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Vehicle Tracking and Speed Estimation From
Roadside Lidar

Jiaxing Zhang, Wen Xiao

Abstract—Vehicle speed is a key variable for the calibration,
validation, and improvement of traffic emission and air quality
models. Lidar technologies have significant potential in vehicle
tracking by scanning the surroundings in 3-D frequently, hence
can be used as traffic flow monitoring sensors for accurate vehicle
counting and speed estimation. However, the characteristics of
lidar-based vehicle tracking and speed estimation, such as attain-
able accuracy, remain as open questions. This research therefore
proposes a tracking framework from roadside lidar to detect and
track vehicles with the aim of accurate vehicle speed estimation.
Within this framework, on-road vehicles are first detected from the
observed point clouds, after which a centroid-based tracking flow
is implemented to obtain initial vehicle transformations. A tracker,
utilizing the unscented Kalman Filter and joint probabilistic data
association filter, is adopted in the tracking flow. Finally, vehicle
tracking is refined through an image matching process to improve
the accuracy of estimated vehicle speeds. The effectiveness of the
proposed approach has been evaluated using lidar data obtained
from two different panoramic 3-D lidar sensors, a RoboSense
RS-LiDAR-32 and a Velodyne VLP-16, at a traffic light and a road
intersection, respectively, in order to account for real-world sce-
narios. Validation against reference data obtained by a test vehicle
equipped with accurate positioning systems shows that more than
94% of vehicles could be detected and tracked, with a mean speed
accuracy of 0.22 m/s.

Index Terms—Smart city, 3-D lidar, traffic monitoring, urban
sensing, vehicle detection.

1. INTRODUCTION

ITIES are facing increasing challenges in traffic manage-

ment and air pollution induced by heavy traffic. Emissions
from on-road vehicles are widely regarded to be the main source
of air pollution in urban areas [1]. The key input data source to
air quality models is usually generated from vehicle emission
models, which is supported by traffic data. Accordingly, using
better traffic flow representations is fundamental to improving

Manuscriptreceived April 30, 2020; revised July 17,2020 and August 6, 2020;
accepted September 13, 2020. Date of publication September 18, 2020; date of
current version September 30, 2020. This work was supported by UKCRIC - UK
Collaboratorium for Research in Infrastructure & Cities: Newcastle Laboratories
(EPSRC award EP/R010102/1). The work of Jiaxing Zhang was supported
by the China Scholarship Council Studentship, under Grant 201706370243.
(Corresponding author: Wen Xiao.)

Jiaxing Zhang, Wen Xiao, and Jon P. Mills are with the School of Engi-
neering, Newcastle University, NE1 7RU Newcastle Upon Tyne, U.K. (e-mail:
j.zhang85 @ncl.ac.uk; wen.xiao @ncl.ac.uk; jon.mills@ncl.ac.uk).

Benjamin Coifman is with the Department of Civil, Environmental and
Geodetic Engineering, Department of Electrical and Computer Engineering,
The Ohio State University, Columbus, OH 43210 USA (e-mail: coifman.1 @
osu.edu).

Digital Object Identifier 10.1109/JSTARS.2020.3024921

, Benjamin Coifman, and Jon P. Mills

emission estimates, and to subsequently improve air quality
modeling results. Among the different levels of traffic models,
microscopic models operate with more detailed and precise
traffic data through variables which include individual vehicle
position, speed, acceleration, and deceleration [2]. All such
variables can be acquired through vehicle tracking from various
monitoring sensors, with accurate tracking of individual vehicles
of great importance in creating high-resolution microscopic
traffic data to serve traffic modeling and emission studies.

The most commonly used traditional vehicle tracking sensors
are inductive loop and infrared detectors, nevertheless, such
approaches have drawbacks: Inductive loop detectors are, for
example, subject to a high failure rate when installed in poor
road surfaces [3], and infrared detectors are very sensitive to
extreme weather conditions such as rain, fog and snow [4]. With
advanced progress in image processing techniques, vision-based
methods have therefore become one of the most promising ap-
proaches to vehicle tracking. Video cameras can produce richer
visual information than traditional devices without affecting the
integrity of the road surface and the observed information can be
processed intuitively with modern computer vision technologies
[5]. However, whilst cost effective and well developed in terms
of data processing, the level of accuracy is limited by image
distortion and resolution, and optical cameras are sensitive to
adverse illumination and weather conditions.

