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Efficient Hyperspectral Target Detection and
Identification With Large Spectral Libraries

Cooper Loughlin , Michael Pieper , Dimitris Manolakis , Randall Bostick,
Andrew Weisner , and Thomas Cooley

Abstract—Numerous hyperspectral algorithms have been devel-
oped to detect both full and subpixel solid target materials. Target
signatures are obtained from spectral libraries that contain both
target and nontarget materials. When the library is large and
contains many potential targets, it is inefficient to run an indi-
vidual detector for each material of interest. Additionally, such an
approach produces numerous false alarms (i.e., multiple detections
per pixel) due to spectral similarity among targets. In this article,
we present an efficient approach for detecting multiple targets
within large spectral libraries while mitigating false alarms. We
first group spectrally similar materials within the library into a
hierarchy of clusters. From each cluster containing a target mate-
rial, a single detector is obtained. Each detector represents multiple
library spectra, so an identification step is needed for detected
pixels. Detected pixels are modeled as a mixture between their local
in-scene background and candidate library spectra. Candidates
are chosen from adjacent library clusters. The candidate model
providing the best fit is chosen to report. Use of local background
spectra provides a physically meaningful mixing model that adapts
to detected pixels. Clustering the library reduces the computational
complexity of modeling detected pixels. We demonstrate detection
and false alarm mitigation performance of our proposed algorithm
with a real hyperspectral dataset.

Index Terms—Adaptation models, computational modeling,
detectors, hyperspectral imaging, libraries, mathematical model.

I. INTRODUCTION

R EMOTE detection and identification of solid targets has
numerous applications across many disciplines. Hyper-

spectral imaging (HSI) sensors are well suited for the task due
to their high spectral resolution. Hyperspectral detection algo-
rithms compare the spectra of image pixels with target signature
spectra and produce a detection score. Target signatures are
obtained from a spectral library, which may contain tens of
thousands of material spectra. Depending on the application,
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materials in a library may be of interest (targets) or not (nontar-
gets). Additionally, libraries may contain multiple signatures for
a single material, representing various illumination conditions,
intimate mixtures, or other material variability. In this article, we
propose an efficient technique for detecting multiple materials in
remotely collected hyperspectral imagery using signatures from
large spectral libraries.

For multiple targets, the simplest approach is to run an in-
dividual detector for each target material signature of interest
in the library. This approach has two significant disadvantages.
First, when the number of materials is large, the computational
cost will be high. Second, and more importantly, numerous false
alarms will result. Specifically, multiple detections per pixel
are likely to occur for spectrally similar target materials. We
consider false alarms to be any detected pixel that does not
actually contain the target material of interest. False alarms
may also originate from nontarget materials in the scene that
are spectrally similar to target materials. An identification (ID)
step is needed when detecting multiple targets from a library.

The matched filter (MF) and normalized matched filter (NMF)
detectors have been highly successful in practical HSI detec-
tion [1]. The NMF is particularly well suited for subpixel tar-
gets [2]; however, it exhibits a large number of false alarms [3].
More recently, kernel-based methods [4] and clairvoyant fu-
sion [5] have been proposed for target detection, but their use in
practice is less established. Techniques for false alarm mitigation
(FAM) have been proposed that exploit MF and NMF geome-
try [6], [7]. These techniques are able to separate many false
alarms, but they do not take advantage of spectral libraries to
identify false alarms caused by spectrally similar nontarget ma-
terials. Target ID has been addressed using the techniques such
as linear unmixing [8], Bayesian model averaging [9], and band
selection techniques [10]. Current techniques do not address
the challenges posed by large spectral libraries. Specifically,
searching the entire library for potential target and background
components is inefficient.

The primary motivation of this article is to develop a detec-
tion and ID processing pipeline that efficiently leverages large
spectral libraries for detection, identification, and FAM. The
approach consists of two major components. First, we group
spectrally similar materials into a hierarchy of clusters, including
both targets and nontargets. To reduce both the number of
detectors and multiple detections per pixel, a single detector
is obtained for each cluster containing a target of interest. This
detector is tuned to a single proxy spectrum, chosen from within
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the cluster. Cluster detectors should detect pixels containing any
of the materials within the cluster. Since each detector represents
multiple spectra, an additional ID/FAM step is taken to identify
which specific material is present in a detected pixel.

