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Abstract—Pansharpening is a technique used to reconstruct a
high-resolution (HR) multispectral (MS) image by combining an
HR panchromatic (PAN) image with a low-resolution MS image.
In recent years, the detail-injection model has demonstrated excel-
lent performance in pansharpening, thus receiving wide attention.
Obtaining appropriate details is vital for the detail-injection model.
Therefore, this article presents a detail optimization approach to
obtain more precise high-frequency (HF) details for pansharpen-
ing. The proposed method comprises two steps. In the first step,
we design a low-rank fuzzy fusion model to fuse the HF details of
the PAN and MS images. In this model, the high frequencies of
the PAN and upsampled MS images are decomposed into low-rank
and sparse components, and the corresponding fusion rules are
designed according to their characteristics. Because some details of
the PAN image are replaced with those of the MS image, using them
directly as injection details may result in redundant information
or spatial distortion. To solve this problem and further optimize
the details, in the second step, we construct an adaptive detail
supplement model. Based on the similarity and correlation between
the fused HF and the original HF of the PAN image, the fused details
are supplemented to obtain the final injection details. Experimental
results on the IKONOS, Pleiades, QuickBird, and WorldView-2
datasets demonstrate that the proposed algorithm is better than
the state-of-the-art methods in maintaining spectral information
and improving spatial details.

Index Terms—Detail-injection, detail supplementation, fuzzy
logic, pansharpening.

I. INTRODUCTION

IN RECENT years, the application of remote sensing image
develops rapidly. However, the desired image with high

spatial resolution and high spectral resolution cannot be ob-
tained by the existing technology [1]–[3]. With the increasing
application of high-resolution multispectral (HRMS) imaging
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in environmental monitoring, spectral unmixing, water-quality
evaluation, etc. [4]–[6], numerous pansharpening methods have
been proposed. The method of pansharpening is to get an HRMS
image by fusing high-resolution panchromatic (HRPAN) image
and low-resolution multispectral (LRMS) image. At present,
the traditional pansharpening methods are mainly based on [7]:
component substitution (CS), multiresolution analysis (MRA),
and variational optimization (VO).

The traditional CS-based method first projects a multispectral
(MS) image into another spectral space; then the PAN image
replaces the spatial information component of the MS image,
and finally, the HRMS is obtained by reverse projection. This
type of method is often referred to as the projection alternative
[8]. Representative CS-based methods include intensity-hue-
saturation (IHS) methods [9], [10], principal component analysis
(PCA) methods [11], [12], and Gram-Schmidt methods [13].
The main advantages of these methods are simplicity with high
computational efficiency and good spatial quality performance.
In addition, these methods produce fewer artifacts, overlaps,
and blurred textures during the fusion process. However, the
disadvantage of these methods is that in the sharpened/fused
images, they usually suffer from varying degrees of spectral
distortion [14].

In the MRA-based method, the first step is to obtain the
high- and low-frequency (LF) components of the MS images
and PAN images through filter. Then, fusion on high-frequency
(HF) components is performed according to some fusion rules.
Finally, the HRMS is restructured by an inverse transform using
the LF component of the MS image and the fused HF component.
MRA-based methods include Laplace transform [15], general-
ized Laplacian pyramid [16], [17], à trous wavelet transform
(ATWT) [18], discrete wavelet transform (DWT) [19], [20],
nonsubsampled Contourlet transform [21], and nonsubsampled
Shearlet transform [22]. In comparison with the CS-based meth-
ods, MRA-based methods can better retain spectral information
in pansharpening images; however, they are often unsatisfactory
in spatial enhancement [23].

The VO-based method is an important category of pansharp-
ening, which includes two vital parts, the devise of the energy
function and the optimization solution. The main process of
this kind of pansharpening method is generally depended on,
or transformed into, the optimized variational model, which
includes such algorithms as P+XS [24], variational wavelet
pansharpening methods [25] and sparsity-based methods [26].
These methods can obtain high precision results, but, compared
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with CS- or MRA-based methods, they usually have higher
calculation cost and complexity [7].

With the development of deep learning in the imaging field,
the pansharpening method has a new development. Masi et al.
proposed the first pansharpening method based on convolutional
neural networks in 2016, named PNN [27], and then completed
other similar work within a short time [28], [29]. Recently, the
pansharpening method of deep neural networks (DNNs) has
been gradually developing [30]. The nonlinear DNN method
can learn complex features from many samples and obtain a
better fusion effect. However, these methods take a long time to
train, and it is difficult to adjust network parameters optimally.

