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Abstract—Synthetic aperture radar (SAR) image classification
is an important part in the understanding and interpretation of
SAR images. Each patch in SAR images has a scene category, but
usually contains multiple land-cover classes or latent properties,
which can be represented by topics in the probabilistic topic model
(PTM). The representation and selection of discriminative features
in PTM have a large impact on the classification results. Most of the
existing feature learning methods do not make full use of high-level
structure feature and the feature correlation within similar images
to mine discriminative features. Therefore, this article proposes
a discriminative sketch topic model with structural constraint
(C-SSTM) for SAR image classification. In the proposed model,
each image patch is characterized by structural and texture fea-
tures. In particular, the sketch structural feature is based on the
sketch map to represent the image local structure pattern. Then,
the local image manifold information is preserved in terms of
structure and texture. In the structural constraint, the texture and
structure of each image patch are combined to learn discriminative
latent semantic topics between image patches. Finally, each image
patch is quantified by discriminative latent semantic topics instead
of low-level representation. The experimental results tested on
synthetic and real SAR images demonstrate that the proposed
C-SSTM is able to learn effective structural feature representa-
tion from SAR images. Compared with other related approaches,
C-SSTM produces competitive classification accuracies with high
time efficiency.

Index Terms—Image classification, local image manifold,
probabilistic topic model, sketch structural feature, synthetic
aperture radar (SAR) image.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) systems are capable
of working under various seasons and weather conditions
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[1], [2]. They have been widely used for applications includ-
ing environmental surveillance and regional planning [3]. With
the rapid development of remote sensing technologies, a large
number of SAR images are now available. This situation makes
manual interpretation a time-consuming and expensive process.
The SAR image classification as an important part of image
interpretation has attracted more and more attention [4].

The classification of SAR images depends on the representa-
tion and selection of discriminant features [5]. Recently, various
feature extraction approaches have been developed to character-
ize the content of SAR images [6]–[8]. From the perspective of
the human visual system, the content of an image usually con-
sists of two parts, which represent the appearance and structure
information [9]. To characterize the appearance of SAR images,
many researchers utilized the spectral and texture descriptors,
such as the gray-level co-occurrence matrix (GLCM) [10], [11].
Other efforts [12] have explored the wavelet transform to extract
texture features, in which the kurtosis value of the wavelet energy
feature is utilized to describe statistical information. With the
increase of resolution, it is becoming more critical to model the
complex structures in the local content. The spatial structures
are employed to characterize the local shape information of
SAR images, which play an important role to recognize and
distinguish terrains. Many transform domain filters, for instance,
Gabor transform filters [13], [14], wavelet transform filters [15],
and curvelet transform filters [16], have been employed to extract
spatial structures of terrains. However, it is difficult to decide the
suitable parameters of scales and orientations of these transform
filters, which need a large number of experiences and prior
knowledge. The scale-invariant feature transform (SIFT) [17]
and its variants [18] are the most popular approaches for local
structure description in remote sensing images. Due to its effi-
ciency, it is widely used to distinguish and recognize terrains
for classification applications [19], [20]. First, the keypoint
detection is carried out by the SIFT algorithm, which directly
affects the subsequent orientation assignment and descriptors
extraction. However, the keypoint detection is seriously affected
by speckle noise in the SAR image. Although the statistical
specificity of the SAR image is considered, there are still many
false keypoints detected by literature [18]. In [21], a weighted
neighborhood filter bank is proposed, which can extract spatial
information and achieve a high discriminative power.

Deep learning-based methods [22]–[24] extract the features
from the images in a joint spatial-spectral manner [25]. It has
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turned out to be good at modeling the intricate structures hidden
in high-resolution images for segmentation and classification
tasks [26]. In [15], a convolutional-wavelet neural network is
proposed to compute structural features that account for the
neighborhood of an individual pixel. By designing a spatial fea-
ture learning network based on long–short-term memory [24],
the spatial dependencies of the SAR image were extracted auto-
matically. Recently, a distribution and structure match auxiliary
classifier generative adversarial network (DSM-ACGAN) [27]
was proposed to optimize structure features obtained by adver-
sarial learning, which combined the characteristics of statistical
distribution and spatial structure. Although these networks pro-
duce superior accuracies, they usually require a large number
of training samples and parameters in the convergence of the
network [28]. The above approaches are designed to extract
structure descriptors based on pixel space, which suffer from
enormous influence by speckle noise. In addition, methods of
computing the structure descriptors only in pixel space lack the
ability to capture the high-level semantic relationship.

For high-resolution SAR images, different remote sensing
scenes are usually composed of distinct thematic classes. For
example, an image patch associated with a scene representing
industrial might contain some thematic categories such as trees,
buildings, parking lots, and roads. The variability and ambiguity
of different scenes make scene representation and recognition
a challenging task [29]–[31]. Therefore, there is an increased
interest and demand to enhance the discrimination of learned
features and improve the classification accuracy.

In order to improve the discrimination of feature descriptors,
a few studies on feature coding are proposed to reduce the
“semantic gap” [32] between the low-level data and high-level
semantic information. For instance, Hou et al. [33]. introduced
a hierarchical sparse representation classification to precisely
describe the complex land-cover objects by exploiting the mul-
tisize patches around each pixel. Zhao et al. [34] proposed a
semisupervised feature learning approach to extract the discrimi-
native information which was derived from both the labeled and
unlabeled SAR image patches in a sparse ensemble learning
framework. These methods are based on dictionary learning,
which yields dictionary atoms and sparse coefficients for the sub-
sequent classification. The bag of words (BOW) [35], [36] model
has also shown excellent representational capacity. Inspired by
the BOW model, the probabilistic topic model (PTM) [37]
represents the imagery as a random mixture of topics. The PTM
includes probabilistic latent semantic analysis (PLSA) [38],
latent Dirichlet allocation [39], and fully sparse topic model [40].
The PTM has been applied to natural scene interpretation in [41].
This model is suitable not only for the natural image but also
for the remote sensing image. Yang et al. [42] combined the
benefits of quadtree representations and aspect models to im-
prove local label consistency and sharpen the labelings in a
broader context. Zhu et al. [20] explored a sparse homogeneous
and heterogeneous information from image blocks at the same
time, and discovered discriminatory semantic descriptions by
topic models. However, the above methods are all aimed at
the optimization and improvement of multiple features of the
same image patch; the relevance of topics among different

image patches is not considered. Recent studies have shown
that the semantically similar features usually co-occur in similar
images with a high probability [43]. Namely, analogous images
in nearby manifold space often have close latent semantic topics.
Using this property, we can further improve the robustness and
discrimination of latent semantic topics.

Based on the above analysis, we propose the discriminative
sketch topic model with structural constraint (C-SSTM). C-
SSTM alternately explores the sketch map [44], [45] and pixel
space to capture the sketch structural feature. The sketch map
constituted by sketch line segments describes the change of pixel
amplitude in SAR images, and it is a sparse representation for the
image structure. Compared with structure features obtained in
pixel space, the sketch structural feature includes high-level se-
mantic information and is more robust to speckle noise. In addi-
tion, the structural constraint constructed by a nearest-neighbor
graph in local image manifold is also introduced to the PTM for
enhancing the discriminative capacity of learned features. The
major contributions of this work are listed as follows.