The goal of identification/false alarm mitigation (ID/FAM)
is to determine which, if any, library material is present in the
pixel. Pixels may contain target or nontarget materials from the
library as well as contributions from spatially adjacent nontarget
(background) materials within the scene. Our ID/FAM process-
ing consists of estimating the contribution from library and local
background materials for detected pixels. We consider local
backgrounds because they are likely present in mixed pixels
and it eliminates the need to choose them from the library. They
may also account for specific materials or material variability not
present in the library. We proceed by modeling each detected
pixel as a linear mixture between its local background and
candidate library spectra, and then choose the best model. Can-
didate library spectra are chosen from clusters close to the proxy
spectra, as opposed to the entire library. A major contribution
of this article is that we model each pixel with both target and
nontarget materials from the library. As a result, both ID and
FAM are automated. Additionally, hierarchically clustering the
library significantly reduces the number of candidate spectra
considered to ID each detected pixel, reducing the computational
complexity. The novel contributions of our proposed approach
can be summarized as 1) combining ID/FAM by leveraging a
large spectral library and 2) structuring the library for efficient
ID/FAM.

The remainder of the article is organized as follows. Section II
provides a brief introduction to hyperspectral target detection.
A description of library clustering and detector design is given
in Section III. Our proposed ID/FAM processing is described in
Section IV. Results for a real hyperspectral cube are presented
in Section V and concluding remarks are provided in Section VI.

II. HYPERSPECTRAL TARGET DETECTION

In hyperspectral target detection, we seek to choose between
two mutually exclusive hypotheses, denoted

H0 : target material is absent, or

H1 : target material is present

for each pixel in an image. Pixels without target materials are
referred to as background. Reflectance (visible) or emissivity
(infrared) spectra are typically used for solid targets, which must
be retrieved from measured sensor radiance. Natural variability
in surface material spectra, errors in processing algorithms, and
sensor noise contribute to random variation in the retrieved spec-
tra. Additionally, mixed pixel spectra will include contributions
from each material present. Standard detection algorithms are
designed for robustness to these factors.

We can organize the spectra of each pixel into a vectorx ∈ Rp,
where p is the number of spectral bands of the sensor. A detection
algorithm designed for a particular target material with library
spectrum s can be denoted

y = D(x, s). (1)

Fig. 1. NMF detection surface is a cone extending from the background
spectrum. Subpixel targets lie along the simplex (dashed line) defined by the
target and background spectra. Pixel spectrum x is shown for some 0 < at < 1.

The mixed pixel spectrum for solid subpixel targets includes
contributions from both the target and background materials.
The contributions are proportional to their pixel fill-fraction.
Assuming a mixture of one target and one background, the input
spectrum can be modeled

x = ats+ (1− at)b+ n (2)

whereb is the background spectrum andn is a term that accounts
for variability. The scalar at corresponds to target fill-fraction
and is restricted on the interval 0 ≤ at ≤ 1. When at = 1, the
target occupies the full pixel. (2) is referred to as the target
replacement model. Based on (2), the two hypotheses can be
denoted

H0 : at = 0 (3a)

H1 : at > 0. (3b)

Subpixel target spectra lie along the simplex defined by the tips
of the target and background vectors. An example mixed pixel
spectrum is shown in black in Fig. 1. As the fill fraction at

decreases from 1 to 0, the mixed pixel spectrum traces the line
segment between the target and background spectra.

The MF detection algorithm is effective for full-pixel targets.
It has been shown that the NMF is effective for subpixel targets.
Both detectors have a simple geometric interpretation [2]. If we
define the whitened and centered vector x̃ = C

−1/2
b (x− µb),

whereµb andCb are the mean and covariance of the background
pixels, the MF and NMF are defined as

yMF =
s̃�x̃
‖s̃‖ (4a)

yNMF =
s̃�x̃

‖s̃‖‖x̃‖ (4b)

where ‖ · ‖ denotes the �2 norm. Typically, µb and Cb are
unknown and must be estimated from data. The MF measures
the length of the projection of x̃ in the direction of s̃, while the
NMF measures the cosine of the angle between x̃ and s̃. The
NMF geometry is depicted in Fig. 1. The cone-shape detection
surface encompasses the mixing simplex, making it effective for
subpixel targets. The squared NMF detector is also referred to
as the adaptive cosine estimator (ACE). The NMF is the primary
detector used in this work.
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III. LIBRARY CLUSTERING

Spectral libraries may be organized into categories and sub-
categories based on material descriptions (e.g., man-made, veg-
etation, minerals, etc.). This classification structure does not
reflect spectral similarities among materials. Alternatively, li-
brary spectral clustering groups materials by spectral shape.
The goal of library clustering is to group materials with high
spectral similarity for dual purposes. The first is to group targets
that may be detected by a single proxy target signature. The
second is to determine nontarget materials that are spectrally
similar to targets. These are referred to as confusers. Hierarchical
clustering provides a natural framework for clustering library
spectra to achieve these goals. In the following section, a brief
description of hierarchical clustering will be provided followed
by a method for designing detectors from the clustered library.