Panoramic 3-D lidar actively scans its 360° surroundings
frequently, capturing a huge volume of data on objects within
scanning range. A panoramic 3-D lidar sensor is usually com-
posed of a number of vertically configured laser beams covering
a wide vertical field-of-view (FOV), dependent on the number of
beams. The instrument rotates around its vertical axis to generate
a panoramic view of the surroundings with data recorded in
the form of a 3-D point cloud. Operating at a high frequency,
vehicles can thereby potentially be detected and tracked directly
in 3-D with high spatial accuracy and temporal resolution.
Such sensors have been adopted extensively for environment
perception in autonomous vehicles [6], however, they are seeing
increased use as traffic monitoring sensors due to the ability
to capture objects directly in 3-D with a high accuracy [7].
The precision of the obtained individual measurements can be
as high as 2-3 cm. Moreover, with the ongoing development
of lidar technology and increased ubiquity, the cost of such
sensors has dramatically decreased in recent years. Therefore,
it is foreseen that such sensors will be widely employed in
smart cities for intelligent transportation systems in the near
future.
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According to the literature, most existing roadside lidar-based
vehicle tracking methodologies adopt a tracking-by-detection
principle. First, the raw lidar data is preprocessed to segment
the moving points from the background. Second, the moving
points are clustered into small groups representing individual
road users. Additionally, vehicles may be extracted either by
locating the lanes which vehicles occupy [8], or by vehicle and
nonvehicle classification among all determined clusters [9]. In
the final stage of vehicle tracking, the commonly used methods
are Global Nearest Neighbor (GNN) [8] and Kalman filtering
(KF) [10]. It is also noteworthy that these two algorithms are
used simultaneously in some works [9], [11], [12]. Normally,
the spatial center of a cluster is identified as the location of
the vehicle being tracked. Nevertheless, this center shifts, frame
by frame, due to the incompleteness of the scanned vehicle
from the roadside lidar system. There are several studies that
have taken this shift into consideration [11]-[13], and these
have largely adopted the same strategy whereby the point in the
vehicle cluster closest to the lidar instrument is selected as the
tracking point. This means that when the vehicle is approaching
the sensor, the front corner of the cluster acts as the tracking
point, and when the vehicle is leaving the sensor, the back corner
of the cluster is the tracking point. Although such a strategy has
indeed increased the accuracy of the estimated vehicle speeds
to a certain extent, the issue still warrants further investigation
when accurate vehicle speed determination is the end goal.

Intending to address the aforementioned issue, a new inte-
grated vehicle tracking methodology from roadside lidar data
is therefore proposed in this article. There are two main track-
ing stages: centroid-based tracking and tracking refinement. A
tracker composed of Unscented Kalman Filter (UKF) [14] and
joint probabilistic data association filter (JPDAF) [15] is used in
the first stage, which adopts the centroids of clusters as the input
to obtain initial vehicle speeds. A tracking refinement module,
adopting a different strategy from previous studies, is proposed
in the second stage to further improve the accuracy of the
calculated vehicle speeds. In this module, vehicle positions are
rectified based on the refined transformation between successive
vehicle cluster pairings. The implemented tracking framework
has been assessed using a test vehicle installed with a speed
reference system under different scenarios.

The contributions of this work are threefold.

1) A tracking refinement module is proposed and developed
to directly determine the transformation relationship be-
tween pairs of consecutive vehicle clusters so that the
displacement can be calculated simply without the use of
any reference points such that the final speed estimation
accuracy is improved.

2) The speed estimation results are independently validated
against an accurate vehicle speed reference system, com-
prising dual-frequency GNSS, IMU, and Odometer, such
that the true achievable accuracy of speed estimation using
panoramic lidar can be discovered and the reliability of
results assured.

3) The developed framework has been demonstrated through
different urban scenarios using two different lidar sen-
sors to provide insight on real-world implementations of
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panoramic lidar sensors for traffic monitoring applica-
tions.

II. RELATED WORK

Tracking-by-detection is widely acknowledged in existing
vehicle tracking studies, consequently, a brief review of vehicle
detection and tracking is conducted in this section.

A. Vehicle Detection From 3-D Lidar Points

A preponderance of studies on vehicle detection from 3-D
lidar points rely on machine learning strategies. Traditional
machine learning has proved an efficient approach to vehicle
detection from lidar data, with feature selection and classifier
training two important factors in its effective implementation.
Low-level features based on a small group of points are used
in the majority of related studies whereby the selected features
to distinguish vehicles and pedestrians mainly comprise shape
information [10]. Specifically, the number of points in the object
cluster, object length, height profile, difference between height
and length, distance to the lidar instrument, and direction of
the point distribution in the cluster are typically adopted. There
are several classifiers commonly used in lidar-based object
detection. For example, support vector machine (SVM) was
trained as the classifier and four major different kernel types
were compared in [9]; the performance of different classifiers,
including naive Bayes, k-nearest neighbor, SVM, and random
forest (RF), were compared in [11]; and SVM using the Gaussian
radial basis function and RF were experimented with in [16] to
detect vehicles from point clouds.

Current state-of-the-art object detection deep learning net-
works normally follow one of two pipelines: either two-stage or
one-stage object detection. In the former pipeline, several object
candidates termed regions of interest (ROI) or region proposals
(RP) are extracted from a scene. Afterward, these candidates
are verified and refined in terms of classification scores and
locations. For example, in [17], lidar points were clustered for
on-ground obstacles using DBSCAN. These clusters were then
fed into a ConvNet for 2-D detection. Chen et al. [18] proposed to
generate 3-D ROIs from the bird’s eye view lidar feature maps by
a RP Network, and combine the regional features from the front
view lidar feature maps and RGB camera images for 3-D vehicle
detection. Another two-stage 3-D object detector, PointRCNN
[19], in which stage-one is bottom-up 3-D proposal generation
and stage-two refines proposals in the canonical coordinates to
obtain the final detection results.

In the one-stage object detection pipeline, single-stage and
unified CNN models are used to directly map the input fea-
tures to the detection outputs. Li et al. [20] employed a fully
convolutional network on lidar point clouds to produce an ob-
jectness map and several bounding box maps. Yang et al. [21]
proposed a proposal-free, single-stage detector named PIXOR,
which outputted oriented 3-D object estimates decoded from
pixel-wise neural network predictions. PointPillars [22], another
novel object detection encoder, utilized PointNets to learn a
representation of point clouds organized in vertical columns
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(pillars), then scattered these features back to a 2-D pseudoimage
for a convolutional neural network.