1) A sketch map represents the sparse spatial relationship of
pixels, which contains crucial structure information. We
utilize the complementary information of the sketch map
and pixel space to construct the sketch structural feature.
Thus, the sketch structural feature is more robust to speckle
noise and possesses more comprehensive structural infor-
mation.

2) The image manifold consists of the nearest-neighbor
graph, representing intrinsic structures of images. Accord-
ing to image manifold, both structure and texture descrip-
tors are considered to structural constraint for getting more
accurate latent semantic topics of PTM.

3) Experiments are conducted on both synthetic and real SAR
images, indicating that the proposed C-SSTM achieves
promising performances in terms of classification accu-
racy and time consumption.
The remainder of this article is arranged as follows. The
related works on the sketch map and PTM are presented in
Section II. In Section III, the whole framework of C-SSTM
is presented. The sketch structural feature extraction and
structural constraint in the C-SSTM model are described in
detail. Experimental results and analysis are carried out in
Section IV. Finally, conclusions are presented in Section V.

II. RELATED WORK

A. SAR Sketch Map

Considering the statistical distribution, speckle, and geomet-
ric characteristics of SAR images, Wu et al. [44] proposed the
SAR image sketching model. For image structures, the sketch
map is a sparse representation at a high semantic level. The main
process includes designing the edge-line templates, extracting
the curves, sketch lines approximation, and preserving the sig-
nificant sketch lines.

The primitive of the sketch map is a sketch line; each sketch
line consists of several sketch line segments which are connected
end to end. The sketch line segments represent the boundary of
two different objects in high-resolution SAR images, which are
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the same as optical images. Meanwhile, the sketch line segments
can represent a line target such as a bridge, or land-cover objects
such as a house formed by some boundaries created by the bright
spots and shadows. That is to say, in addition to representing the
boundary of different objects in high-resolution SAR images,
the sketch line segment can also sparsely represent objects
higher than the ground. Therefore, the sketch line segment is
a sparse representation of high-resolution SAR image structure
in semantic space. The sketch line segment not only represents
the change of gray value, but also obtains the detailed and sparse
structure at the changed pixels. Namely, the sketch line segment
describes the direction and position of the structure information
in SAR images.

B. Probabilistic Topic Model

The PLSA model is contained in PTM, which introduces a
latent variable to analyze the probability distribution of visual
words. First, proposed in information retrieval by Hofmann [38],
PLSA has been extended to image interpretation due to the
similarity between natural language analysis and image process-
ing [46]. PLSA is able to map the low-level features to high-level
latent semantic representations.

Given a dataset of M images D = {d1, d2, . . ., dM},
each image can be described by a visual dictionary W =
{w1, w2, . . ., wN}, and N is the number of visual words in
the dictionary. The dataset can be represented as a word-image
co-occurrence matrix; each element of the co-occurrence matrix
is represented by occ(dm, wn). occ(dm, wn) denotes the number
of times the visual word wn occurred in image dm. The latent
topic set is Z = {z1, z2, . . ., zT }, and T denotes the number of
the topic. By choosing a topic zt to the imagedm with probability
P (zt|dm), and a word wn to the topic zt with probability
P (wn|zt), the probability P (wn|dm) can be decomposed as
follows:

P (wn|dm) =
T∑

t=1

P (wn|zt)P (zt|dm). (1)

The probability to select an image dm can be defined as
P (dm). Defining a log-likelihood function L

L =

M∑
m=1

N∑
n=1

n(dm, wn)logP (dm)P (wn|dm)

=

M∑
m=1

n(dm)

[
logP (dm) +

N∑
n=1

n(dm, wn)

n(dm)
logP (wn|dm)

]

∝
M∑

m=1

N∑
n=1

n(dm, wn)log
T∑

t=1

P (wn|zt)P (zt|dm). (2)

The goal of PLSA is to learn a model that gives a high
probability to the word-image co-occurrence. The parameters
P (wn|zt) and P (zt|dm) are obtained by maximizing the log-
likelihood function L. Then, the image topic probability distri-
bution P (zt|dm) is the latent semantics that we intend to mine,
and image dm(m = 1, 2, . . .,M) is represented by the vector
{P (z1|dm), P (z2|dm), . . ., P (zT |dm)}.

III. METHOD OF C-SSTM MODEL

To effectively learn discriminative semantic topic representa-
tions, the C-SSTM model is proposed for SAR imagery clas-
sification. The overall flowchart of SAR classification based
on the C-SSTM model is presented in Fig. 1. Our approach
consists of three main steps. The first step is the structure and
texture visual words generation [Fig. 1(a)]. We split the images
into image patches using a uniform grid sampling strategy,
and digitize the patches by corresponding texture and structure
features. Then, a k-means method is applied to generate the
texture and structure visual words, respectively. In the second
step [Fig. 1(b)], the discriminative latent semantic is mined.
Using local image manifold to discover intrinsic information of
images is based on the fact that the semantically similar features
generally co-occur in similar images with a high probability. The
next step [Fig. 1(c)] is to feed the discriminative latent semantic
into the support vector machine (SVM) classifier. Finally, we
get the scene labels of each image patch.

A. Feature Extraction

According to the biological vision, Chang and Tsao [9] found
that when a face image is represented by a vector containing
shape and appearance information, each neuron has its own
specific vector in the inferior temporal cortex region. When
encoding facial images, the face cell’s response is proportional
to the projection of a face stimulus onto shape and appearance
dimensions. Similar to human faces, ordinary objects also have
shape and appearance information. So the structure and texture
features are important for characterizing image patches, and we
use these two complementary features to represent an image.

The sketch map is a sparse representation of the image struc-
ture, where the direction and length of the boundary can be
defined by sketch line segments. The image structure contains
not only boundary information, but also the interrelationship
between the boundaries. At the same time, the pixel space
contains more original information, so we define the sketch
structural features based on the interaction between the sketch
map and the pixel space. To better illustrate the sketch structural
feature extraction procedure, we use a real SAR image block
as an example. The SAR image and its corresponding sketch
map are displayed in Fig. 2(a) and (b). The binary image
[Fig. 2(c)] is obtained by Otsu’s method, dividing the SAR
image into foreground and background region. Let B denote
the binary image, where the part of 1 in B corresponds to
the foreground region, and the part of 0 in B corresponds to
the background. Multiple land-cover objects are collected in
the foreground region. The points in the foreground region are
aggregated according to 4-connected rule, and several separate
regions are obtained. These regions are sorted according to the
size, and the main object in the SAR image is deemed to be the
largest one. As shown in Fig. 2(d), two regions are marked in
red and green, respectively. The size of the red region is larger
than the green region, so the main object of the SAR image
is the red portion. Depending on the sketch map, the distance
transformation method finds the sketch point associated with
each point in the SAR image. The sketch line segment where
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Fig. 1. Flowchart of SAR image classification framework based on the C-SSTM. The parameters w, d, and z represent the images, visual words, and topic
variables, respectively.

