4(c), where there are cloud, snow, and large radiation
differences, indicating that GOM is susceptible to cloud and
snow.

The same situation appears in the Shandong dataset in Fig. 6.
Because of the radiation error accumulation, a clear color differ-
ence between the left and right images in the PT result, as seen
in Fig. 6(b). And the visual contrast of the images in the red box
of the GOM result is significantly reduced, and some radiation
differences have not been eliminated, resulting in some obvious
color seamlines in the result.

By contrast, the results of IRRA in the four datasets are all
consistent and clear, which shows that the proposed method can
solve the radiation error accumulation and achieve the global
optimal performance. Even if the radiation difference is large
in the Shandong dataset, it can effectively reduce the radiation
difference between images, as seen in Fig. 6(e). Moreover, the
proposed method can effectively eliminate the outliers caused by
clouds and snow and has strong robustness, as seen in Figs. 3(e),
4(d), and 5(d).

C. Quantitative (Statistical) Evaluation

To further evaluate the performance of the proposed method,
we use two indicators: absolute mean difference DMean(Oi,j)
and absolute standard deviation difference DStd(Oi,j) for the
overlap Oi,j between the image i and j [27], which are
defined as{

DMean (Oi,j) = |Meanij −Meanji|
DStd (Oi,j) = |Stdij − Stdji|

, i �= j (16)
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Fig. 4. Thumbnails of the results of different methods for 42 TripleSat images in the Xinjiang dataset. (a) Original. (b) PT. (c) GOM. (d) IRRA.

Fig. 5. Thumbnails of the results of different methods for 26 Gaofen images in the Hubei dataset. (a) Original. (b) PT. (c) GOM. (d) IRRA.

where Meanij and Stdij are the mean and standard deviation of
all pixels of image i in the overlap Oi,j , and Meanji and Stdji
are the mean and standard deviation of all pixels of image j in
the overlap Oi,j . It should be noted that the counted pixels are
cloudless, snowless, and waterless.

Moreover, two additional indicators are introduced to evaluate
the overall result of each method: MoMD and MoSD [27].
MoMD is the mean of all DMean(Oi,j) for all overlaps, and
MoSD is the mean of all DStd(Oi,j) for all overlaps. They are
computed as ⎧⎨

⎩MoMD =
∑U

u DMean(Oi,j)
U

MoSD =
∑U

u DStd(Oi,j)
U

(17)

where U is the overlap number for all images.
Figs. 7 –9 intuitively show the ability of different methods to

eliminate the differences of brightness and contrast between im-
ages of the Hunan, Xinjiang, and Hubei datasets. The first rows
in Figs. 7–9 show the DMean(Oi,j), and the second rows show
the DStd(Oi,j). All subfigures are drawn after sorting according
to the statistics of the original images, so the overlap identifiers
between the subfigures are not the same. The statistical figure of
the Shandong dataset has not been drawn because the overlaps
exceed 300, and onlyMoMDs andMoSDs are given in Tables
II and III.

After using different methods for radiometric normalization,
the differences in overlaps are greatly reduced. Among three
methods, the performance of the PT is the most unstable. In the
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Fig. 6. Thumbnails of the results of different methods for 102-TH images in the Shandong dataset. (a) Original. (b) PT. (c) Footprints of images. (d) GOM.
(e) IRRA. (a) Original. (b) PT. (c) Footprints of images. (d) GOM. (e) IRRA.

Fig. 7. Absolute mean (the first row) and standard deviation (the second row) differences of overlaps of the Hunan dataset for (a) red, (b) green, and (c) blue
bands.

Hunan dataset, PT with image #2 as the master image (PT2)
performs best, the result has the lowest mean and standard
deviation differences in overlaps, as seen in Fig. 7. However, the
PT performs worst in the Xinjiang dataset in Fig. 8, the mean
and standard deviation differences are much larger than that of
the original images in several overlaps. This is mainly because
the error accumulation leads to a large color deviation along the
propagation path during processing. Furthermore, in the Hunan
dataset, the results of PT1 and PT2 are completely opposite,
which are the worst and the best among the four methods,
respectively. This indicates that the choice of the master image
and propagation path has a great impact on the PT method. This

situation also appears in the Hubei dataset in Fig. 9, because
the brighter image is selected as the master image, the contrast
differences of overlaps become larger.

Compared with PT, the GOM is more stable and can greatly
reduce the radiation differences between images for the Hu-
nan, Hubei, and Xinjiang datasets. However, combining with
Figs. 4 and 5, it can be found that the reduction of radia-
tion differences of the GOM comes at a price and will re-
sult in a reduction in the visual brightness and contrast of
the images. Moreover, Figs. 7 and 9 show several large mean
and standard deviations in the curves of GOM, which are
mainly caused by the fact that the cloud and snow pixels are



LIU et al.: ROBUST RADIOMETRIC NORMALIZATION OF MULTITEMPORAL SATELLITE IMAGES 6037

Fig. 8. Absolute mean (the first row) and standard deviation (the second row) differences of overlaps of the Xinjiang dataset for (a) red, (b) green, and (c) blue
bands.