A. Hierarchical Clustering

Hierarchical clustering is a process by which data are par-
titioned in a hierarchical manner based on a similarity metric.
In hierarchical agglomerative clustering (HAC), each data point
begins as its own partition and pairs are grouped as the hierarchy
ascends stages. At the top stage, all the data belong to a single
partition. At each intermediate stage, a new partition is created
by linking the two most similar existing partitions. HAC has
been applied to hyperspectral images [11]–[14]; however, it has
not been applied to spectral libraries for target identification.

The choice of similarity measure between data points plays
a significant role in the clustering result. Our goal is to have
spectra within the same cluster respond similarly to the NMF;
therefore, we use spectral angle defined as

θij = ∠(si, sj) = arccos

(
s�i sj

‖si‖‖sj‖

)
. (5)

We consider angular distance in this work, rather than euclidean,
because spectral shape is relevant to the NMF while relative
magnitude is not. The angle between two existing clusters is
also needed for HAC. There are a handful of ways to compute
this distance generally considered in the literature [15]. In this
work, we use the unweighted average distance due to its clear
interpretation and empirical performance. The distance between
two clusters is computed as the average pairwise angle distance
between each of the spectra in the two clusters. We note that
in this scheme, the distance between two individual spectra
in different clusters may be smaller than the distance between
clusters.

HAC is best visualized by a dendrogram. Fig. 2 shows the
dendrogram for paint and paint pigment spectra from the United
States Geological Survey (USGS) spectral library [16]. Dendro-
grams consist of links and leaves. Leaves, denoted by vertical
lines, represent clusters. At the bottom, clusters correspond to
individual spectra. Linkages, represented by horizontal lines,
show what partitions are grouped together as the dendrogram is
ascended. The height of the linkage corresponds to the distance
between the two partitions being linked. The horizontal axis

Fig. 2. Dendrogram showing two example distance thresholds (red dotted
lines) that determine clustering schemes. The larger threshold (40◦) results in 4
clusters while the smaller (20◦) results in 11.

corresponds to individual spectra where the order is optimized
for visualization.

Clusters can be defined by setting a distance threshold, rep-
resented by the red horizontal lines across the dendrogram
in Fig. 2. Leaves crossing the cluster threshold correspond to
individual clusters, and all spectra descended from those leaves
are in the same cluster. Additionally, all the linked leaves within
a cluster are said to be adjacent. We can think of adjacent
leaves as those that combine into the same cluster as the cluster
threshold is raised. A key feature of HAC is that it is based
on the series of linkages in the data. Thus, once this series has
been computed, different clustering schemes are easily obtained
by setting various distance threshold. A large cluster threshold
results in few clusters with many leaves in each, while a small
threshold results in many clusters with relatively few leaves. For
a library of N signatures, the computational complexity of HAC
is O(N2) [17]. The complexity is high; however, the clustering
need only be done once for a particular library, and thus does
not affect real-time performance.

B. Cluster Detectors

We define library clusters by setting a distance threshold in
the agglomerative hierarchy, shown as red horizontal lines in
Fig. 2. We then obtain NMF detectors for each cluster. There
are two competing criteria relevant when selecting a cluster
threshold. The first is to reduce the number of detectors, which
would suggest a large cluster threshold. The other is to have
high similarity within clusters and high dissimilarity between,
suggesting a smaller threshold. In this work, a cluster threshold
θDET was chosen experimentally and discussed in Section V-B.