It can be seen from this brief review that machine and deep
learning technologies have been widely adopted in the field of
vehicle detection from raw 3-D point clouds. It is also note-
worthy that almost all studies were evaluated using the KITTI
benchmark [23]. However, the density of the data collected for
the purposes of this research was different from that of the KITTI
dataset, which was collected using a Velodyne HDL-64 laser
scanner (and which consequently has more lidar beams than the
32 and 16 line scanners used herein). Moreover, as opposed
to a common object detection problem, vehicle detection in
this research is essentially an issue of straightforward binary
classification: after preprocessing operations comprising back-
ground removal and moving point clustering, vehicle detection
is actually simplified to classification of motor vehicles from
other road-going objects, primarily pedestrians and cyclists.
Taking the above factors into account, deep learning strategies
do not necessarily outperform traditional classification methods,
especially when training data is limited. More details can be seen
in Section IV.

B. Vehicle Tracking From 3-D Lidar Points

After the vehicle detection stage, the resulting set of identified
trackable vehicles is processed for pose and centroid estimation,
accompanied by known model fitting [24]. This generates a valid
measurement of a vehicle for which the attributes further evolve
over time. These measurements are fed to the state estimation
filter to predict the kinematic state of each vehicle. The optimal
Bayesian filters are utilized to estimate the possible evolution of
vehicle states in the presence of uncertainties. Available filters
include the Variant Kalman, Particle, and Interacting-Multiple-
model (IMM) [25] filters. Later, a data association process is
applied to either assign the detected vehicle to an existing track
or initiate a new track. Popular data association algorithms used
in existing lidar-based vehicle tracking studies include GNN,
JPDAF, multiple hypothesis tracking [26], and Hungary [27]
algorithms. Finally, a track management module is used to
maintain the tracks and to cancel spurious occurrences.

Extended Kalman Filter (EKF) and UKF are two popular state
estimation algorithms using nonlinear models for object track-
ing. UKF is shown to deliver more accurate estimates than EKF
in the presence of strong nonlinearity, thus, itis more widely used
in lidar-based multiobject tracking, as presented in [28]—[30].
Moreover, there are primarily two classes of data association
filter; the deterministic filter and the probabilistic filter. Their
representatives are the Nearest Neighborhood Filter (NNF) and
probabilistic data association filter (PDAF), respectively. The
PDAF outperforms the NNF by avoiding hard, possibly erro-
neous, association decisions commonly encountered in clutter
scenarios where multiple measurements are located close to each
other. As an extension of PDAF, the JPDAF can handle multiple
target tracking tasks. This background provides the rationale
for adopting the UKF and JPDAF as the core algorithms of
the vehicle tracker in this work. Similar combinations, such as
IMM-UKF-JPDAF, can be found in, e.g., [24] and [30].
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C. Tracking Refinement

As mentioned in the Introduction, vehicles can only be par-
tially scanned due to self-occlusion in panoramic lidar sys-
tems. This has inevitably been responsible for unsatisfactory
tracking results, especially in vehicle speeds, by many current
centroid-based tracking methodologies. The few efforts made
so far to improve this situation are summarized as follows:
in [30], in addition to the position tracker represented by the
IMM-UKF-JPDA filter, a bounding box tracker was provided
to perform geometrical correction to compensate for occlusion
and ego-vehicle perspective change. However, the shifting re-
lationship between the center points in the original occluded
box and the newly shifted box was based on simple empirical
rules, and judgments (such as the vehicle location relative to the
ego-vehicle) had to be made. A novel operation was displayed
in [8] where the corner of the bounding box closest to the lidar
sensor was chosen to be a reference point of the vehicle. This
point replaced the bounding box center to represent the vehicle
position and was used as input to the Discrete Kalman Filter
tracking procedure. Several other related studies, e.g., [8], [9]
found in the existing literature adopt similar tracking refinement
strategies to that in [10], implying there has not been any further
improvement to solving the issue. A new tracking refinement
strategy is therefore proposed and introduced in this article.

III. METHODOLOGY

The proposed methodology consists of vehicle detection,
tracking, refinement and, finally, speed validation. Vehicles are
detected via a three-step procedure, then tracked by UKF and
JPDAF, which takes the centroid of the cluster as the vehicle
position, resulting in biases in vehicle speeds due to the incom-
pleteness of the scanned clusters. Accordingly, a tracking refine-
ment module is developed to improve this situation. The core
strategy in this module is image matching, in which the vehicle
clusters are transformed to 2-D images. Finally, the estimated
speeds are validated against a reference from a test vehicle
equipped with an independent positioning system. An overview
of the proposed framework is presented in Fig. 1.

A. Vehicle Detection

The first step of the framework is to distinguish vehicles from
the background and other road objects. The operations include
background removal, moving point clustering, and vehicle clas-
sification. Fig. 2 provides an illustration of the entire vehicle
detection process.

1) Moving Point Extraction and Clustering: All points ob-
served can be generally categorized into two types: moving
points belonging to objects changing in their spatial location
and static points from the background environment. The max-
distance [7] method is applied to construct the background with
the principle that the static environment is assumed impenetrable
and only the furthest points of each laser beam are considered
to be located on the static background. Therefore, the core
operation of background removal is to delete the furthest point
of each laser beam for all scanning angles. Fig. 2(b) shows an
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example of the moving points extracted from an original point
cloud.