Fig. 2. A sketch structure feature example. (a) SAR image. (b) Sketch map.
(c) Binary image. (d) Angle between sketch lines.

the sketch point is located has an index, which is the same index
with the associated pixels. In Fig. 2(d), the sketch line segments
are highlighted in light blue, the endpoints of each sketch line
segment are shown in blue, and the value at the middle position
of each line segment is the index number. The set of line segment
indexes associated with the foreground region is the equivalent
set associated with all points in this region. Here we define the
point–line association criterion.

Let w(i) denote a small patch with 5× 5 pixel in size around
pixel i, and the relevance degree H(i) between pixel i and land-
cover object is defined as follows:

H(i) =
∑

n∈w(i)

B(n). (3)

The starting, middle, and terminal pixel of the sketch line
segment l are marked as ls, lm, and lt, respectively. The indicator
function δ(i) is

δ(i) =

⎧⎨
⎩

1, H(ls) ≥ 3 or H(lt) ≥ 3
2, H(lm) ≥ 5
0, i ∈ l/{ls, lm, lt}.

(4)

The relevance degree F (l) between sketch line segment l and
the red region is defined as

F (l) =
∑
i∈l

δ(i). (5)

IfF (l) is greater than 3, the sketch line segment l is associated
with the object, otherwise it is not associated.

Since the sketch line segment 435 in Fig. 2(d) does not satisfy
the relevance degree F (l), we obtain the sketch line segments
associated with the red region, such as 372, 371, 225, 226,
227, 436, 377, and 376 in Fig. 2(d). The sketch line segment is
connected according to the proximity of the end points of each
line segment. In the set of line segments associated with the
red region, Depth First Search algorithm searches the adjacency
order, and starts with the line segment of the smallest index. In
Fig. 2(d), the longer branch in the Depth First Search algorithm
is a set of line segments with index 225, 226, 227, 436, 377, and
376. Then, the angle between two adjacent sketch line segments
is calculated. Based on the direction of two sketch segments
and their relationship to the red region, the angle θ between
the two sketch segments changes from 0◦ to 360◦ as shown in
Fig. 2(d). The length of the sketch line segment is represented
by len. Based on the above analysis, we define the ternary
feature, including the length of two sketch line segments and
the relative angle. Such as for the sketch line segments 436 and
377, len(436) = 25, len(377) = 23, and θ = 98◦. The ternary
feature is (25◦, 23◦, 98◦) for these two sketch segments. The set
of ternary features is utilized to represent the sketch structural
feature of the image. The sketch structural feature descriptor
extraction based on the sketch line segments is implemented as
in Algorithm 1.

The texture descriptor is described by GLCM in this article.
The GLCM uses the spatial correlation of gray to describe
the texture, which is a widely used texture statistical analysis
method [47]. From the computational efficiency and the storage
of co-occurrence matrices, the gray level of the original image
is often compressed first, and then the GLCM is calculated.
Haralick et al. [48] extract quadratic statistics based on GLCM
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Algorithm 1: Structural Feature Descriptor Extraction.
Input: SAR image patches
Output: The set of ternary features

1: Extracting the sketch maps of SAR image patches;
2: Generating a binary image B by Otsu’s method, and

the SAR image is divided into foreground and
background region;

3: The points in the foreground region are aggregated
according to 4-connected rule, and several small
regions are obtained. These regions are sorted
according to the size, and the main object in the SAR
image is considered to be the largest one;

4: According to the sketch map, the distance
transformation method finds the sketch point
associated with each point in the SAR image. The
sketch line segment where the sketch point is located
has an index, which is the index associated with the
pixel point;

5: According to the relevance degree F (l), the set of line
segment indexes associated with the main object is the
same set associated with all points in this region;

6: To search the set of line segments associated with the
region, DFS algorithm is used. In order to get the
adjacency order, DFS starts with the line segment of
the smallest index;

7: Based on the direction of two sketch segments and
their relationship to the foreground region, the angle θ
between the two sketch segments is calculated. The
ternary feature is defined by the length of two sketch
line segments and the relative angle. The set of ternary
features is utilized to represent the structural feature of
the image.

to represent texture features. As it is done in [49], the texture
features generated from GLCM are energy, contrast, correlation,
entropy, and inertia.

B. PTM Based on Multiple Features and Structural Constraint

By obtaining the sketch structural feature and the GLCM
texture feature, we concatenate these features to obtain the fea-
ture descriptor [50]. A PLSA model based on sketch structural
features is established to learn potential topic distribution. The
likelihood function of the PLSA model can be expressed as

P (d,w; θ) =
∏
d

∏
w

P (d,w)occ(d,w) (6)

where occ(d,w) denotes the number of co-occurrence of image
d and feature w, and p(d,w) represents the joint probabil-
ity density function. Introducing hidden variable topics z =
{z1, z2, . . ., zt, . . ., zT }, the parameters of the PLSA model are
the union of p(w|z) and p(z|d):

p(w|z)|(w, z) ∈ {1, 2, . . ., N} × {1, 2, . . ., T}
∪ p(z|d)|(z, d) ∈ {1, 2, . . ., T} × {1, 2, . . .,M}.

(7)

The log likelihood function of the complete data (d,w, z) can
be written as

L =
M∑
i=1

N∑
j=1

occ(di, wj)log
T∑

t=1

p(di)p(zt|di)p(wj |zt). (8)

The traditional PLSA model treats each image separately and
independently without considering image manifold information.
However, if two images are similar, they usually locate in
adjacent manifold structure with close latent semantic topics.
Therefore, the structure and texture information of the overall
image are also crucial for learning latent semantic relations.

Using manifold learning theory and graph theory, we con-
struct a graph model with M vertices, where each vertex repre-
sents an image, and the weight of each edge denotes the simi-
larity between two images. The higher the weight of the edge,
the more similar the image. Conversely, when the weight of the
edge is low, it means that the two images differ in structure and
texture. Modeling the image manifold with the nearest neighbor
graph provides additional information to learn latent semantic
topics. The image correlation matrix v(di, dj) is defined as

v(di, dj) = exp(−Structure− Texture). (9)

Let the Structure and Texture represent the similarity
of structure and texture, respectively, and they are defined as
follows:

Structure = 1− SSIM(xi, xj)

σ1
(10)

Texture =
‖yi − yj‖22

σ2
(11)

where xi is the sketch map of the image di, and the texture
feature vector of image di is yi. We use SSIM [51] to measure
the structural similarity of sketch maps xi and xj , that is, the
structural similarities of imagesdi anddj .σ1 is the mean squared
distance of all structural similarities SSIM(xi, xj), and σ2 is
the mean squared distance between two texture features yi and
yj . When the sketch mapsxi andxj are more similar, theSSIM
will be larger and the structural item Structure will be smaller.
When the texture features yi and yj are more similar, the texture
item Texture will be smaller. When Structure and Texture
are both small, v(di, dj) will be large, indicating that di and dj
are similar.