The resulting library clusters may contain only targets, only
nontargets, or both. The number of clusters containing at least
one target is denoted M . We therefore need only obtain M
detectors. The cluster detectors are tuned to a single proxy
spectrum sm chosen from within the cluster. The proxy is chosen
as the target material with the minimum average angle distance
to each of the other spectra in the cluster. The result is a bank
of M NMF detectors shown in Fig. 3. Each of the N pixels in
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Fig. 3. Each pixel of the data cube is passed through the bank of M detectors.
The maximum score and detector index are chosen, thresholded, and passed to
the ID/FAM processing step.

an image is run through the bank of M detectors, and detection
scores are computed for each as yn,m = D(xn, sm), where m
is the cluster index and n is the pixel index. We choose the
maximum score

ỹn = max
m

yn,m (6)

and corresponding detector index m̃n for each pixel. We now
have a single score and index for each pixel {ỹn, m̃n}Nn=1, and
we can apply a detection threshold to the scores. The detection
threshold should be chosen low enough so that subpixel targets
are passed for each signature of interest. If it is assumed the
outputs approximately follow a Gaussian distribution, a thresh-
old can be selected for an expected false alarm rate (FAR). A
threshold may also be selected using more accurate performance
prediction techniques such as [18], [19]. Detected pixels are
passed to the ID/FAM step. A block diagram of the detector
processing pipeline is shown in Fig. 3.

IV. IDENTIFICATION AND FALSE ALARM MITIGATION

Each cluster detector represents multiple spectra from the
library. An identification step is essential to report which, if any,
material from the library is present in a detected pixel. Because
of the spatial resolution of most HSI systems, it is assumed
that detected pixels contain at most a single target material. We
first group spatially adjacent detected pixels into objects, and
then model detected objects as a mixture of local background
and candidate library spectra. The estimated target component
of each candidate model is compared to the corresponding
library signature. Candidate signatures are chosen from clusters
adjacent to the detected cluster. The library signature resulting
in the best model is selected. If the selected signature is a target,
a detection is reported. If a nontarget confuser is selected, the
detected pixel is considered a false alarm and not reported. If
none of the library spectra provide an adequate model, the object
is also not reported. This process automatically mitigates false
alarms by determining if pixels are best modeled by target or
confuser materials. In the following section, local background
and library signature modeling for each detected object will be
described.

A. Candidate Library Signature Selection

A detected pixel has an associated cluster detector index m
and proxy spectrum sm. Candidate library signatures are chosen
based on the detector index m associated with a detected pixel.
If a library material is present in the detected pixel, it is likely
similar to the proxy sm and present in cluster m. However, it is
also possible that the true material was mistakenly included in an
adjacent library cluster due to material variability. Searching the
entire library for candidate spectra is inefficient, since most of the
library need not be considered. We can choose candidate library
spectra as those belonging to cluster m as well as adjacent clus-
ters. Adjacent clusters can be determined by setting a new angle
threshold θID on the hierarchy, where θID > θDET. The result is
a new set of L ID clusters, where L < M . Candidate signatures
are chosen from the ID cluster containing the detection cluster
m associated with the current pixel. The cluster threshold θID

should be chosen large enough to account for material variability
but small enough to be computationally efficient. This step
represents the primary computational savings in our proposed
method because it significantly limits the number of candidate
signatures considered for each pixel. The exact computational
savings depend on the library, designated target signatures, and
scene being processed. The choice of θID and computational
savings are discussed in Section V-C.

B. Local Background Modeling

Sub-pixel targets are likely to be mixed with the spectra
of adjacent background pixels. Background spectra change
throughout the image due to variability in materials and illu-
mination. Modeling subpixel targets as a mixture between local
in-scene background and library spectra provides a model that
is physically meaningful, adaptive to each pixel, and simple to
compute. An alternative approach is to use library spectra for
the background component of subpixel targets. This would add
significant computational complexity, since the correct combi-
nation of background and target materials would need to be
determined for each pixel. Additionally, library signatures do
not reflect background variability throughout the scene.

To obtain local backgrounds, detected pixels are first grouped
into detected objects. The target and associated local background
pixels for an example target are shown in Fig. 4. Pixels are
grouped with their 8-connected neighbors. For each object,
the pixel with the maximum score is identified as the primary.
Adjacent pixels that do not pass the initial detection threshold
may still contain some amount of target material and should
not be included in the local background. These guard pixels
are identified by masking adjacent pixels with detection scores
above a low threshold (e.g., 1 standard deviation). Background
pixels are obtained by accumulating nonguard and nondetected
pixels within an increasing radius of the primary pixel until a
prescribed minimum number of pixels K is reached. A value of
K = 18 was found to work well in practice.

The local background spectra will exhibit some variability;
however, it is reasonable to assume they belong to a small
number of unique materials that surround each object. The
background spectra for the target in Fig. 4 are shown in Fig. 5.
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Fig. 4. (a) NMF detection scores are rendered as grayscale values for a
particular target, enclosed by the red box. (b) Primary pixel is shown in red,
other detected pixels in maroon, local background in green, and guard in blue.