Generally, the popular and widely used CS- and MRA-based
pansharpening methods aim to generate HRMS images with
similar geometric resolution as in PAN images, while preserving
the spectral information of MS images. To retain the overall
content of LRMS images better and further increase the high
spatial structure information of HRPAN images, the MRA-based
injection model was developed [31]. First, the HF information
of a PAN image and an MS image is obtained by filtering.
Then, the obtained HF information of the PAN and MS images
is fused via appropriate fusion rules. Finally, the fused HF
information is injected into the MS image to obtain the final
HRMS. Although some improvements have been made, there
are still some problems that lead to the unsatisfactory fusion
results.

1) The structural features of HF information are ignored. In
recent years, with the development of image processing,
multiscale analysis [32] has achieved great success. Re-
mote sensing images cover a large area; thus, there are
many multiscale and geometric singularities in the images.
These singular points can be captured using advanced
multiscale analysis tools to improve the pansharpening
performance [33]. At present, most of the existing meth-
ods directly fuse the multiscale information. However,
it is difficult to retain effective information pertinently
without considering the structural features of multiscale
information. Therefore, exploring the multiscale features
of the image is helpful in improving the fusion effect.
When we analyze the multiscale information of images,
we find that it also exhibits low-rank features. Considering
this, an effective fusion strategy that can better fuse the HF
features of PAN image and MS images is required.

2) The HF information after fusion are not detailed enough.
In the process of HF information fusion, the HF infor-
mation of the PAN image is partly replaced with that
of the MS image. The important information on the two
images should be preserved by fusion. However, owing
to the low spatial resolution of the MS images, the spatial
resolution of the fused image is lower than that of the PAN
image. Moreover, fused HF images may contain excessive
information on the MS images. The fused HF image is not
sufficiently detailed and contains redundant information
from the MS image. Therefore, if the fused HF image
is directly used as injection details, spatial or spectral
distortion may occur in the fused image.

In this article, an optimal detail-injection method based on
MRA is proposed to solve these problems. First, the HF informa-
tion of PAN images and MS images is extracted through ATWT
and guided filter. Then, low-rank decomposition is conducted on
the extracted HF components to obtain low rank and sparse com-
ponents. The low rank and sparse components are fused using
fuzzy logic fusion and maximum selection rules, respectively.
The fused HF component that contains the information of PAN
and MS images is reconstructed by the inverse transformation.
To obtain more precise HF information, an adaptive detail com-
pensation method is proposed. The lost details can be recovered
by calculating the weighting coefficient between the fused HF
information and the HF information of the PAN image. Finally,
the modulation coefficient is used to inject the optimized HF
details into each band of the upsampled MS image to obtain the
final fusion image. Compared with state-of-the-art methods, our
experimental results prove that the proposed method is effective
in spectral and spatial preservation.

The contributions of the proposed pansharpening method are
summarized as follows.

1) A pansharpening method based on detail optimization is
proposed. The method can effectively fuse information
from MS and PAN images to enhance spatial information
while maintaining spectral information.

2) A low-rank fuzzy fusion model is designed. According to
the structural characteristics of multiscale information, a
new fusion rule based on fuzzy logic is developed to fuse
low-rank components. This method can effectively fuse
the HF components of PAN and MS images.

3) A detailed supplementary scheme is presented. The
scheme solves the problem of insufficient details and
information redundancy in the fused image, and thus the
details can be further optimized.

In the remainder of this article, we make the following ar-
rangements. In Section II, we described the relevant work. Next,
in Section III, we introduce the proposed method in detail. In
Section IV, a large number of experiments and analyses are
presented. Finally, in Section V, we conclude this article.

II. RELATED WORK

In this section, we introduce the theories related to the
proposed pansharpening method, including a detail-injection
model based on MRA, low-rank decomposition, and fuzzy logic
algorithm.

A. Detail-Injection Scheme Based on MRA

MRA-based methods were developed in the 1980s [34]. In
these methods, first, the images are decomposed into HF and
LF components. Then the HF components of the PAN image
and MS image are fused [35]. Finally, the fused HRMS image
is obtained by inversely transforming the fused HF component
and LF component of the MS image.

With the development of image fusion research, there is a
new understanding of MRA-based methods. To maintain the
integral content of LRMS images and further increase the spatial
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structure of HRPAN images, the obtained HF spatial details are
directly injected into the MS image after upsampling. The MRA-
based methods can be expressed as

Fk = M̃k + gk (P − PL) , k = 1, 2, 3, . . . , n (1)

where Fk and M̃k are the kth bands of the fused HRMS image
and the MS image after upsampling, respectively; gk is the kth
injection coefficient; n is the number of spatial bands of the MS
image; P and PL are the PAN image and the LF component of
the PAN image, respectively.