The Euclidean Cluster Extraction algorithm is used for clus-
tering and there are three important parameters: the minimum
cluster size S7, the maximum cluster size S5, and the minimum
distance d between two clusters. In terms of d, if the value is too
small, areal single object can be incorrectly observed as multiple
clusters. Conversely, if the value is too large, multiple objects
can be regarded as a single cluster. Therefore, empirical testing
is suggested to determine the optimal value of d for datasets
from different test sites. In our test datasets from the two types
of laser scanners, the minimum distance between two vehicles is
around 1.5 m, and the minimum distance between a pedestrian
and a vehicle is around 1.8 m. Therefore, d is set to be 1 m in the
tests. The cluster size is dependent on the sensor’s number of
beams, thus needs to be adjusted for different sensors. According
to the statistics, the largest vehicle cluster contains around 6000
points and the smallest contains around 200 points in datasets
from RS-LiDAR-32, so S;= 150, and S5= 6500. Whilst since
the point density is much lower for the VLP-16, the values are
smaller for these datasets: S;= 50, So= 5500.

2) Vehicle and Nonvehicle Classification: The purpose of
this stage is to select vehicles out of all the moving clusters.
The remaining moving points after background removal belong
to either vehicles or nonvehicles including pedestrians, cyclists,
motorcyclists, and false alarms (e.g., waving trees and bushes).
Therefore, the vehicle detection task is simplified to a binary
classification problem, for which, an SVM classifier with radial
basis function as the kernel function and an RF classifier with
20 trees are exploited. A 28-D feature set F'= [f1,f2, f3,f4]
containing both volumetric and distributional information of the
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Fig. 2.  Vehicle detection process. (a) Original point cloud. (b) Moving points.
(c) Clustering and vehicle classification. (d) Detected vehicles.

clusters, shown as follows, is considered as potential choice to
train the classifiers.

1) The vertical point distribution histogram of the cluster:
the proportion of the overall number of points in each
vertical section varies among different urban objects [16].
The input cluster is divided into 20 vertical sections from
its overall height to the ground

f1 = [1)1,1)2, .. .’Uzo}.

2) The standard deviation of points in the cluster
f2 = [msa Ys, Zs]-
3) The volume size of the cluster
f3 = [Length, Width, Max_height, Min_height].

4) The area of the 2-D minimum bounding box of the cluster:
f4= a.

The importance of each feature in F' is evaluated using RF,

and SVM and RF are trained by different subsets comprised of

different number of features. In addition, a simple rule-based
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classifier is tested for comparison. The area of the 2-D bounding
box of the cluster is used as a threshold to distinguish vehicles
and nonvehicles so as to detect as more vehicles as possible.
Performance of these three classifiers will be evaluated in the
experiment section.

B. Centroid-Based Tracking

After vehicle detection, the clusters belonging to the same
vehicle in successive frames are tracked to recover the trajectory.

1) Tracker: UKEF is used as the initial function in our vehicle
tracker. Compared with other filters, UKF gives better perfor-
mance when the prediction and update functions are highly
nonlinear. UKF uses a deterministic sampling technique known
as the unscented transformation to pick a minimal set of sample
points around the mean. The JPDAF is a statistical approach
used to solve the problem of assignment in a tracking algorithm.
Instead of choosing the most likely assignment of measurements
to a target, the JPDAF takes an expected value, which is the min-
imum mean square error estimate for the state of each target. At
each observation, it maintains its estimate of the target state as
the mean and covariance matrix of a multivariate normal dis-
tribution. Moreover, JPDAF can handle multiple target tracking
scenarios.

2) Influence of Vehicle Detection: The success achieved in
vehicle detection will have direct influence on vehicle tracking.
Missed detections will lead to interruptions in the related trajec-
tories, whilst false alarms will create erroneous trajectories in
the tracking results. Two parameters in the JPDAF algorithm are
related to the first issue: ¢, the threshold for assigning detections
to tracks, and d, the threshold for track deletion. c is usually set
toal x 2 vector [cy, cz], where ¢; < = cg. Initially, a coarse
estimation is performed to verify which combinations of {track,
detection} require an accurate normalized distance calculation.
Only combinations for which the coarse normalized distance is
lower than ¢ are calculated. Detections can only be assigned to
a track if their normalized distance from the track is less than c;.
The values should be increased if there are detections that are
not assigned to any tracks and decreased if there are detections
that are assigned to wrong tracks. d is usually set to [p, ], where
a track will be deleted if it was unassigned at least p times in the
last r updates. Two factors are critical in removing nonvehicle
trajectories (either pedestrians crossing the road or other false
alarms such as waving trees and bushes): orientation and length
of the trajectories. If the orientation of a trajectory deviates too
far from others, or its length is too short, the trajectory will be
removed.

C. Tracking Refinement

In the tracking stage, the centroid of the cluster was adopted as
the vehicle position, however the relative position of the centroid
changes frame by frame when the vehicle is passing through the
roadside lidar sensor. Fig. 3(a) shows an example vehicle, where
F, C, and R are the front, center, and rear points of the vehicle,
respectively. Fig. 3(b) illustrates the spatial relations between
the centroid of the point cloud cluster (C* and C”) and the real
centroid C when the vehicle passes the lidar sensor. It can be
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Fig.3.  Vehicle and key tracking points: F, C, R represent the front, center, and
rear, respectively (a) and their spatial relations between the centroid of the point
cloud clusters (C” and C”) when the vehicle is approaching (b) and leaving (c)
the lidar sensor.

seen that C’ is between F and C when the vehicle is approaching
the lidar sensor as the front of the vehicle is mostly scanned;
and C” is between R and C when it is departing as the rear of
the vehicle is mostly scanned. The proposed tracking refinement
module is intended to minimize such effects.