Fig. 5. Local background spectra for the target in Fig. 4 are shown in blue and
the subspace basis vectors are in red and green. The shape of the local spectra
can be well captured by the basis. The background mean for the entire image is
shown in black.

Most of the variability in the background can be captured by a
low-dimensional subspace. Given the set of background spectra
{b1, . . . ,bk, . . . ,bK}, the subspace basis vectorsB = [bk bk′ ]
are chosen such that

k, k′ = argmax
k,k′

∠(bk,bk′). (7)

These two vectors are chosen to capture the variability in the
shape of the local background spectra. This is not possible
when using library spectra for backgrounds. Additionally, the
background mean of the image, shown in black, does not capture
the magnitude of the local background for this target.

C. Library Signature Modeling

Using local background spectra and candidate library signa-
tures, we can estimate a model, denoted x̂, for each object’s
primary pixel spectrum. The modeling technique is similar to
that used in [8]. For a particular library spectrum si, the pixel
estimate is of the form

x̂i = Φiâi (8)

where Φi = [si B], B is the local background subspace basis,

and ai = [
ât,i

âb,i
]. The spectrum estimate x̂i is referred to as model

i. If we define the background component of the estimate as
b̂i = Bâb,i and the library component as ŝi = ât,isi, the pixel

spectrum can be written

x = ŝi + b̂i + ei. (9)

The term ei accounts for all sources of error, including sensor
noise, spectral variability, and model error. The residual sum of
squares (RSS) for the model is defined as

RSSi = ‖ei‖ = ‖x− x̂i‖. (10)

We can additionally define the target component as

t̂i = x− b̂i (11)

= ŝi + ei. (12)

Model i is consistent with the data when signature si is present
in pixel x. In this case, t̂i should be similar in shape to si and
RSSi should be relatively small. RSSi will be significantly larger
when the model is incorrect.

We estimate the model components by minimizing (10). The
physics of the target replacement model (2) dictate that the pixel
spectrum lies on the simplex defined by the background and
target spectrum. When the target and background endmembers
are known, this leads to a full constrained least squares (FCLS)
problem where

∑
j aj = 1 (sum-to-one) andaj > 0 (positivity).

In this work, we relax the constraints based on the fact that
the background subspace is estimated from the scene and the
target component may exhibit mismatch with the library. A
major source of spectral variability is illumination, which causes
retrieved reflectance spectra to vary in apparent brightness. This
manifests as a scaling along the direction of the spectrum. If the
sum-to-one constraint is removed, modeled spectra are allowed
to lie anywhere in the convex hull defined by the library and
background components, allowing for variability in scale. The
solution to the resulting non-negative least squares (NNLS) is
obtained by iteratively computing the unconstrained LS solution
and removing spectra with negative coefficients until all coef-
ficients are positive. At each iteration, negative coefficients are
set to zero, so it is possible to have exact zeros in the NNLS
solution [20].

D. Model Decision

Once the detected object has been modeled with each can-
didate spectrum, it remains to choose the best model. The
correctness of the models can be evaluated by measuring the
spectral angle between the candidate spectrum and estimated
target component of the model, θi = ∠(si, t̂i). Spectral angle
measures only the difference in shape between spectra, not scale.
If the library model is correct, θi should be small, even if their
relative scales are different. The angle difference in this case
is mostly due to noise. If the library model is incorrect, θi is
mostly due to model mismatch between the library signature and
pixel target component estimate. Additionally, angle increases
as ât,i decreases, since t̂i would be mostly noise. The best library
signature model î is chosen as the one with the smallest angle θî

î = argmin
i

∠(si, t̂i). (13)
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The resulting model parameters are ât = ât,̂i and âb = âb,̂i. Note
that since

cos(θî) =
s�
î
t̂î

‖sî‖‖t̂î‖
=

âts
�
î
sî + s�

î
eî

‖sî‖‖t̂î‖
(14)

the model angle θî ≥ 90 degrees only when ât = 0. An alterna-
tive approach is to use RSSi to choose the best model; however,
RSSi is sensitive to the pixel magnitude and may be small even
if spectral angle is large or no target material is present. The
model RSSi is, nevertheless, useful for filtering false alarms.
For instance, if the RSS is large for all of the candidate models,
the object is likely a false alarm. An example is discussed in
Section V-C.