Summarized from the above functions (9)–(11), we get the
matrix v(di, dj). To maintain that two images with similar
features have a large probability to share close topics in image
manifold, we minimize the following function:

R =

T∑
t=1

M∑
i,j=1

(p(zt|di)− p(zt|dj))2v(di, dj). (12)

The R tends to make similar images have the same topics.
When the structure and texture information are all similar at
the same time, v(di, dj) is large; then, minimizing R strongly
enforces the conditional probabilities p(zt|di) and p(zt|dj) to
take a close value. However, when the difference of images di
and dj is large, v(di, dj) is small. Thus, the discrepancy between
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conditional probabilities p(zt|di) and p(zt|dj) is allowable in
optimization. FunctionRmakes full use of image-level structure
and texture information to learn the probabilistic topic distribu-
tion by considering the image manifold.

By combining sketch structural feature and texture feature, a
multifeature joint PLSA model is established, and structural con-
straint is added to the PLSA model to optimize the probability
distribution of latent semantic topics. The structural constraint
R is incorporated after the log likelihood function L, and the
final integrated function is defined as

L
′
= L− γR

=

M∑
i=1

N∑
j=1

occ(di, wj)log

T∑
t=1

p(di)p(zt|di)p(wj |zt)

− γ

T∑
t=1

M∑
i,j=1

(p(zt|di)− p(zt|dj))2v(di, dj) (13)

whereγ is the regularization parameter. By maximizing the func-
tion L

′
, we get the parameters p(zt|di) and p(wj |zt). The vector

{p(z1|di), p(z2|di), . . ., p(zT |di), di ∈ D} represents the latent
semantic topics for image di. The proposed model is based
on sketch structure and texture information to construct multi-
feature PLSA. At the same time, it considers the influence of
local image manifold on latent topic distribution, and mines the
latent topics of images to obtain more distinguishable semantic
features.

For the C-SSTM model, we use the generalized EM (GEM)
algorithm in [52]. The GEM solves the log-likelihood function
with hidden variables and realizes the maximum likelihood
estimation. The GEM includes two steps: 1) give the poste-
rior probability of hidden variables under the condition of the
current estimated parameters (E-step); 2) increase the expected
log-likelihood function of complete data (di, wj , zt), and use
the posterior probability of hidden variables obtained by E step
to estimate the new parameters (M -step).

In theE-step, assuming that p(zt|di) and p(wj |zt) are known,
the posterior probability of the hidden variable p(zt|di, wj) is
obtained according to the Bayesian formula:

p(zt|di, wj) =
p(wj |zt)p(zt|di)∑T
t=1 p(wj |zt)p(zt|di)

. (14)

In the M -step, when the joint probability of complete data
(di, wj , zt) is known, the GEM aims to increase the expected
log-likelihood function L

′
with the parameter p(zt|di) and

p(wj |zt). The GEM in [52] first maximizesL to obtain the initial
estimate parameters p(zt|di) and p(wj |zt), and then updates the
regularization item in the function L

′
using Newton–Raphson

method, so that the expected log-likelihood function L
′

is con-
tinuously improved. The formula of updating parameter p(zt|di)
by Newton–Raphson method is as follows:

p(zt|di)k+1 = (1− λ)p(zt|di)k + λ

∑M
j=1 v(di, dj)p(zt|dj)k∑M

j=1 v(di, dj)
.

(15)

Algorithm 2: Implement of the C-SSTM Model.
Input: SAR image patches
Output: SAR image classification result

1: The SAR image is sampled by uniform grid and the set
of image patches is obtained, in which the label of the
image patch is the central pixel’s label, and the label of
the image patch needs to be predicted when the central
pixel is not marked;

2: According to Section III-A, the sketch structure and
texture features of each SAR image patch are
calculated;

3: The sketch structure and texture features are clustered
respectively through the K-means method, and each
SAR image is represented by the connection of two
BoW histograms;

4: Initialize the probability p(wj |zt) and p(zt|di);
5: Maximize the expected log-likelihood function L

′
, in

the E step, and calculate the implicit variable
p(zt|di, wj) according to formula (14); in the M step,
according to the GEM algorithm in [52], first, obtain
the initial estimate of the parameter p(zt|di) and
p(wj |zt), then iteratively update the regularization
term according to formula (15), so that the value of the
log-likelihood function L

′
is continuously increased

until convergence;
6: Take p(zt|di) as the representation of the image patch

di, and send it and the corresponding label to the
LibSVM with linear kernel function, in order to get the
SVM model;

7: Predict the label of the unmarked image patch based
on the p(wj |zt) and SVM model obtained from the
training dataset;

8: In the original SAR image, the label of each pixel is
determined according to the voting criterion.

The step parameter λ controls how smooth the topic distri-
bution is. The range of parameter λ is (0,1). When λ takes a
large value, p(zt|di)k+1 is mainly determined by p(zt|dj)k(j ∈
{1, 2, . . .,M}), that is, the new topic distribution mainly comes
from the average of the neighborhood topic distributions in the
previous step. When λ takes a small value, p(zt|di)k+1 is mainly
determined by p(zt|di)k, and the new topic distribution mainly
comes from the topic distribution in the previous step. The
parameter λ affects the convergence rate, and does not affect the
classification performance [52]. We set the constant parameter
the same as in [52].

After obtaining the discriminative feature representation of
the probability topic model, it is fed into the LibSVM classifier,
which uses a linear kernel function. The overall implementation
of the C-SSTM model is listed in Algorithm 2.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first present the dataset introduction and
experimental settings in Sections IV-A and IV-B, respectively.
Section IV-C presents the computational complexity and time
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TABLE I
PRIOR KNOWLEDGE OF THE SAR IMAGES

consumption of the algorithms. In Section IV-D, the selection
of four hyperparameters is discussed. To verify the efficiency of
the proposed method, the experimental results and analysis are
conducted on the synthetic and real SAR images in Sections IV-E
and IV-F.

A. Dataset

To verify the effectiveness and generalization of the C-SSTM
model, the SAR images with different bands and sensors are
utilized in the experiments. The detailed information of the
three real SAR images is reported in Table I. The first real
SAR image is the Bridge_los, which shows the urban area of
Los Lunas, New Mexico. It was obtained from a subset of
an X-band, high-resolution spotlight mode SAR data, acquired
by the airborne SAR platform. The pixel size of this image
is 350× 480. Four major land-cover types are contained in
Bridge_los, which are building, trees, idle land, and roads. The
Pentagon image was obtained from a subset of a Ku-band, strip
map SAR data, acquired by the airborne SAR platform, with
a size of 460× 340. The Pentagon data covers the area of
Washington, DC. There are four major land-cover categories
in this image, which are water, residential areas, commercial
areas, and trees. The TerraSAR X-band data of Swabian Jura
is used as the third real image. The image is acquired by a
high-resolution spotlight mode, on Jul. 1, 2007, 23:00 UTC.
The size of Noerdlingernew is 540× 470. This image contains
three categories of land-cover, which are industrial, residential,
and farmland areas. The number of looks of the bridge_los,
pentagon, and noerdlingnew are 2, 2, and 4, respectively. The
original images and corresponding optical images are shown in
Figs. 13(a) and (b)–15(a) and (b). In addition, the sketch maps
and ground-truth images are provided in Figs. 13(c) and (d) and
15(c) and (d) to describe the complex spatial information and
class labels. Within the ground-truth images, each color denotes
one class and the unknown regions are labeled by white. The
unknown regions are ignored during the training and testing
phase.