After centroid-based tracking, the individual cluster of each
vehicle is identified and labeled by the minimum bounding box
for subsequent tracking refinement. For each vehicle ID, the
optimized tracking refinement solution relies on determining
the correct transformation between two successive clusters. The
normal strategy for determining the transformation is frame reg-
istration. Enlightened by work from [31], 3-D point clouds can
be converted to 2-D images to solve the problem by image match-
ing. It is noteworthy that here the conversion is implemented
on the previously extracted 3-D vehicle clusters rather than the
entire frame, as in [31]. The process of the proposed tracking
refinement comprises three steps: conversion from 3-D cluster
to 2-D image, image matching, and 2-D to 3-D transformation.
Tracking refinement is performed within pairs of successive
vehicle clusters in the plan view. Fig. 4 displays the process for
one example pair, which is described in the following sections.

1) Conversion From 3-D Cluster to 2-D Image: As shown
in Fig. 4, Frame m and Frame m + 1 are projected to 2-D in
the plan view in the first instance, and all the points are in the
laser scanner coordinate system X OY. Under this condition,
Opm+1(Xo,Yp) is the origin of the minimum bounding box
around the vehicle cluster in Frame m + 1. Correspondingly,
0m+1(0,0) is the origin of the image which is located in the
image coordinate system zoy. (1) shows the conversion from
a point on the vehicle cluster to a pixel in the corresponding
image, wherepixelsize refers to the resolution of the image

x = (X — Xy)/pixelsize
y = —(Y — Yp)/pixelsize. (H

The parameter pixelsize can be decided by testing plausible
values in the experiment. In our situation, two case studies in
which a test vehicle was tracked have been used to decide the
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Conversion from 3-D cluster to 2-D image. (2) Image matching. (3) 2-D to 3-D
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optimal value in a range from 1 to 10 cm (values outside of this
range are considered either too small or too large according to
the data density). Root mean square error (RMSE) between the
estimated speeds and the reference is calculated for each pixel
size. Based on our test, a pixel size of 3 cm generated the lowest
RMSE and was therefore chosen as the optimal value.

2) Image Matching: Image matching is intended to determine
the optimum location of a template within a reference image.
The image generated from Frame m + 1 is regarded as the
template, whereas Frame mis the template. The template image
shifts pixelwise over every possible location in the reference
image. Based on the cross-correlation coefficient metric [32], a
similarity score S(x, y) is calculated between the template and
the corresponding subimage in the reference, accordingly [see
(2)]. A score map with each pixel assigned a similarity value is
formed after the completion of the search process. The optimum
matching location, namely the lightest point (red dot in Fig. 4)
in the scoremap, is where the largest score is determined [see

©)

S(x,y) =

_ . 172
L Ry+i—1,z+5-1)

@)

e . . 1/2 m n
ZZ-":’H 2321 T(ZJ)} [Z:iill -

Jj=

P =argmax(S(z,y)), (x=1,...,n05y =1,...,ms).

z,Y

3

In (2), T is the template image with (mq,n1) pixels; R is
the reference with (ms, ng) pixels; and (z,y) is the origin of
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the sub-image corresponding to 7'inR. In (3), Pis the optimal
matching location in R.

3) 2-D to 3-D Transformation: Real-world coordinates are
reserved for each pixel according to (1). Consequently, P can
be located on Frame m, labeled as O',,,11(X{,Yy) in Fig. 4.
Considering its position O,,+1(Xo,Yo) in Frame m + 1, the
displacement can be calculated and the vehicle speed obtained.
The speed values during the entire tracking period will be
estimated when a chain of the above operations has been fulfilled
amongst all the tracked clusters of the same ID. A Gaussian
window with size s = 20 is used to smooth the acquired values
so as to filter out noises.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Datasets

This study employed two lidar sensors. The first was a
RS-LiDAR-32, a panoramic instrument from RoboSense. The
sensor has a detection radius of up to 200 m and is designed
for various applications such as autonomous vehicles, robotics,
and 3-D mapping. It has 32 laser beams and collects data at
a speed of 640 000 pts/s. The scanning frequency was set to
10 Hz in our tests. It covers a 360° horizontal field of view and a
40° vertical field of view with 4-15° upward and —25° downward
looking angles. The second sensor was a Velodyne VLP-16, with
16 laser beams and a maximum detection range of 100 m. The
vertical field of view of the instrument is 30° with 4+15° upward
and —15° downward. The scanning frequency was also 10 Hz in
our experiments.

Two different sites were chosen in Newcastle upon Tyne, UK,
to test the proposed method under real-world traffic conditions.
At the first site (first row in Fig. 5), the RS-LiDAR-32 was setup
along a straight road near a traffic light controlled pedestrian
crossing. The lidar sensor was c¢. 4 m away from the first of
two traffic lanes. At the second site (second row in Fig. 5), the
VLP-16 was set up at a road intersection. The lidar sensor was
c. 4.5 m away from the first of multiple lanes.

A test vehicle equipped with an independent speed reference
system was used to validate estimated vehicle speeds. The
reference system is composed of two GNSS antennas, an
IMU unit and an odometer. The GNSS and IMU unit were
mounted on top of the vehicle, while the odometer was installed
on one of the rear wheels to improve positional accuracy
during GNSS outages. The test vehicle was driven through the
scanning area for several rounds at both test sites. The initially
obtained reference data were postprocessed using Kinematic
software from Advanced Navigation to obtain accurate test
vehicle positions. Figures in the middle column of Fig. 5 show
examples of the processed trajectories from Test Site 1 and Test
Site 2. The uncertainty of reference speeds will be assessed to
assure they are accurate enough.