Once the best library signature has been selected, it remains
to determine whether the pixel is best described by the library
model or a purely background model. The decision can be
formulated as the equivalent hypothesis tests

H0 : ât = 0 or H0 : θî ≥ 90 deg (15a)

H1 : ât > 0 H1 : θî < 90 deg (15b)

where H1 corresponds to the decision that library signature î is
present. The decision H0 is reached when the NNLS solution
includes only local background spectra. Note that since the
NNLS algorithm can eliminate elements in the model, it is
possible to get exact zeros in the solution. In this case, none
of the candidate spectra explain the shape of the pixel spectrum
better than the local background spectra. It is possible to obtain
values for ât which are positive but small when the library
signature is not actually present. The corresponding angle would
be close 90 degrees, indicating the estimated target component is
approximately orthogonal to the library signature. False alarms
of this type can be further removed by setting a threshold on the
model angle and are discussed in Section V-C.

V. RESULTS

In this section, results of the proposed ID/FAM algorithm are
presented. Results were generated using a readily available hy-
perspectral data set and spectral library. Initial detection results
using the NMF are presented and an appropriate initial threshold
is selected. After setting an initial detection threshold, ID/FAM
results are computed for various θID. It is shown that using
our technique, high-scoring false alarms can be automatically
removed while detecting subpixel targets.

A. Description of Data

1) Image Data: For this work, we use data collected around
Cooke City, MT as part of a field experiment from July 2006 [21].
The data was chosen because it has targets with ground truth
reflectance spectra. The data was collected by the HyMap sensor,
which has 126 bands spanning wavelengths 450− 2, 500 nm.
After removing atmospheric absorption bands, 88 remain. The
ground resolution of the image is approximately 3 m.

The original Cooke City data has vehicle and fabric targets
with ground truth locations. The data was collected over a
populated area, so there are numerous objects in the scene with

Fig. 6. An RGB rendering of a section of the Cooke City, MT hyperspectral
cube where the section used is in the red box.

TABLE I
PAIRWISE ANGLE DISTANCES BETWEEN THE TARGET SIGNATURES,

SHOWN IN DEGREES

no ground truth, including other vehicles and fabrics. Since we
do not have ground truth, these objects would be considered
false alarms even if they are in fact correctly identified. As a
remedy, we illustrate the FAM performance of our method on a
400× 280 (112 000 total) pixel section of the image that omits
the city and includes only the fabric targets. An RGB rendering
of the hyperspectral cube is shown in Fig. 6, with the section used
boxed in red. Four fabric materials, denoted F1 (red cotton), F2
(yellow nylon), F3 (blue cotton), and F4 (red nylon), are present
in the image. Materials F3 and F4 have two locations each of
different sizes, denoted a and b. The targets are summarized in
Table II. Targets F3 and F4 are less than 3 m, so both are subpixel.

2) Library: We use the USGS spectral library in this
work [16]. The library contains N = 1552 reflectance spectra
for artificial and naturally occurring materials. A version of the
USGS library has been sampled to the HyMap sensor resolution.
We embedded the 11 Cooke City ground truth target signatures
in the library prior to clustering. The USGS library is relatively
small compared to what might be found in practice; however, it is
used here for illustration purposes because it is readily available.

Fig. 7(a) shows the dendrogram of the USGS library with the
fabric target signatures embedded and Fig. 7(b) shows the num-
ber of clusters as the angle threshold varies. The total number
of clusters (left axis) drops quickly as the angle increases. The
right axis shows the number of mixed clusters, defined as those
containing both targets and nontargets. At distance thresholds
less than 2.6 degrees, each target signature is in its own cluster.
The targets combine with nontarget clusters until a maximum is
reached at 9.8 degrees, after which the number decreases. At the
highest threshold, all the signatures are in one cluster. Fig. 7(c)
shows the total number of signatures in the mixed clusters versus
θID. The large jumps show where large clusters combine.

As θID is increased, we should expect the FAR to decrease,
as false alarms are identified as nontargets from the library. As
more clusters are combined, the computational cost increases.
This suggests an optimal range for the ID threshold where a
substantial number of candidate signatures are considered, but
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TABLE II
IDENTIFICATION RESULTS FOR TARGETS IN THE SCENE

Fig. 7. (a) Dendrogram for the full USGS spectral library with the fabric target
signatures (red) embedded. (b) The left vertical axis shows the total number of
library clusters as the angle threshold increases. The right axis shows the number
of clusters containing both target and nontarget signatures. The angle threshold
for detection and ID/FAM with the best results are also shown. (c) The number
of candidate signatures being considered is shown versus θID.

the number of mixed clusters is not saturated. From Fig. 7, this
corresponds to an ID threshold range of 8.5–9.8 degrees.