Fig. 9. Absolute mean (the first row) and standard deviation (the second row) differences of overlaps of the Hubei dataset for (a) red, (b) green, and (c) blue
bands.

not excluded by GOM when counting the mean and standard
deviation.

IRRA has the most stable performance in the Hunan, Hubei,
and Xinjiang datasets and can well eliminate the radiation dif-
ferences between images. In Figs. 7– 9, the mean and standard
deviation differences of the results of IRRA are reduced to a very
low level and fluctuate in a very small range without any large
abnormal statistics. This shows that IRRA can well eliminate
the radiation differences between images and achieve the global
optimum. Although the standard deviation differences of some
overlaps of GOM’s results are smaller in the Hubei dataset, it can
be found from Fig. 6 that the contrast of IRRA is significantly
higher, which indicates that IRRA can achieve a balance between
the contrast of images and the contrast difference of the overlaps,
which means that the proposed method can reduce the radiation

differences between images while maintaining the contrast of
the images.

Tables II and III quantitatively describe the MoMD and
MoSD for all overlaps of the original images and different
results of all groups of datasets. The huge radiation differences
between the original images are considerably reduced after ra-
diometric normalization using different methods. The statistical
results are similar to Figs. 7, 8, and 9. IRRA can reduce the
radiation differences between images very well in four datasets,
and it performs best in the Xinjiang and Shandong datasets,
with the lowest MoMD and MoSD. The results of PT are too
dependent on the master image, resulting in hugely different
results in the Hunan dataset. And the performance of PT is
very unstable, the radiation differences between the images can
be well reduced in the Hunan and Hubei datasets. However,
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TABLE II
MoMD OF ALL OVERLAPS FOR THE FOUR TEST DATASETS

TABLE III
MoSD OF ALL OVERLAPS FOR THE FOUR TEST DATASETS

in the Xinjiang and Shandong datasets, due to a large amount
of images, the problem of error accumulation is particularly
prominent, making the MoMD and MoSD even larger than
the original images, such as the blue band of the Xinjiang dataset
and the green and blue bands of the Shandong dataset. The GOM
can reduce the radiation difference between images very well,
especially the ability to reduce the standard deviation differences
of the overlaps is similar to IRRA. However, the robustness of
GOM is not strong, and it is easily affected by cloud, snow,
water, and ground change pixels, so its performance in the Hunan
dataset is similar to PT1.

V. DISCUSSIONS

The proposed method is robust, which is proven in the fol-
lowing four aspects.

1) IRRA greatly eliminates the effects of outliers caused by
cloud, water, and land cover changes since the correspond-
ing pixel pairs are selected from time-invariant features.

2) The iterative computation of IRRA is convergent.
3) The global constraint ensures that the radiometric adjust-

ment stably achieves a global solution without falling into
local solutions.

4) The modified IR-MAD is more suitable for radiometric
block adjustment, making the calculation more stable.
These characteristics are discussed in detail below.

A. Capability of IRRA to Avoid Outliers

Fig. 10, which includes three local areas of the Hunan dataset,
shows the capability of IRRA to avoid outliers, such as the cloud
in Fig. 10(a), the water and thin cloud in Fig. 10(b) and the
land cover change in Fig. 10(c). For example, in Fig. 10(c), the
paddy field is green in the top image but yellow in the bottom
image. Nevertheless, the sample pixels are mostly selected from
unchanged features, such as fields and roads, well protected from
land cover change areas.

Figs. 11 and 12 show the details of areas (a) and (b) of Fig. 3(a)
in the Hunan dataset, clearly demonstrating the capabilities of
different methods to handle land cover changes (see Fig. 11)
and cloud (see Fig. 12). The GOM underperforms and does not
eliminate the radiation difference between images caused by
land cover changes, the left and right parts of the image shown
as Fig. 11(c) presenting substantially different hues, leading
to a color seamline. On the contrary, as shown in Figs. 11(b)
and 11(d), the PIF-based methods, including PT and IRRA, are
effective in eliminating the radiation differences between images
and preserving visual contrast. Similarly, PIF-based methods can
also avoid the impact of cloud pixels and perform better than the
GOM, as shown in Fig. 12.

The comparison results indicate that the proposed IRRA
can greatly eliminate the outliers, including cloud and land
cover changes, since the PIFs selected by IR-MAD are
time-invariant and generally represent the true corresponding
features.

B. Convergence of the Global Solution

Fig. 13 shows the scatter plots of the corresponding rela-
tionship between radiometric observations and the VRCPs of
image #1 in the Hubei dataset of the first five iterations. Each
row represents an iteration and each column represents a band.
Image #1 has seven adjacent images and 102 793 radiometric
observations. The differences between the adjacent images of
image #1 are relatively large. Hence, the PIFs extracted from
different image pairs have different aggregation centers and
linear forms, as seen in the first row of Fig. 13. Along the
iteration, the virtual truth values of the RTP on different im-
ages gradually approach, therefore, the scatter plot gradually
moves closer to a straight line, and it has almost completely
converged in the fifth iteration. These results demonstrate the
validity and convergence of the iterative strategy of the proposed
method.