Choi et al. [36] indicated that when an MS image is highly
correlated with a PAN image, the HF detail information of the
HRMS image is not only related to the PAN image but also
related to the MS image. Therefore, the HRMS image can be
defined as

HRMSk = LF (HRMSk) + HF (HRMSk)

≈ M̃k + gkHF (PAN, I) (2)

where HRMSk is the kth band of the fused HRMS image;
HF(PAN,I) is the HF information concerning PAN and MS
images. I represents the linear combination of MS bands and
can be calculated by the following formula:

I =

n∑
k=1

αkM̃k (3)

where αk is the kth weighting coefficient. The specific setting
of αk is detailed in [31].

An improved modulation coefficient technique is introduced
in [37], which calculates the approximate relationship between
the edge information of a PAN image and an MS image. In this
method, the injection coefficient gk is adaptively obtained by

gk =
MSk

1
n

∑n
k=1 MSk

(βkwMSk
+ (1− βk)wP ) (4)

where βk is the kth weighting parameter of MS image; wMSk

and wP are edge detection matrices representing the MS image
and PAN image, respectively.

B. Low-Rank Decomposition

A matrix can be regarded as composed of low-rank com-
ponents and sparse components. A given matrix M can be
decomposed into

M = L+ S (5)

where L denotes the low-rank component; S denotes the sparse
component, and the sizes of both are arbitrary.

The column space and row space of L in low dimension are
not known, nor is the dimension of L. Similarly, the position and
number of nonzero elements in S are unknown. In recent years,
the amount of high-dimensional data has increased dramatically
in the fields of science, engineering, society, and so on. These
data have a lower internal dimension. For example, they are
on some low dimensional subspace [38], sparse on some basis
[39], or on some low dimensional manifold [40], [41]. We can
assume that these data are all located near a subspace with a

lower dimension. In other words, if all data points are stacked
as a column vector of matrix M, the rank of the matrix is lower,
which can be expressed mathematically as follows:

M = ML +MN (6)

where ML is the low-rank matrix, and MN is the small noise
matrix. The classical PCA is the best rank-k estimation for
solving ML [42]

min ‖M −ML‖
s.t. rank (ML) ≤ k (7)

where ‖ • ‖ denotes the 2-norm. This problem can be solved
by singular value decomposition, and it has many optimizations
when noise MN is small and identically Gaussian distributed.
However, it is difficult to guarantee the validity of damaged
observations. A damaged entry in M may lead to a large deviation
in ML. To solve this problem effectively, a robust PCA (RPCA)
[43] was proposed, which can extract the effective ML from the
damaged observations. It can be expressed as

M = ML +MS . (8)

The differences between (6) and (8) are that MN is a small
Gaussian noise matrix in PCA, whereas MS is a sparse peak noise
matrix of arbitrary size in RPCA. There are two ways to obtain
ML and MS: the first method is to use the first-order method
directly to solve the neighborhood problem; the second one is
to transform the problem into a dual problem and determine the
adjacent solution from the dual optimization solution.

C. Fuzzy Logic

In 1965, Zadeh [44] published a pioneering article on the
theory of fuzzy sets, which has attracted wide attention in the
academic community. With the development of the research on
fuzzy logic, the combination of fuzzy logic, neural networks, and
the genetic algorithm has brought the application of fuzzy logic
in many fields to reality. In recent years, researchers constantly
applied the fuzzy method to the field of image fusion; for
example, Yang et al. [45] applied type-2 fuzzy logic to medical
image fusion.

Fuzzy logic is a method for describing fuzzy concepts using
precise digital languages, such as fuzzy sets and membership
functions. It is easy to understand, flexible, and inclusive of
imprecise data. Precise sets often have “either or” relationships:
they do not have the same region, but fuzzy sets are the opposite.
If U is the set of object x, then the fuzzy set T of U is defined as

T = {(x, μT (x)) |x ∈ U } (9)

where μT (x) is the membership function of the fuzzy set T. In
other words,μT (x) is the degree of membership about x of fuzzy
set T, and the membership degree can change continuously with
0 ≤ μT (x) ≤ 1. The membership function has three properties:
it is defined as an ordered pair; the value of the membership
function is between 0 and 1; and the choice of function is
subjective and personal. The membership function can be used to
quantitatively describe the uncertainty between different target
types and the corresponding pixels or even within each image
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Fig. 1. Framework of the proposed method.

system. Therefore, determination of the membership function is
of great significance in image fusion.