B. Initial Detection Results

As the first step in the ID/FAM processing, we run an NMF
detector for each of the proxy spectra. The pairwise angle

Fig. 8. Probability of exceedance for the maximum NMF scores are shown
with the ground truth pixels shown in green. Probability of exceedance is shown
in blue for a Gaussian distribution with the mean and standard deviation of the
maximum pixel NMF scores.

distances between the target spectra are shown in Table I. The
target signatures are significantly different from each other, with
the exception of F1 (red cotton) and F4 (red nylon), which are
less than 5 degrees apart. For these targets, material color affects
the angle similarity more than the fabric type. To demonstrate the
use of proxy spectra, we can set θDET = 5 degrees. The resulting
proxy spectra are F1, F2, and F3.

The probability of exceedance versus detection threshold
for the maximum NMF scores ỹn is shown in Fig. 8. Also
shown are various thresholds based on the standard deviation
of the scores σ =

√
Var(ỹn). The vertical lines correspond

to the specified number of standard deviations above the mean.
The green markers are the maximum scores of the target pixels in
the scene. A threshold of at most 4σ should be used to capture all
38 of the target pixels. In real applications, however, the target
information is not known and a threshold must be selected in
a systematic way. If it is assumed the outputs approximately
follow a Gaussian distribution, a threshold can be selected for
an expected FAR. A threshold of 3σ results in an expected
FAR of 1.3× 10−3 while passing even the smallest targets.
The 3σ NMF score is yNMF ≈ 0.33, which corresponds to a
maximum 70 degrees of angle difference between the target and
test pixel in the whitened space. This suggests that with such a
low detection threshold, the dendrogram threshold θDET actually
has little effect on the ability to detect targets and can be set
primarily to limit computation. Using this threshold, 556 pixels
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Fig. 9. (a) Normalized pixel and local background subspace spectra are shown.
The pixel spectrum strongly resembles the local background. (b) Target and
identified library spectra are shown as well as the estimated target component.
There is clear similarity among the target and library spectra. The estimated
target component shares a similar shape but with residual modeling error.

are detected, 518 of which are false alarms, based on the Cooke
City ground truth. All 38 target pixels are detected with a FAR of
3.05× 10−3. The detected pixels are grouped into 188 objects
after local background modeling.

C. Identification and False Alarm Mitigation

In this section, we present the ID/FAM results for the Cooke
City, MT data. We analyze the effect of library clustering and
threshold selection on the ID/FAM performance by varying θID

and computing results, which are compiled in Table II. The θID

values are those where the number of mixed clusters changes,
taken from Fig. 7(b).

At θID = 2.6 degrees, each of the targets is correctly identified
with their true signatures; however, the FAR is high. This is to
be expected, since at that threshold, each of the target signatures
is in their own cluster. As θID is further increased, the FAR is
reduced while targets tend to be misidentified. The reduction in
false alarms is due to modeling detected objects and removing
those best described by nontarget library materials. At θID = 8.5,
we have a FAR of 1.68× 10−3 with all targets correctly iden-
tified. This is reduced from 3.05× 10−3 at θID = 2.6. At θID =
9.8, the FAR is further reduced to 9.26× 10−4; however, target
F2 is misidentified. These results suggest an optimal θID that
minimizes FAR while maintaining identification performance.

To gain some insight into identification, we can study target
F4b (red nylon) as the ID threshold is increased. The primary
and local background pixel spectra are shown in Fig. 9(a). The
target cannot be fully resolved at this spatial resolution since the

Fig. 10. (a) MF versus the NMF scores are shown for pixels above the initial3σ
detection threshold (black). Correct detections, false alarms, and true negatives
are shown after ID/FAM processing. (b) Model angles versus RSS are shown
for the primary pixels of each object. The blue circle indicates a particular false
alarm object with a high MF score but large model error. The 90 model angle
threshold is shown in black.

target size (2 m) is smaller than the pixel area (3 m). As a result,
the pixel spectrum closely resembles the background. When θID

is increased to 8.5 degrees, target F4b is no longer identified with
its truth signature; however, it is identified with another signature
for red nylon from the USGS library. Both the true F4 and USGS
red nylon signatures are shown in Fig. 9(b) and they are almost
identical. The target component t̂ of the model is also shown with
estimated model parameters ât = 0.01 and âb = [0.54 0.47]�.
The small target abundance may be explained by a combination
of adjacency effects from the local background and the ground
beneath the target. Since the abundance is small, the residual
error in the model is evident in the estimated target component.