We produce three synthetic SAR images to evaluate the
performance of our method. The synthetic SAR image SYN1
contains two classes: residential area and commercial area, as
shown in Fig. 7(a). The synthetic SAR image SYN2 contains
three classes: residential area, commercial area, and forest, as
shown in Fig. 8(a). The synthetic SAR image SYN3 contains
four classes: water, agriculture, residential area, and forest, as
shown in Fig. 9(a). For the three synthetic SAR images, we
provide the corresponding ground truths [Figs. 7(b)–Fig. 9(b)]
and sketch maps [Figs. 7(c)–Fig. 9(c)], and the size of synthetic
SAR images is 180× 180 pixels. Syn1 is the first synthetic
SAR image that comes from residential and commercial areas

Fig. 3. OA of different training percent on the synthetic and real SAR
images. (a) SYN1. (b) SYN2. (c) SYN3. (d) Bridge_los. (e) Pentagon. (f)
Noerdlingernew.

Fig. 4. OA of different patch sizes on the synthetic and real SAR images. (a)
SYN1. (b) SYN2. (c) SYN3. (d) Bridge_los. (e) Pentagon. (f) Noerdlingernew.

Fig. 5. OA versus different parameters V and T on the synthetic and real
SAR images. (a) SYN1. (b) SYN2. (c) SYN3. (d) Bridge_los. (e) Pentagon. (f)
Noerdlingernew.
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Fig. 6. OA of different γ on the synthetic and real SAR images. (a) SYN1. (b)
SYN2. (c) SYN3. (d) Bridge_los. (e) Pentagon. (f) Noerdlingernew.

Fig. 7. Classification results of SYN1. (a) SYN1. (b) Ground truth. (c) Sketch
map. (d) GTM. (e) STM. (f) SALTM. (g) DCAE. (h) CWNN. (i) SSTM. (j)
C-SSTM.

Fig. 8. Classification results of SYN2. (a) SYN2. (b) Ground truth. (c) Sketch
map. (d) GTM. (e) STM. (f) SALTM. (g) DCAE. (h) CWNN. (i) SSTM. (j)
C-SSTM.

in the Pentagon. The composition of SYN2 is taken from the
Pentagon’s commercial and residential areas, while the forest
part is taken from the bridge_los. The residential and water area
in SYN3 are taken from the Pentagon, while the agriculture
and forest area come from the Noerdlingernew and bridge_los
image, respectively.

B. Experimental Setup

In order to evaluate the efficiency of our proposed sketch
structural features and structural constraint, we performed

Fig. 9. Classification results of SYN3. (a) SYN3. (b) Ground truth. (c) Sketch
map. (d) GTM. (e) STM. (f) SALTM. (g) DCAE. (h) CWNN. (i) SSTM. (j)
C-SSTM.

experiments on both synthetic and real SAR images. All the
images are of 1-m resolution in experiments. In the feature
extraction, we mainly use the structure and texture features of
the image. The structural feature includes more macroscopic
features of the image, and the texture features are more mi-
croscopic characteristics. The structural feature mainly includes
shape information and the texture feature describes appearance
information. This article focuses on the improvement of sketch
structural feature and the structural constraint, and thus we use
the same texture extraction method in related experiments.

To investigate the classification performance, several compar-
ative experiments are designed as follows:

1) GTM: Gabor filter bank is used to extract the structure
feature, and the structural response of SAR image is
obtained by setting the direction and scale of Gabor filter;
the mean and standard deviation of the Gabor coefficients
are used to represent SAR image structure [13]. Then, the
texture features obtained by the GLCM are combined and
sent to the PLSA model to obtain a discriminative feature
representation.

2) STM: The SIFT feature [18] has been widely applied in
image analysis; it extracts the gradient direction histogram
at the key points of the image as the structure features of
the SAR image. The other settings in the experiment are
the same as GTM.

3) SALTM: A semantic allocation-level multifeature fusion
strategy based on PLSA model [31] is employed to re-
mote sensing image classification, in which the structure
features use SIFT.

4) DCAE: DCAE [53] presented a deep convolutional au-
toencoders to learn discriminative features. In the DCAE
method, a KL-divergence sparsity constraint is explored
in layer-wise pretraining to model high-level features
from original patches. For comparison with other meth-
ods, the DCAE network is trained without fine-tuning,
connected with a linear SVM to yield classification
results.

5) CWNN: The CWNN model [15] replaces the conventional
pooling with a wavelet constrained pooling layer, keeping
the structures of the learned features and suppressing the
noise.
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TABLE II
NUMBER OF LABELED SAMPLES IN EACH CATEGORY

6) SSTM: The sketch structural features are based on sketch
line segments, and the other experimental settings are the
same as GTM.

7) C-SSTM: Different from SSTM, this model adds struc-
tural constraint to log likelihood function in order to get
more discriminative latent semantic topics.

8) After the discriminative feature representation is obtained
from the above model, it is fed into the classifier. Here
we use the SVM classifier with the linear kernel function.
For each category, we randomly select 50% samples of
the labeled images, and others as the testing set. In order
to obtain a convincing result, each method conducts 20
Monte–Carlo runs. More information about the labeled
samples is provided in Table II, in which “–” represents
that the information is not available. The performance is
measured by the overall recognition accuracy (OA) and
Kappa coefficient. OA is defined as the ratio of correctly
classified pixels number to the total number; the Kappa co-
efficient is obtained from the confusion matrix to measure
the consistency of the classification results.

In the experiment, we adopt a uniform grid sampling method.
The patch size P is optimally set to 24× 24 pixels with over-
lapping 5 pixels. In feature extraction, the structure and texture
features performed well when the patch size and overlap are set
to 8× 8 pixels and 4 pixels [54], respectively. The number of
visual words in the probability topic model is represented by V ,
and the number of topics is denoted by T . The setting of several
vital hyperparameters is discussed in Section IV-D.