C. Performance of the Global Constraint to Maintain the
Visual Contrast

To retain the radiation quality of the original mosaic image
and avoid the reduction of the visual contrast, a global constraint
described in (13) is adopted by IRRA. Fig. 14 shows the results of
the Xinjiang dataset using the proposed method with or without
the global constraint. It is clear that Fig. 14(b) is brighter and
has a higher contrast than Fig. 14(a). Table VI quantitatively
describes the averages of means and standard deviations overall
images. The mean and standard deviations of the result using the
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Fig. 10. PIFs selected using IR-MAD of image pairs (each column) with (a) cloud, (b) water, and (c) land cover changes.

Fig. 11. Comparison of the effects of different methods in areas with land
cover changes in the Hunan dataset. (a) Original. (b) PT2. (c) GOM. (d) IRRA.

IRRA with global constraint are closer to the original images.
However, IRRA without the global constraint reduces the two
indicators, especially the mean values, which leads to a decrease
in the image radiation qualities of images. This indicates that the
global constraint can effectively maintain the dynamic range of
the original dataset.

D. Effect of Modified IR-MAD on IRRA

As described in Section III-B, PIFs may be concentrated in
a small dynamic range in some extreme cases, and even when
the threshold H is fixed to 0.01, no PIFs may be obtained. It

Fig. 12. Comparison of the effects of different methods in areas with cloud in
the Hunan dataset. (a) Original. (b) PT2. (c) GOM. (d) IRRA.

will affect the accuracy of IRRA in some cases. Therefore, we
modify the IR-MAD to be more suitable for the radiometric
block adjustment. Fig. 15 shows the results in the Hubei dataset
using IRRA with original and modified IR-MAD, respectively.
Although in the result of IRRA with the original IR-MAD, the
radiation differences between the images have been reduced
to a very low degree, as can be seen from Fig. 15(a), there is
still an indistinct seamline in the red box between the Gaofen-1
and Gaofen-2 images, as shown in Fig. 15(c). Compared with
IRRA with original IR-MAD, in the result of IRRA with the
modified IR-MAD, the radiations between the images are very
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Fig. 13. Scatter plots of the corresponding relationships between observations of image #1 and VRCPs of the first five iterations of the Hubei dataset. For each
subgraph, the x-axis is the digital number of the image observation, and the y-axis is the digital number of the corresponding VRCP.
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Fig. 14. Results of IRRA with or without global constraint. (a) IRRA without
global constraint. (b) IRRA with global constraint.

Fig. 15. Results of IRRA are based on the original and modified IR-MAD,
respectively. (a) Original IR-MAD-based IRRA. (b) Modified IR-MAD-based
IRRA. (c) Local graph of red box in (a). (d) Local graph of red box in (b).

continuous and consistent, and there is no obvious seamline,
as seen in Fig. 15(b) and 15(d). It indicates that the modified
IR-MAD is helpful to improve the accuracy of the IRRA in some
cases.

TABLE VI
AVERAGE OF MEANS AND STANDARD DEVIATIONS OF ALL IMAGES FOR THE

XINJIANG DATASET

VI. CONCLUSION

A comprehensive radiometric normalization method for mul-
titemporal HRSI during mosaic by using IRRA without master
images is proposed in this work. Modified IR-MAD is used to
select sample time-invariant pixels which are then organized to
form the RTPs. The IRRA is adopted to obtain the global optimal
solution for all satellite images. The experimental results of
four large-scale satellite image datasets prove that the proposed
method can effectively reduce the radiation differences between
images. The proposed method is robust and outperforms two
state-of-the-art methods, considering both qualitative and quan-
titative aspects. It has three main characteristics.

1) Independent on master images. The experiment on the
Hunan dataset demonstrates that the visual tone of the PT
is determined by master images. However, automatically
determining suitable master images has yet to be solved.
The proposed method introduces VRCPs to constrain the
block adjustment to preserve the overall tone and is, thus,
independent on master images.

2) Greatly eliminating the outliers caused by the cloud, water,
and land cover changes. Several GOMs based on the
statistics of the mean and standard deviation in overlaps
use all the pixels of target images as sample pixels. This
practice does not conform to the actual situation because
the cloud, water, and land cover change pixels may be
outliers for radiometric normalization based on empirical
linear models. In the proposed method, the sample pixels
consist of time-invariant features are selected by IR-MAD,
which can effectively filter the cloud, water, and land cover
change pixels. And, the proposed method is robustness
against the cloud, water, and land cover changes. Besides,
the modified IR-MAD is more suitable for IRRA and can
ensure the convergence of IRRA and the global optimum
of the result.

3) Global optimal solution. The PTs start from the selected
master image to the next image along a specific propa-
gation path. This process is affected by color error ac-
cumulation and is limited when the dataset comprises
numerous images and overlaps. By contrast, the proposed
method uses radiometric block adjustment based on RTPs
to achieve a global optimum.
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