Increasing θID further, the target F4b is misidentified as potas-
sium ferrocyanide at θID = 17.4 degrees. From Fig. 9(b), the
spectrum of potassium ferrocyanide is very similar to red nylon
(7.7 degrees). Apparently, the residual error present in the target
estimate is enough to misidentify it as potassium ferrocyanide.
This illustrates that as we increase θID and test more candidate
signatures, we increase the possibility of misidentification due
to mismatch between library and in-scene spectra.

Fig. 10(a) shows a scatter plot of the NMF versus MF scores
for pixels scoring above the initial NMF threshold. The optimal
threshold seems to be in the range of 8.5–9.8 degrees. An ID
threshold of θID = 8.5 is used, for which each of the targets
is correctly identified. After our ID/FAM processing, correct
detections are shown in green, false alarms are shown in red, and
nontarget (true negative) pixels are shown in black. The initial
detection threshold is shown as a solid black line. The ID/FAM
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processing removes nontarget pixels that score high on both the
NMF and MF. These false alarms could not be eliminated by
setting multiple detector thresholds, as suggested in [6], [7].

D. Discussion

Although ID/FAM processing significantly reduces the initial
number of false alarms, some still remain. As such, an analyst
may intervene and assess the confidence of identifications. The
model error and estimated target component fit are needed
to evaluate the confidence of identification. Pixels containing
targets should have small angles between the target component
and library signature and small model RSS. These values can
be reported along with the identified pixels. As an example,
the blue circled pixels in Fig. 10(a) all belong to the same
object. These pixels passed the initial NMF threshold and were
identified as targets after ID/FAM processing. From Fig. 10(b),
however, the object has significantly larger RSS than the other
identified pixels and can be removed by setting a threshold on
RSS. Large RSS may also indicate the presence of materials
not in the library. Objects with low model error, but model angle
greater than 90 degrees, have been removed. The estimated target
components for these objects are approximately orthogonal to
the library signatures and likely due to noise. For this scene, an
angle threshold may be set as low as 45 degrees while retaining
the targets. Optimal choices for RSS and angle thresholds is a
subject of future work.

The ID cluster threshold influences ID/FAM performance. It
is important to develop a method to choose θID to effectively
apply ID/FAM. The optimal threshold seems to be in the range
of 8.5–9.8 degrees. Based on Fig. 7(b), this is the range of θID

just prior to the number of mixed clusters reaching a maximum.
From Fig. 7(c), it is also the range where the number of ID
candidates significantly increases (from 8 to 161 signatures).
This increases the potential of identifying nontarget materials
from the library. As θID increases further, the number of mixed
clusters begins to decrease. The total number of candidates
increases, which increases computation cost and deteriorates ID
performance. Our results suggest that a good θID can be selected
by first creating plots [Fig. 7(b) and (c)] for the library. The
threshold θID can be chosen such that a significant number of
candidates are considered without maximizing the number of
mixed clusters. Threshold selection is a complex and challenging
task that requires more high-quality data sets to verify results and
is a subject of future work.

The computational cost increases with θID. Since the number
of signatures in each cluster increases, there are more candidate
spectra to test for each detection. The number of candidate
spectra considered at each ID threshold is listed in Table II.
The average computation time to model a detected object with a
single candidate spectrum on a laptop with a 3.1 GHz Intel Core
i7 processor and 16 GB was 5 ms. Processing the whole scene is
fast, even when considering hundreds of candidates. The USGS
library is modest in size; however, spectral libraries may contain
tens of thousands of signatures in practice. The computational
savings using the clustered library versus the entire library are
significant.

VI. CONCLUSION

In this article, we propose an efficient processing technique
for detecting and identifying materials with large spectral li-
braries. The proposed technique includes grouping spectrally
similar materials within the library for detection and identifi-
cation. Identification is done by modeling each detected object
as a linear mixture between local background and spectrally
similar candidate library spectra. The best library model is
identified, which automatically removes false alarms. The ef-
ficient detection, identification, and false alarm performance for
subpixel targets was demonstrated on real hyperspectral data.
Optimal dendrogram threshold selection is the subject of future
work.
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