C. Computational Complexity and Time Consumption

The computation complexity of our method mainly exists in
the procedure of feature extraction and topic model iteration. The
feature extraction includes obtaining the sketch structural feature
and texture feature. M samples are utilized in the experiment.
Suppose that the average number of objects isNo in each sample,
and the average number of sketch lines isNl around each object.
When extracting texture features, there are Ng small patches of
the sample. Therefore, the computation complexity of feature
extraction is O(M(NoNl +Ng)). The topic model iteration in-
cludes the EM algorithm, the maximal iterative step is Niter, and
the computation complexity of E-step and M-step areO(MNT )
and O(TN +MT +MN), respectively. So the complexity
of the topic model is O(Niter(MNT + TN +MT +MN)).
In summary, the computation complexity of the proposed al-
gorithm is O(M(NoNl +Ng) +Niter(MNT + TN +MT +
MN)). The experimental configuration of each method on the
images is described in Sections IV-E and IV-F. All experiments

TABLE III
TIME CONSUMPTION OF DIFFERENT METHODS ON DIFFERENT IMAGES (S)

are implemented in MATLAB2018, with Intel Core I7 3.6-GHz
CPU and 64-GB memory. The running time of each algorithm
is reported in Table III, where the computational time of the
feature extraction and total procedure are listed. The minimum
time consumptions are highlighted by bold entities. The time
consumption of feature extraction is not applicable in the CWNN
algorithm. Since the feature extraction and classification are
performed simultaneously, the labels are utilized to fine-tune
the entire network. The feature extraction process of other
methods can characterize image information without tags. Taken
together, these results suggest our method achieves preferable
computational efficiency than other algorithms.

D. Sensitivity Analysis

There are several parameters in the proposed C-SSTM, which
are the training percent, patch size P , visual word number V ,
number of topics T , and regularization parameters γ. All the
synthetic and real SAR images are utilized for the sensitivity
analysis.

1) Training Sample Percent: To evaluate the sensitivity of dif-
ferent PLSAs with the number of training samples, Fig. 3 shows
the classification accuracies with varying percent of training
samples. The optimal parameters of the patch size, the visual
word number V , the topic number T , and the regularization pa-
rameter γ are kept constant in the experiments. In each category,
the random selection of the labeled samples is conducted over
the range from 1% to 80%, and the rest as the testing set. To avoid
bias induced by random sampling, we average the experimental
results in the 20 Monte–Carlo runs [8].

As shown in Fig. 3, SSTM and C-SSTM obtain the unfavor-
able performance when the number of training samples is small.
With the increasing of training percent, SSTM and C-SSTM
outperform other methods achieving better classification accu-
racies. The reason is that SSTM and C-SSTM capture enough
discriminative information with fewer feature dimensions. How-
ever, the other feature learning approaches capture more redun-
dant information within features, leading to increased feature
ambiguity and decreased class separability. In addition, the
curves of accuracies in the SSTM and C-SSTM methods tend to
be flat when the training percent is in the range of 20%–45%. The
classification accuracies of other approaches increase slightly
when the training percent reaches 45%. It is illustrated that
SSTM and C-SSTM can provide optimal accuracies with fewer
training percent. Taken together, these results suggest that our
proposed methods have excellent representational capacity to
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introduce enough discriminative information for image classifi-
cation.

2) Size of Patches: An appropriate patch size can not only
capture the enough contextual information, but also decrease
the computational complexity. The influence of the patch size is
discussed through the classification accuracy based on different
PLSA-based methods for all synthetic and real SAR images.
In these experiments, V , T , and γ were kept at the optimal
parameter settings, respectively. The patch size is varied from
10 to 34. Fig. 4 shows the OA curves of the five comparative
methods on synthetic and real SAR images.

From the perspective of the patch size, we can draw the
following conclusions. With the increase of the patch size, the
OA curves improve significantly within the first three sizes and
achieve stable performance by increasing the patch size. We can
see that after the patch size of 24× 24, the accuracy increases
slowly. This indicates that when the patch size is 24× 24, it is
enough to capture the local contextual information of the image.
The larger size will increase the computational complexity, so
we select the patch size to be 24× 24.

3) Number of Visual Words V and Topics T : The effect of
the visual word number V and topic number T on the proposed
C-SSTM is discussed in Fig. 5. The values of the patch size and
γ were kept constant at 24 and 0.1, respectively. The visual word
number V was then varied in the range of [160, 180, 200, 220,
240]. At the same time, the topic number T was varied from 30
to 65 with a stride of 5.

As can be seen in Fig. 5, when the value of V is fixed,
the optimal topic numbers of different images are distinct. The
optimal T values for C-SSTM with the six images are set to
35, 45, 50, 55, 60, and 50, respectively. Compared with three
synthetic SAR images, the real SAR images have higher optimal
T values. Moreover, with the increased complexity of the scene,
the optimal T values are growing larger both in synthetic and
real SAR images. These experimental results indicate that the
optimal value of T depends on the scene complexity, since
numerous terrain classes contained in the complex scene require
more latent topics. When the value of T is fixed, the appropriate
values of V vary from 180 to 200. The real SAR images require
higher V values than synthetic images, and the reason is that the
number of similar features in the large images is increased. To
increase the classification accuracy,V andT should complement
each other to robustly characterize SAR images.

4) Regularization Parameter γ: Finally, we check the classifi-
cation performance of C-SSTM in relation to the regularization
parameter γ on all images. The patch size P , the topic number
T , and the visual word number V are kept constant. The regular-
ization parameter γ is then varied from 0 to 0.175 with a stride
of 0.025 in Fig. 6. The parameter γ controls the proportion of the
original PLSA model and the structural constraint in exploring
latent topics. When γ is 0, it is equivalent to performing model
update based only on the original PLSA model. When γ is
large, the structural constraint has a greater influence. Fig. 6
shows the variation of OA with the value of the regularization
parameter γ. The optimal values γ vary from 0.075 to 0.1 on
all the images. Experimental results validate the effectiveness of
structural constraints in discovering discriminative latent topics.

TABLE IV
OPTIMAL k VALUES FOR THE DIFFERENT METHODS WITH THE THREE

SYNTHETIC SAR IMAGES

E. Classification Results of the Synthetic SAR Images

For three synthetic SAR images, texture and structure features
have the same number of dictionary V/2, where V is set to 200.
The setting of topic number T of five PTM-based models refers
to Table IV. To perform three synthetic images classification
with the deep learning methods, the parameters of DCAE and
CWNN follow the settings of methods [53] and [15], respec-
tively.

Fig. 7 shows the classification results for SYN1, Fig. 8 shows
the classification results for SYN2, and Fig. 9 shows the clas-
sification results for SYN3. Compared with the other PTM-
based methods, the classification results using Gabor feature
[Figs. 7(d)–9(d)] and SIFT feature [Figs. 7(e)–9(e)] are more
heterogeneous. The Gabor feature is prone to confusion in places
where texture is similar, especially at the boundary of two simi-
larly textured objects. The result using the SIFT feature is better
than that using the Gabor feature in most cases, especially for
objects with significant structural differences. From the results
of SALTM [shown in Figs. 7(f)–9(f)], we can see that changing
the fusion strategy of multiple features can improve the classifi-
cation performance. The structure feature of the SSTM is based
on sketch map, and the sketch structure is obtained by sketch
line segments, so it is robust to noise and surrounding objects.
At the same time, the sketch structural feature also contains
distinguishable structural information such as the size of the
object. Therefore, the SSTM is superior to the GTM and STM
methods in the classification performance of complex structures.
The results of SSTM on SYN1 and SYN2 are better than that
of SALTM. But on SYN3, the result by SSTM is not as good
as that by SALTM. The reason is that the water and farmland in
SYN3 contain less structural information, and the feature fusion
strategy in SALTM makes full use of texture information. The
classification results of C-SSTM [Figs. 7(j)–9(j)] are better in
the consistency at the residential areas and forest.