III. PROPOSED METHOD

A. Overall Framework

For the traditional MRA-based methods, there is a common
problem, namely, the final injected detail is not close to the ideal
detail, which can result in information redundancy or spatial
distortion. The best way to solve this problem is to obtain an
appropriate HF detail and inject it into the upsampled MS image.
Unlike existing methods, we propose two steps to obtain more
ideal injection details. First, a low-rank fuzzy fusion module is
designed to fuse the HF details in the PAN image and the MS
image. The HF components are decomposed into low rank and
sparse components. According to their different characteristics,
different fusion rules are designed to obtain the fused HF com-
ponents. Moreover, in the process of fusion, some information of
the PAN image is replaced with information from the MS image.
As a result, the resolution of the fused HF image is reduced, and
the fused HF image may contain too much information from the
MS image. Hence, in the second part, the details of the original
PAN image are used to supplement and enhance the fused HF
information to obtain the final injection HF details. Finally, we
inject the obtained HF details into the up-sampled MS image
to obtain the ideal fusion HRMS image. Fig. 1 illustrates the
overall framework of the proposed method. The specific steps
are as follows.

1) The MS image and PAN image are preprocessed, and the
HF information HI and HP of I and P are extracted.

2) The HF information HI and HP are decomposed into
low-rank components AI and AP, and sparse components
EI and EP, respectively, by RPCA low-rank decomposi-
tion.

3) The fuzzy logic rule and maximum value preserving rule
are designed to fuse low-rank components and sparse
components, respectively. Thus, low-rank component AJ

and sparse component EJ are obtained.
4) Low-rank component AJ and sparse component EJ are

combined to obtain HF image HJ.
5) A detail supplement model is proposed to supplement HJ

to obtain the final injection detail HS.
6) The improved modulation coefficient technique is used to

inject HS into UPMS to achieve the fused image FMS.

B. Low-Rank Fuzzy Fusion of HF Information

Before low-rank fuzzy fusion, it is necessary to extract HF
details, including MS image and PAN image information. In this
article, the MS image is upsampled by bicubic interpolation to
be the same size as the PAN image, and the intensity component
I of the MS image is extracted. Then component I is used to
match the histogram of the PAN image to obtain P. ATWT
is an optimized version of DWT, which has nonorthogonality,
shift-invariance, undecimated, and redundancy. It can retain the
spatial information of the image more effectively. Therefore, we
obtain HF information HI from component I through ATWT.
The guided filter [46] can obtain the high spatial resolution
information of the input image according to the change trend
of the guidance image. Hence, to reduce the impact of the
difference between I and P, we adopt a guided filter with I as
the guided image and P as the input image, to obtain the HF
information HP.

Most detail injection methods ignore the details of MS images,
and the fused HRMS image lacks similarity to the real HRMS
image. To solve this problem, this study extracted the HF infor-
mation of the PAN image and the required HF information in
the MS image. In the process of fusing, the HF information of
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PAN and MS images, most methods ignore the fact that the HF
part also contains low-rank information and sparse information.
It is a rough method to fuse the HF components directly. This
may cause some information that should be retained to be re-
placed by other unimportant information. Based on this analysis,
we propose to decompose the HF components into low-rank
components and sparse components for fusion. According to
the characteristics of different parts, corresponding rules are
designed for their fusion. The low-rank components are fused by
a fuzzy logic rule, while the sparse components are selected by
a maximum value strategy. This method can adaptively fuse the
HF information contained in the PAN and MS images, and the
fused image and the ideal image can maintain high similarity.
The specific steps are as follows.

First, we decompose the HF information HI and HP by RPCA
low-rank decomposition, and obtain the corresponding low-rank
component matrices AI and AP, and the sparse component
matrices EI and EP

HI = AI + EI (10)

HP = AP + EP . (11)

We propose different fusion rules for low-rank components
and sparse components to retain the required information. In
recent years, the fuzzy logic theory has been successfully applied
to image processing. Because of their peculiarity in modeling
uncertainty, fuzzy-logic-based image fusion methods usually
have better performance than the classical image fusion method.
Thus, to express the low-rank components AI and AP simultane-
ously, a method based on fuzzy logic was designed. The fuzzy
function was designed to judge the image information and make
an intelligent decision on the selection of low-rank component
coefficients. In this method, the effective information of two
low-rank components is retained. The adaptive weighted fusion
criterion is defined as follows:

AJ = WIAI +WPAP (12)

where AJ is the ideal low-rank component; WI and WP are the
weights of the corresponding low-rank components AI and AP,
respectively, which are calculated by the following fuzzy logic
function.