B. Vehicle Detection Results

A dataset containing 316 vehicle clusters and 224 nonvehi-
cle clusters was created manually from lidar data previously
collected at several random locations in Newcastle upon Tyne.
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Fig. 5.
column: lidar data.

Test Site 1 and 2: left column: lidar sensor setup; middle column: test scene and postprocessed trajectories of the test vehicle (green dashed lines); right

TABLE I
PERFORMANCE OF CLASSIFIERS TRAINED BY DIFFERENT FEATURE SETS

SVM Random Forest Rule-based
Precision Recall  Fl-score Precision Recall F1-score Precision Recall F1-score
F 0.860 0.960 0.907 0.898 0.924 0911 0.861 0.993 0.923
Fs 0.875 0.960 0.916 0912 0.950 0.931
Fs 0.781 0.997 0.876 0915 0.937 0.926
Fog 0.956 0.940 0.948 0.902 0.958 0.929
Feature ImRortapce via Random‘Ft‘)re‘st‘ TABLE II
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Fig. 6. Estimation of feature importance (28 features).

Around 67% of these were used for training the classifier (210
vehicles and 150 nonvehicle), and the remaining for validation.
A test dataset of 697 clusters (300 vehicles, 397 nonvehicles)
that was totally new to the classifier was then randomly selected
from the lidar observations at Test Site 1. We trained the RF
classifier using the 28 features and obtained the weights for each
of them, shown in Fig. 6. It can be concluded that a, Width, z,
Length and y, are the five features with high importance, among
which a is the most important one. As a result, we retrained
the SVM and RF classifiers using the following feature sets:
Fi =a, F3 = [a, Width, x,], F5 = [a, Width, =, Length, y],

ANALYSIS OF REFERENCE SPEED IN TWO STATIONARY SECTIONS

Static
SD(m/s) Mean(m/s) RMSE(m/s) period(s)
5“1“0“ 0.006 0.023 0.028 19 to 42
5“2“0“ 0.005 0.019 0.020 10to 51

Fog = [v1, v2, ...U20, Ts, Ys, 25, Length, Width, Max_height,
Min_height, a]. In addition, a simple rule-based method using
the size of the clusters’ bounding boxes was implemented for
comparison with these two classifiers. Three indices, precision,
recall, and F1-score, were used to assess the performance. From
comparison results shown in Table I, it is found that the overall
performance of the three classifiers on four feature sets can
be regarded as relatively indistinguishable. Both SVM and RF
performed slightly differently with different number of features,
and SVM produced the highest Fl-score with all the features.
Whereas, the rule-based method performed best in terms of
recall with a decent precision. In order to keep as many vehicles
as possible to facilitate the tracking process, the rule-based
method is adopted even though its overall performance is not
the best.
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(b)

Fig. 7. Trajectories of centroid-based tracked vehicles in case 1 (a) and case
5 (b). Each color represents a vehicle with a unique ID.

C. Tracking and Speed Estimation

In order to demonstrate the speed estimation under differ-
ent traffic flow conditions at both test sites, six cases—three
from each test site—were selected when the test vehicle passed
through the lidar sensor. The first three cases were at Test Site 1.
The test vehicle in case 1 and 2 showed different dynamics, with
one demonstrating continuous movement and the other showing
a pattern of stop-and-go. The lidar sensor was set to a different
look angle in case 3, as an aid to understand how best to configure
the optimal vertical FOV. The final three cases were from Test
Site 2, where the test vehicle displayed three different movement
patterns: turning left, turning right, and driving straight forward.
In each of the six cases, two sets of vehicle speeds were acquired
through the tracking process: initial values from centroid-based
tracking and refined values after tracking refinement. Both were
compared with the reference datasets in order to assess the
accuracy improvement. Case 1 and case 5 are illustrated in detail.

1) Vehicle Tracking Performance: Figs. 7 and 8 show the
trajectories and speeds of all the tracked vehicles in case study
1 and case study 5. In case study 1, the recording was shown for
43.3 s and tracking continued through the whole period, with all
18 vehicles that appeared in the scanning area during this period
successfully tracked. The tracking range of the approach is c.
45 m. Short trajectories were generated from vehicles that were
either close to the edge of the scanning area at the beginning of
the observation period, or that were occluded by other vehicles
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Fig. 8. Speeds of tracked vehicles in case 1 and case 5: (a) and (c) show the

centroid-based speeds; (b) and (d) show the refined speeds. Each color represents
a vehicle with a unique ID.

during tracking process. In case study 5, the tracking was shown
c. 2 s before the test vehicle entered the scanning range and
stopped c. 2 s after it left. The whole process lasted for c. 8 s and
all six vehicles (including one bus) were tracked. Two vehicles
that were turning left were continuously tracked. Tracking of
another two vehicles which were turning right, including the test
vehicle, were also successively implemented. The trajectories of
the remaining vehicles were very short, for example, one in the
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TABLE III
EVALUATIONS OF S1X CASE STUDIES

RMSE(m/s) MAE(m/s) Mean speed of test vehicle  *Clicle travel
direction
RMSE;;  RMSEy MAE;;  MAEy (m/s)
Case | 0.41 0.10 031 0.09 3.65 Straight on
Site 1 Case 2 0.21 0.07 0.13 0.06 0.70 Straight on
Case 3 0.38 0.33 0.29 0.27 2.60 Straight on
Mean 0.33 0.16 0.24 0.14
Case 4 0.53 0.21 0.53 0.17 6.11 Turning left
Site 2 Case 5 0.47 0.30 0.42 0.23 5.81 Turning right
Case 6 0.44 0.33 038 0.29 7.29 Straight on
Overall mean 0.41 0.22 0.34 0.18
1: centroid based speeds; 2: refined speeds; 3: reference.
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Fig.9. Two speed estimations including sections (labeled with red box) when
the test vehicle was stationary.

second lane. The successful tracking range in this case was c.
18 m.