For evaluating the classification performance in the complex
structure areas, we highlight the classification results. The black
rectangle in Fig. 7 highlights the notable classification results
where the commercial is misclassified to residential. The results
of GTM, STM, and SALTM are not satisfied in the commercial
areas. The structure features of the above methods are greatly
subject to the influence of speckle noise. Through calculat-
ing the original pixels, the Gabor feature is obtained by the
mean and variance of the amplitude of the Gabor coefficient.
The SIFT feature is a statistical representation of the direction
histogram at the key point; it suffers from the same problem
as the Gabor feature does. Nevertheless, the proposed sketch
structural feature is based on the sketch map, and the sketch
structural feature is a reasonable combination of sketch line
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segments. Consequently, sketch structural feature is robust to
speckle noise and has excellent discriminated capacity to dis-
tinguish the surrounding objects. At the same time, the sketch
structural feature also contains the information of the size of
objects, which is crucial for structural representation. It can be
observed that the C-SSTM has significantly outperformed the
SSTM method. This is due to the fact that C-SSTM utilizes
the image manifold knowledge that similar images have similar
latent topics to mine discriminative feature representations for
subsequent image classification. Compared with deep learning
methods, C-SSTM shows better visual effects than DCAE, and
the classification results are comparable to CWNN. However, the
computational requirements of deep learning methods are higher
than that of C-SSTM, whereas the running time of C-SSTM is
much shorter. In summary, the sketch structural feature captures
enough discriminative information for image classification, and
the proposed model is a highly efficient method with a low
computational expend.

In Fig. 8, the remarkable misclassification results of com-
mercial areas are highlighted by the black rectangle. It can be
observed that the results of GTM, STM, SALTM, and SSTM
are unsatisfactory. This can be explained by the fact that the
commercial area in the black rectangle contains less structural
information, where the superiority of the proposed sketch struc-
tural feature cannot be shown. The C-SSTM performs worse
than the deep learning methods in the black rectangle. This is
because the texture extraction method utilized by C-SSTM is
relatively simple. In the black square, the commercial pixels are
misclassified to residential class, and C-SSTM performs better
than the GTM, STM, and SALTM methods. The classification
results of C-SSTM in complex structural regions are comparable
to those of CWNN.

As shown in Fig. 9, the water, agriculture, and forest areas of
all methods are labeled perfectly because of its simple spatial
structure. In the black ellipse, SALTM, SSTM, and C-SSTM
yield satisfactory results. Since the structure in the residential
region is not complicated, SALTM changes the fusion strategy
of multiple features improving the classification performance.
For deep learning methods, there has a misclassification phe-
nomenon. Artificial buildings and trees are confused because
the shadows caused by buildings are misclassified by high trees.
However, C-SSTM has an excellent representation capacity of
local structural information and discovers the feature correla-
tion in image manifold to improve the consistency of regional
classification.

From the classification results of synthetic SAR images, it can
be illustrated that our model can obtain superior classification
performance, especially in areas with complex structures. The
sketch structural features are robust to speckle noise, and have
excellent discriminant capacity in describing the complex im-
age information. The structural constraint increases the feature
separability in the manifold domain. Compared to deep learning
methods, the proposed method makes full use of the image prior
information, at a small-time computation, to obtain satisfactory
performance. At the same time, the features extracted by deep
learning are more general to all structure and texture features,
and it is not special knowledge to structure or edge-line infor-
mation.

TABLE V
OA(%) AND KAPPA COEFFICIENTS COMPARISON WITH THE THREE

SYNTHETIC SAR IMAGES

Fig. 10. Some labeled patches in Bridge_los. (a) Industrial. (b) Forest. (c) Idel
land. (d) Road.

Fig. 11. Some labeled patches in Pentagon. (a) Water. (b) Residential. (c)
Forest. (d) Commercial.

The numerical results are shown in Table V. In Tables V, VII,
VIII, and IX, bold entities indicate the maximum values of OA
and Kappa on each image. The OA and Kappa coefficient of
STM on SYN1 and SYN3 are higher than GTM. The classifi-
cation result of GTM on SYN2 is slightly better than STM. At
the same time, the OA and Kappa coefficient of the GTM and
STM are lower than the other three PTM-based methods. SSTM
and SALTM have similar performance on numerical indicators,
and SSTM’s results are better on SYN1 and SYN2. C-SSTM is
superior to other PTM methods in terms of the OA and Kappa
coefficient. Compared with DCAE, C-SSTM obtains higher
classification accuracy at a lower computational requirement.
The classification results of C-SSTM are comparable to those of
CWNN, especially in structurally complex areas, the C-SSTM
achieves a higher classification accuracy. On the other hand,
C-SSTM performs preferable computational capacity. From the
visual classification results and numerical indicators, we can see
the superiority of our method in structural feature extraction and
learning discriminative latent topic features.

F. Classification Results of the Real SAR Images

In this section, three real SAR images are used to evaluate
the classification performance. The relevant details of the three
SAR images are presented in Table I. Some labeled patches of
the the three real SAR images are shown in Figs. 10 –12. The
majority vote method is used for the label of the overlapping
portion of the image patches.

In the experiment, the visual word number V for different
methods with Bridge_los, Pentagon, and Noerdlingernew are
optimally set to 180, 200, and 220, respectively. The optimal
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Fig. 12. Some labeled patches in Noerdlingernew. (a) Industrial. (b) Residen-
tial. (c) Farmland.

TABLE VI
OPTIMAL k VALUES FOR THE DIFFERENT METHODS WITH THREE SAR IMAGES

TABLE VII
OA (%) AND KAPPA FOR BRIDGE_LOS

TABLE VIII
OA (%) AND KAPPA FOR PENTAGON

TABLE IX
OA(%) AND KAPPA FOR NOERDLINGERNEW

numbers of topics T are shown in Table VI. The regularization
parameter of the C-SSTM model is set to 0.1. The weight of
the sparsity penalty in DCAE is 0.15 for three real SAR images,
and the other hyper-parameters are the same as [53]. The CWNN
method follows the parameter setting in [15].