In fuzzy logic fusion, the choice of the membership function
is especially important. We need to design the corresponding
membership function according to the specific situation. In
the low-rank component, the large gradient represents the rich
edge information. It is not enough to only consider the edge
information; we also need to consider the relationship between
the local and the global image. To solve the problem of low-rank
images, this study designed a new fuzzy fusion model based on
gradient and Gauss function, which is called gradient and Gauss
fuzzy fusion (GGFF). The gradient is used to judge the richness
of the edge information, and the Gauss function is used to judge
the relationship between the local and the global image. We first
calculate the gradient and Gaussian membership degree of each
position of AI and AP, and then combine them as the weight
coefficients to merge the low-rank components. Denoting AJ

as the fused low-rank component, then the pixels in AP and AI

belonging to fuzzy set AJ are defined as

AJ = {(xp, μP (xp)) |xp ∈ AP } (13)

AJ = {(xi, μI (xi)) |xi ∈ AI } (14)

where μP and μI are the membership functions of AP and AI,
respectively. xi and xp are the pixels of AP and AI, respectively.
In the low-rank component, the gradient value represents the
richness of the edge information. In order to better preserve
the edge information, we design the gradient-based membership
functions μT

P and μT
I for the AP and AI , respectively, which are

shown as follows:

μT
P (i, j) =

GP (i, j)

max(max(i,j)∈P (GP ),max(i,j)∈I(GI))
(15)

μT
I (i, j) =

GI(i, j)

max(max(i,j)∈P (GP ),max(i,j)∈I(GI))
(16)

where GP (i, j) is the gradient value of the position (i, j) in the
AP; GI(i, j) is the gradient value of the position (i, j) in the
AI; max(GI) and max(GP ) are the maximum gradients of AI

and AP, respectively. The MS image contains a small amount
of but valuable feature information, which is very important
for the fusion result. The Gaussian function can reflect the
difference between the local pixel value and the global pixel
value, and the larger difference means that the local position
contains more feature information. Therefore, to better retain
the feature information in the MS image, we define a Gaussian
function to judge whether the pixels in the MS image contain
feature information. Thus, the membership function μG

P and μG
I

of AP and AI based on Gaussian function are defined as

μG
P (i, j) = exp

[
− (AI(i, j)− μ)2

2σ2

]
(17)

μG
I (i, j) = 1− μG

P (i, j) (18)

whereAI(i, j) is the pixel value at the position (i, j) of the AI. μ
and σ are the mean value and variance of low-rank component
AI. Therefore, the gradient membership functions in (15) and
(16) and Gaussian membership functions in (17) and (18) are
combined to design an adaptive weight coefficient as follows:

WP = μP = (
μT
P

μT
P + μT

I

+ μG
P )/2

=

{
GP

GP +GI
+ exp

[
− (AI − μ)2

2σ2

]}
/2. (19)

As a result, the weight coefficient of I component is defined as

WI = 1−WP . (20)

To verify the superiority of the proposed fuzzy membership
function, we compare it with only the gradient fuzzy member-
ship function and Gauss fuzzy membership function. The de-
graded data experiment was conducted on the IKONOS dataset
including 60 images, and the average experimental results are
shown in Table I. Bold font represents the best result, and under-
line represents the second best. As can be seen from the table, the
combination of gradient and Gauss fuzzy membership functions
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TABLE I
AVERAGE RESULTS ON IKONOS DATASET WITH DIFFERENT

MEMBERSHIP FUNCTIONS

is the best for most indices, which shows that the performance
of combining two membership functions is better than only one.
Furthermore, in the field of image fusion, the sparse component
of an image contains more feature information, which is very
important. Therefore, in the sparse component fusion process,
we need to keep the information contained in it to the maximum
extent. Using the maximum retention principle, the information
in sparse components can be effectively preserved. Therefore,
the fusion rule of sparse component is defined as

EJ (i, j) =

{
EI (i, j) EI (i, j) ≥ EP (i, j)
EP (i, j) EI (i, j) < EP (i, j)

(21)

where EJ is the fused sparse component. Finally, the low-rank
component AJ and sparse component EJ are combined to obtain
the HF image HJ as

HJ = AJ + EJ . (22)