2) Evaluation for the Reference Speed Value: The uncertainty
of vehicle speeds from the reference system was evaluated. The
evaluation was first implemented when the test vehicle was
stationary so that the true speed was known to be 0 m/s. Two
sections (shown in Fig. 9) from Test Site 1 were chosen to create
the statistics based on the following indices: Standard Deviation
(SD), Mean, and RMSE. In the two cases, the durations when
the vehicle was stationary were 23 and 41 s, respectively. As
shown in Table II, the average RMSE of two cases was 0.024
m/s, which means the displacement deviation is within 3 mm
per frame (frame rate 0.1 s).

3) Comparison Among Three Sets of Vehicle Speeds: Com-
parison among three sets of speeds (the centroid-based speeds;
the refined speeds; the reference) is conducted for all the six

time(s)
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5r : E—
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+refined
4
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(2]
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= 1.5+ 4
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Fig. 10. Comparison results of the test vehicle in three cases from Test Site

1: red: centroid-based speeds; blue: refined speed; green: the reference. (a) Test
vehicle speeds in case 1. (b) Test vehicle speeds in case 2. (¢) Test vehicle speeds
in case 3.

cases. Figs. 10 and 11 illustrate the comparison results of the
test vehicle in all the six cases from two test sites. The test
vehicle at Test Site 1 was either moving forward with a stable
speed or with a pattern of “stop-and-go.” The test vehicle at Test
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Fig. 11. Comparison results of the test vehicle in three cases from Test Site
2: red: centroid-based speeds; blue: refined speed; green: the reference. (a) Test
vehicle speeds in case 4. (b) Test vehicle speeds in case 5. (¢) Test vehicle speeds
in case 6.

Site 2 was turning left and right in the first two cases, while
going forward with a constant speed in the third case. Also it
is noteworthy that the test vehicle was going generally faster at
Site 2 than at Site 1.

Despite the above movement variability, the refined speeds
and the reference are closely in accordance with the roughly
estimated moving trends, whereas centroid-based speeds obvi-
ously deviate further from the reference. Therefore, itis clear that
the tracking refinement step has improved the speed accuracy
for all the six cases.

RMSE and mean absolute error (MAE) are used to quantita-
tively evaluate the three sets of speeds. As seen from Table III, the
accuracy of the estimated speeds was improved by the refinement
module, under different vehicle dynamics. The mean RMSE
value has been decreased from 0.41 to 0.22 m/s and the mean
MAE has been reduced by around 47%. Meanwhile, the two
different lidar sensors employed at the two test sites produce
somewhat different results. The test vehicle was observed at
different instrument to vehicle distances and the speed varied
depending on real traffic conditions. It is obvious that the per-
formance of the three cases from Test Site 1 (RMSE 0.16 m/s,
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MAE 0.14 m/s) is better than those from Test Site 2 (RMSE
0.22 m/s, MAE 0.18 m/s). The test vehicle was approximately
10-15 m from the sensor at Test Site 2; but the vehicle was only
around 5 m from the sensor at Test Site 1. Also, the lidar sensor
used at Site 2 had only 16 laser beams and accordingly the data
density is lower. The above factors have resulted in a particular
deficiency in acquiring points on the roof of the vehicle, which
means there is insufficient detail in the image matching process
during tracking refinement. Moreover, the estimated speeds from
all the tracked vehicles range from O (stationary) to 13.4 m/s,
covering a typical range of speeds range found in an urban
city environment, which is limited by the speed restrictions and
traffic flow conditions.

V. DISCUSSIONS

In the proposed framework, since vehicle detection has been
simplified to a vehicle and nonvehicle classification problem
after static point removal, it is realized by a simple rule-based
classifier and two machine learning-based classifiers, SVM and
RF. The training dataset is sufficient for a classifier intended
to distinguish vehicles from other moving objects despite the
small number of samples. On one hand, in urban environments,
“other moving objects” mainly refer to pedestrians, cyclists,
motorcyclists, and a few number of other false positives. Since
their features are rather different to that of vehicles, they can
be easily distinguished from vehicles. On the other hand, the
training samples were selected at various locations to ensure
coverage of a wider range so that the samples could be rep-
resentative enough for the detection problem. Therefore, the
resulting precision and recall are relatively high and this step
should not be considered as a bottleneck for the workflow.
However, the rule-based approach produced higher recall and
was hence adopted for the further experiments. Initial trials of
deep learning methods did not produce satisfactory results due
to limited training data. Nevertheless, given the advancement of
deep learning and the increasing number of open-source bench-
mark data, further attempts to adopt deep learning approaches
are to be explored.