From the visual results in Figs. 13–15, it is noted that in the
complex land-cover scene, the classification results of GTM and
STM appear more heterogeneous than the other three methods,
particularly the road areas in Fig. 13, and the residential areas
in Figs. 14 and 15. However, the SALTM focuses on the feature
fusion strategy, and does not consider the feature extraction im-
provement and image manifold prior for extracting discriminant
semantic features. Therefore, there are misclassification within
residential, commercial, and industrial areas in Figs. 14(f) and
15(f). The SSTM does not use priori knowledge of similar latent
topics within the similar images, resulting in unsatisfactory
classification results, such as the industrial areas in Fig. 13(g),

Fig. 13. Classification results of bridge_los. (a) Bridge_los. (b) Optical image.
(c) Sketch map. (d) Ground truth. (e) GTM. (f) STM. (g) SALTM. (h) DCAE.
(i) CWNN. (j) SSTM. (k) C-SSTM.

the commercial areas and residential areas in Fig. 14(g), and
the residential areas in Fig. 15(g). Figs. 13(h)–15(h) show the
classification results of the C-SSTM. We can see that in the com-
plex land-cover scene such as residential areas, the classification
consistency has been significantly improved compared with the
other methods. At the same time, the classification accuracy
in the water, farmland, and other homogeneous areas has also
been improved. The reason is that we use the sketch structure
based on sketch line segments and image manifold prior to
extract discriminative latent topic representation. In Fig. 13, the
shadow caused by trees is misclassified as road. To solve this
problem, the sampling window needs to be increased, but this
will reduce the efficiency of the method. Meanwhile, some idle
lands with sparse trees are misclassified as forest. The water
areas of these five methods are labeled perfectly because of its
simple spatial structure. Compared with the classification results
of all methods, it can be observed that the proposed C-SSTM
can discover discriminative latent topics for images and show
more robust and effective classification performance.

From the visual results in Fig. 13, it is observed that the clas-
sification results of GTM and STM are more heterogeneous than
those of other PLSA-based methods, particularly in the ellipse
area in Fig. 13. This is because the structure features extracted
by the Gabor filters and the SIFT are affected by the speckle
noise and surrounding objects, and it lacks enough discriminant
structural information to characterize the different terrain types.
Within the black rectangular, SSTM and C-SSTM perform better
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Fig. 14. Classification results of Pentagon. (a) Pentagon. (b) Optical image. (c) Sketch map. (d) Ground truth. (e) GTM. (f) STM. (g) SALTM. (h) DCAE. (i)
CWNN. (j) SSTM. (k) C-SSTM.

than other PLSA-based methods, which illustrates the validity
of the sketch structural feature. Moreover, the black rectangle in
the bottom right corner highlights the classification of buildings,
and C-SSTM performs slightly better than SSTM since the
structural constraint discovers the intricate correlation hidden in
high-dimensional features. The deep learning methods perform
well in road classification within the ellipse, because the neural
network has an impressive feature representation ability for sim-
ple structure areas (such as road) through the multilayer feature
extraction. However, within the rectangle, the deep learning
method has unfavorable classification results in the region of
the buildings. The network equally processes all pixels of image
patches, and the number of pixels representing the structure
is small. Disturbed by a large number of texture pixels, deep
learning methods show an ill-structural representation ability.
From the above analysis, it can be illustrated that the proposed
method can yield stable and superb classification performance
through sketch structural features and latent semantic topics.

As shown in the black ellipse of Fig. 14, a large number of
residential areas are misclassified as commercial areas in the
classification results of GTM, STM, and SALTM, while SSTM
achieves a favorable classification results in the ellipse box. The
residential classification results of C-SSTM appear to be more
homogeneous than those via the other PLSA-based methods.
In residential areas, the deep learning approaches perform well.
The white ellipse of Fig. 14 highlights the region where the
commercial areas are misclassified as the residential ones. The

classification accuracy of SSTM in white ellipse is comparable to
those of GTM, STM, and SALTM. It can be observed that some
misclassifications occur among the commercial and residential
areas. There are two reasons for these misclassifications. First,
these areas are composed of similar artificial buildings and have
similarities in both the structure and texture features. Second, the
size of sampled image patches is fixed single, the image patch
cannot contain the complete structure when the object is large,
and large amounts of irrelevant information may be contained
in the patches when the object is small. In the white ellipse,
the DCAE achieves unfavorable classification results since the
image label information is not utilized in the training program.
The classification accuracies obtained by CWNN and C-SSTM
are equivalent in commercial areas. However, the performances
of CWNN heavily rely on the number of network parameters
learning to obtain satisfactory classification performance. In
summary, the proposed method can achieve optimal perfor-
mance with fewer computation costs.

In the black ellipse of Fig. 15, the classification results of
SSTM and C-SSTM are better than those of the other three
PLSA-based methods since the sketch structural features have an
excellent capacity of feature separability. C-SSTM is shown to
be good at discovering the intricate relationship between features
in the manifold domain, further improving the classification
accuracy of residential areas. It is observed that the deep learning
methods achieve better classification accuracies than C-SSTM
in the black ellipse. This is due to the fact that deep networks
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Fig. 15. Classification results of noerdlingernew. (a) Noerdlingernew. (b) Optical image. (c) Sketch map. (d) Ground truth. (e) GTM. (f) STM. (g) SALTM. (h)
DCAE. (i) CWNN. (j) SSTM. (k) C-SSTM.

distinguish the similar spectrum categories with more network
parameters. Meanwhile, some misclassification exists because
several categories in the image are undefined, i.e., the idle land
and road classes, which can appear in most terrain scenes. In
the white ellipse, SSTM and C-SSTM get optimal classification
accuracies in the industrial region. The deep learning methods
yield quite misclassification pixels in the industrial area due
to the complex spatial arrangement, spectral heterogeneity of
industrial areas, and the insufficient extraction of structure fea-
tures. In summary, the C-SSTM method can effectively extract
the spatial and structural information, especially in the com-
plex terrain areas. Making full use of the intricate relationship
between different features in the manifold space, the C-SSTM
increases the classification accuracy and regional consistency
with a low computational cost.

The numerical results of the three real SAR images are
listed in Tables VII–IX. The classification results of C-SSTM in
complex land-cover areas are better than the other PTM-based
methods, although the classification accuracy in some classes is
slightly lower, but the average accuracy and Kappa coefficients
are favorable, which indicate that the proposed method achieves
better performance in most cases. Compared with the deep
learning methods, the C-SSTM achieves a satisfied classification
accuracy with less time consumption.

V. CONCLUSION

This article proposes a C-SSTM model based on the sketch
structural feature and structural constraint for SAR image clas-
sification. The SAR image classification results depend on the
discriminative representation and selection of features. Based on
the sketch line segment to extract the key structure information
at a higher semantic level, we designed the sketch structural
feature extraction algorithm to obtain the structure feature. In
terms of feature selection, different from the previous method
using the local feature to learn the latent semantics, we obtain
discriminative latent semantic topic features based on the prior
knowledge of image manifold, combined with the overall tex-
ture and structure features into the PLSA model. Experimental
results show that the proposed C-SSTM method performs ex-
cellent in discovering the discriminative semantic features from
SAR images, with high time efficiency. However, the proposed
algorithm still has limitations. Using the single image patch
size may result in the disability to contain complete contex-
tual semantic information. How to choose different sampling
image patches is a problem to be considered. At the same time,
the clustering algorithm plays a key role in processing image
features. Improving the performance of clustering algorithms is
another important research direction.
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