C. Detail Supplement Model

In Section III-B, the fused HF information HJ is obtained.
In most methods, the fused HF components of the MS and
PAN image information are directly used as injection details.
Although the information of the MS image is added to the fused
image to ensure similarity with the ideal HRMS image, there
are still some problems. In the fusion process, some information
from the PAN image is replaced by information from the MS
image. Therefore, if the fused HF image is taken as the injection
detail directly, information redundancy and spatial resolution
distortion will be caused by over supplemented MS information
or insufficient PAN details. Obtaining an image that contains
both PAN and MS image information and sufficient image details
is a very challenging task. To solve this problem, we propose to
use the HF HP of the PAN image to supplement the details
of fusion image HJ. HJ is optimized through HP to make the
final injection details more ideal. Considering the correlation
and similarity between HP and HJ, an adaptive weighting coef-
ficient is proposed, which is used to weight the two approximate
components. We consider that the correlation coefficient (CC)
can measure the correlation of detail features, and the structure
similarity (SSIM) [47] can measure the similarity of image
structure. Thus, the weighting coefficient is defined as

θ = θCC (HP , HJ ) θSS (HP , HJ ) (23)

TABLE II
AVERAGE RESULTS ON PLEIADES DATASET WITH DIFFERENT

WEIGHTING COEFFICIENTS

where θCC(•) is a function of the CC between HP and HJ, and
θSS(•) is a function of the SSIM between HP and HJ. θCC(•)
and θSS(•) can be calculated as

θCC (HP , HJ ) =
σPJ

σPσJ
(24)

θSS (HP , HJ ) =
(2μPμJ + C1) (2σPJ + C2)

(μP
2 + μJ

2 + C1) (σP
2 + σJ

2 + C2)
(25)

where σP and σJ denote the standard deviation of HP and
HJ; σPJ denotes the covariance of HP and HJ; μP and μJ

denote the mean values of HP and HJ, respectively. Therefore,
after evaluating the correlation and similarity of the HP and HJ

images, the details of image HJ are supplemented with

HS = θ ·HP + (1− θ) ·HJ (26)

where HS denotes the final injection detail. By analyzing HP,
HJ, and HS, the HRMS obtained by considering HS as the
injection detail is the most similar to the ideal HRMS image.
To further illustrate the effectiveness of the adaptive weight
proposed in this study, θCC and θSS were tested separately. The
degraded data experiment was conducted on the Pleiades dataset
including 60 images, and the average experimental results are
presented in Table II. Among all indicators, we found that the
proposed combination of correlation and similarity was the best.
This implies that considering similarity or correlation alone is
insufficient, and combining both sides can achieve a better effect.

IV. EXPERIMENTAL RESULTS

A. Experimental Datasets and Comparison Methods

In this work, we apply data from four different sensor datasets:
Pleiades, QuickBird, IKONOS, and WorldView-2. Each dataset
includes 60 groups of source images. The sizes of the MS
images and PAN images are 256 × 256 × 4 and 1024 × 1024,
respectively. To fully verify the effectiveness of the proposed
method, we conduct experiments on two types of databases:
degraded data and real data. In the degraded data experiments,
due to lack of reference image, we follow the Wald’s protocol
[48], and the original MS images are regarded as reference
images. The low-resolution MS image is obtained by MTF [49]
and nearest-neighbor sampling with a decimation factor of 4 on
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Fig. 2. Fusion results of Pleiades images. (a) MS image. (b) PAN image. (c) Reference image. (d) GSA method. (e) AIHS method. (f) BFLP method. (g) MM
method. (h) IMG method. (i) MMMT method. (j) AWJDI method. (k) FSRIC method. (l) Proposed method.

Fig. 3. Residual images estimated by the difference between the reference and pansharpened images of each algorithm in Fig. 2. (a) Ideal image. (b) GSA method.
(c) AIHS method. (d) BFLP method. (e) MM method. (f) IMG method. (g) MMMT method. (h) AWJDI method. (i) FSRIC method. (j) Proposed method.

the original MS image. For the PAN image, the downsampling
operation with an extraction factor of 4 is used directly.

In the test, we compared eight effective methods: the Gram
Schmidt adaptive (GSA) method [50], the adaptive IHS (AIHS)
method [51], the bilateral filter luminance proportional (BFLP)
method [52], the matting model (MM)-based method [53], a
method based on AIHS and multiscale guided filter (IMG)
[37], the matting model and multiscale transform (MMMT)-
based method [54], the adaptively weighted joint detail-injection
method (AWJDI) [55], and the full scale regression-based injec-
tion coefficient (FSRIC) method [56]. Among them, GSA is a
component substitution method and AWJDI is a method that
combines variational optimization and multiresolution analysis.
The remaining comparison methods are all based on multires-
olution analysis. The effectiveness of our method is proved by
subjective and objective comparisons. All comparison methods
used in this article are public source codes provided by the
corresponding authors.