Two parameters in the centroid-based tracking stage were
important. The first is the threshold that controls the range
in which the detections are assigned to tracks, namely, the
assignment gate. If the value is too small, some detections that
should be assigned to a track might be overlooked. Otherwise,
there will be false assignments. In this work, it was empirically
set at 4 m, considering both the average vehicle speed and
lidar sensor frame rate. The other parameter is the initialization
threshold. If the association probability of a detection within the
assignment gate is lower than the threshold, a new track will be
generated. This parameter is critical to decide if a track should
end when severe occlusion appears. For example, in heavy traffic
flow, if the vehicle being tracked is occluded completely and
consequently reobserved with an association probability lower
than the initialization threshold, a new ID will be assigned to
the subsequent detections. Thereafter, tracking refinement will
resume for the new ID. Whereas, in light occlusion, in which
the vehicle being tracked is partially occluded for a short period,
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some of the clusters will be incomplete and lower association
probability may arise. To keep the tracking continuous in this
situation, a small value of 0.1 is assigned to the initialization
threshold. In subsequent tracking refinement, if one image of a
pair is partly affected, matching can still be conducted between
them. Issues may arise that the matching accuracy is low and the
estimated speed could be noisy. To tackle this issue, a smoothing
algorithm is utilized in the final stage to filter out noise in the
speed values.

The performance of the centroid-based tracking mainly relies
on the vehicle detection results. In the framework, the tracking
accuracy is not quantitatively assessed as all detected vehicles
are correctly tracked at both Site 1 and Site 2, based on visual
inspection. This mainly results from the high lidar sensor frame
rate (0.1 s), which implies that clusters of a vehicle in two
successive frames can be easily associated due to the small
spatial distance between them. False tracks are mainly caused by
false positives (nonvehicle road users, trees, or similar objects)
in the detection stage. Tree like objects can be easily filtered
by the length of the trajectories since they are almost stationary
throughout time. However, some nonvehicle road users, such
as pedestrians walking closely together along the road, can-
not easily be discarded currently. A potential improvement to
enhance the detection accuracy could be integrating semantic
constraints, such as extracting road boundaries beforehand, to
exclude pedestrians. As shown in the vehicle tracking analysis
in Section IV, the tracking ranges of Site 1 and Site 2 are
45 and 18 m, respectively. The 32-beam lidar sensor has a
longer maximum scanning range of 200 m, which naturally
enables a longer tracking range than the VLP-16 with a max-
imum scanning range of 100 m. Nevertheless, the tracking
range from the experimental data generated by VLP-16 was
found to be slightly shorter than the 30 m reported in [10].
Occlusion by buses and longer instrument to vehicle distance
are the two main factors accounting for the issue, particularly
since the closest lane to the instrument at Site 2 was a bus
lane.

The estimated speeds were validated against a reference sys-
tem that is considered to provide a higher order of accuracy.
The RMSE of the reference data was about one-tenth of that
of the lidar data. In [10], speed validation was conducted by a
test vehicle with an on-board diagnostics logger. The average
absolute speed difference between speeds from lidar data and
reference data, which is equivalent to MAE in our work, is as
high as 0.639 m/s. In comparison, the average MAE of all the
cases in the work reported here was 0.18 m/s. A more accurate
reference system allowed full exploration of the capacity of lidar
speed estimation.

One of the overarching aims of this research is to assess
the practicality of using roadside lidar-based vehicle tracking
for urban traffic sensing at the individual vehicle level. The
following suggestions for large-scale implementations can be
obtained based on this study.

1) As indicated through the experimental results obtained at
both test sites, generally speaking the more laser beams
the better and hence a laser scanner with as many beams
as possible is recommended.
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2) The effective detection and tracking range of a lidar sensor
is significantly smaller than the maximum scanning range
so the instrument should be installed at an appropriate
distance to the road to maximize the coverage.

3) Considering that the height of common cars is smaller than
1.8 m, the lidar sensor should be installed higher than that
to minimize occlusions.

4) Occlusions are unavoidable if only one sensor is used,
hence multiple lidar sensors are recommended, if
available.

This work has also shown that a speed accuracy of c. 0.2 m/s
can be expected from high-precision 3-D lidar data and this
could benefit more detailed and accurate traffic flow or behavior
analysis. The high scanning frequency means that the resolution
of the final speed estimation is also high and therefore accurate
acceleration and deceleration values can be obtained. A principal
drawback, however, is the inherent lack of RGB information, due
to which the identification of vehicles is less straightforward than
when using video camera data.

VI. CONCLUSION

This work presents an integrated vehicle tracking framework
using roadside lidar data. Vehicle clusters were detected from the
raw point clouds using a three-step schema in the first instance.
Afterward, a centroid-based tracking procedure was applied to
identify clusters for each vehicle. A refinement module was then
used to improve the accuracy of vehicle speeds from 0.41 to 0.22
m/s, surpassing the accuracy reported in contemporary literature.
Results demonstrate that lidar sensors are able to detect and track
vehicles at arange of speeds in typical urban environments, prov-
ing the capability of lidar sensors for accurate speed monitoring.
Moreover, it has shown that instruments with increased laser
beams and longer scanning ranges will benefit vehicle detection
and tracking, thereby improving estimated speed accuracy. It
is concluded that lidar sensors can be employed for accurate
vehicle counting and speed tracking in urban traffic sensing, but
with limitations relating to short working range and occlusions.
In future work, optimization of the algorithms is prioritized in
order to realize near real-time traffic monitoring, necessary to
open up the approach to further traffic monitoring applications.
Moreover, multisensor utilization will be considered to address
occlusion issues and deep learning-based vehicle classification
will be added to the framework.
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