B. Quality Evaluation Indices

To illustrate the effectiveness of the proposed method
quantitatively, two different sets of indicators were used for
degradation data tests and real data tests, respectively. The
degradation data test indicators include CC [57], universal image
quality index (UIQI) [58], hypercomplex quality assessment

Q2n [59], spectral angle mapper (SAM) [60], erreur relative
global adimensionnelle de synthèse (ERGAS) [61], the root-
mean-square error (RMSE) [62], and peak signal-to-noise ratio
(PSNR) [63]. For real datasets, we use the quality with no ref-
erence (QNR) [64] as the evaluation index, which is composed
of spectral distortion index Dλ and spatial distortion index DS .

C. Experiments on Degraded Data

In degraded data, we used datasets from Pleiades and
QuickBird to evaluate the performance. Both subjective and
objective experiments can show the effectiveness of the proposed
method.

In the subjective comparison, only the red, green, and blue
bands of the sharpened image are displayed, for the convenience
of comparison. For the images from Pleiades dataset, Fig. 2(a)
and (b) are degraded MS and PAN images, respectively, which
are used as input images. Fig. 2(c) is the original MS image,
which is used as the reference image. The fusion results are
shown in Fig. 2(d)–(l). It is difficult to make a subjective com-
ment on the resultant images directly, so the residual of the fusion
results and the reference MS image is compared. Fig. 3 is the
residual images, which are estimated by the difference between
the reference image and the fusion result of each algorithm.
Fig. 3(a) is the ideal image. Fig. 3(b)–(j) are the residual images
of the fusion results of various methods. Less information on
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TABLE III
AVERAGE QUANTITATIVE RESULTS ON THE DEGRADED PLEIADES DATASET

Fig. 4 Fusion results of QuickBird images. (a) MS image. (b) PAN image. (c) Reference image. (d) GSA method. (e) AIHS method. (f) BFLP method. (g) MM
method. (h) IMG method. (i) MMMT method. (j) AWJDI method. (k) FSRIC method. (l) Proposed method.

Fig. 5 Residual images estimated by the difference between the reference and pansharpened images of each algorithm in Fig. 4. (a) Ideal image. (b) GSA method.
(c)AIHS method. (d) BFLP method. (e) MM method. (f) IMG method. (g) MMMT method. (h) AWJDI method. (i) FSRIC method. (j) Proposed method.

the residual image indicates a better effect of the pansharpening
method. Considering both Figs. 2 and 3, the results of various
pansharpening methods are analyzed. Judging subjectively, the
result of the BFLP method has the problem of color deviation.
The details of the GSA, MM, and FSRIC images are retained
too much. By comparing the residual images, the forest area
of the GSA, MM, and FSRIC images are different from the
reference image. In the road area, there is a big difference
between AIHS, MMMT, and the reference image. Overall, the
proposed method, IMG and AWJDI have good performance.

However, the residual image of the proposed method is less
than those of the other two methods. It is not difficult to see that
the difference between the proposed method and the reference
image is the smallest, and our method performs well in both
spectral and spatial preservation. To compare the performance
of all the methods better quantitatively, the average objective
results of 60 images are shown in Table III. From the table, we
see that the proposed method is the best in all indicators.

For the images from QuickBird dataset, Fig. 4(a) and (b) are
the degraded MS and PAN images respectively, which are used
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TABLE IV
AVERAGE QUANTITATIVE RESULTS ON THE DEGRADED QUICKBIRD DATASET

Fig. 6. Fusion results of IKONOS images. (a) MS image. (b) PAN image. (c) GSA method. (d) AIHS method. (e) BFLP method. (f) MM method. (g) IMG
method. (h) MMMT method. (i) AWJDI method. (j) FSRIC method. (k) Proposed method.

Fig. 7. Enlarged images of the marked area in Fig. 6. (a) MS image. (b) PAN image. (c) GSA method. (d) AIHS method. (e) BFLP method. (f) MM method. (g)
IMG method. (h) MMMT method. (i) AWJDI method. (j) FSRIC method. (k) Proposed method.

as input images. Fig. 4(c) is the original MS image, which is
used as the reference image. The fusion results are shown in
Fig. 4(d)–(l). Fig. 5 is the residual images, which are estimated
by the difference between the reference image and the fusion
result of each algorithm. Fig. 5(a) is the ideal image. Fig. 5(b)–(j)
are the residual images of the fusion results of various methods.
Considering Figs. 4 and 5 together, we find that BFLP is quite
different from the reference image in spectrum. The result of the

MM method is too smooth, and most of the details are lost. It is
difficult to make a subjective evaluation for other methods, but,
from the residual images, the difference between the proposed
method and the reference image is smaller than other methods.
To better compare the performance of various methods, the
average objective results of 60 images are shown in Table IV,
where it can be seen that the proposed method is the best among
all indicators.
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TABLE V
AVERAGE QUANTITATIVE RESULTS ON THE REAL IKONOS DATASET

Fig. 8. Fusion results of WorldView-2 images. (a) MS image. (b) PAN image. (c) GSA method. (d) AIHS method. (e) BFLP method. (f) MM method. (g) IMG
method. (h) MMMT method. (i) AWJDI method. (j) FSRIC method. (k) Proposed method.

Fig. 9. Enlarged images of the marked area in Fig. 8. (a) MS image. (b) PAN image. (c) GSA method. (d) AIHS method. (e) BFLP method. (f) MM method. (g)
IMG method. (h) MMMT method. (i) AWJDI method. (j) FSRIC method. (k) Proposed method.

D. Experiments on Real Data

We conducted real data experiments on the IKONOS and
WorldView-2 datasets and proved the performance of the pro-
posed method by comparing with other methods. Because
there are no reference image in the real data, we cannot give
the residual image for comparison. Therefore, in the subjec-
tive evaluation, we enlarged the fusion results individually, to
observe the fusion results of each method better. Both subjective
and objective evaluations demonstrate the effectiveness of the
proposed method.

For the images from the QuickBird dataset, Fig. 6(a) and (b)
are the original MS and PAN images, respectively, which are

used as input images. The fusion results are shown in Fig. 6(c)–
(k). Fig. 7(a) and (b) are the enlarged images of the red marked
area for original MS and PAN images, respectively. Fig. 7(c)–(k)
are the enlarged images of the red marked area for each method.
From Figs. 6 and 7, we see that although the GSA, BFLP,
and IMG methods perform well in details, they also introduce
significant noise. The result of the MM method is too smooth,
and the details are not enough. Other methods perform well in
spectral and spatial preservation, but they are not as good as the
proposed methods. To quantitatively compare the performance
of each method, the average objective results of 60 images are
shown in Table V. From the table, we can find that the proposed
method achieved the best results on various indicators.
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TABLE VI
AVERAGE QUANTITATIVE RESULTS ON THE REAL WORLDVIEW-2 DATASET

TABLE VII
AVERAGE CONSUMING TIME (SECOND) OF THE COMPARISON METHODS

For the images from the WorldView-2 dataset, Fig. 8(a) and
(b) are the original MS and PAN images, respectively, which
are used as input images. The fusion results are depicted in
Fig. 8(c)–(k). Fig. 9(a) and (b) are the enlarged images of the
red marked area for original MS and PAN images, respectively.
Fig. 9(c)–(k) are partially enlarged images of the red-framed area
for each method. Subjective quality analysis was performed in
combination with Figs. 8 and 9. Subjectively, the results of most
methods are quite close, and it is difficult to evaluate whether
they are good or bad. We can only comment briefly on their
differences. In Fig. 9, there is a color deviation problem in
the upper right corner of the MM result. In the GSA, BFLP,
MM, MMMT, and FSRIC results, the lower left area shows
more texture, whereas in other methods, it is smoother. To
better compare the performance of all the methods, the average
objective results of 60 images are presented in Table VI. It can
be seen from the table, the proposed method achieved the best
results on most indicators.

E. Performance Discussion

To prove the effectiveness of the low-rank fuzzy fusion model
and the detail enhancement model proposed in this article, we
used comparative experiments to analyze and illustrate it. The
following tests were simulated on the IKONOS dataset, which
contains 60 images, and evaluated by CC, UIQI, Q2n, SAM,
ERGAS, RMSE, and PSNR metrics. As for the low-rank fuzzy
fusion model, we compare it with two other methods. One is HF
fusion with the maximum value selection rule, and the other is
HF fusion with the GGFF model. The experimental results are

Fig. 10. Performance comparison of low-rank fuzzy fusion models.

Fig. 11. Performance comparison of detail supplement model.

shown in Fig. 10. It can be seen that the proposed method is
superior to the other two methods in all indicators except SAM,
which proves that the proposed low-rank fuzzy fusion algorithm
is effective.

To further prove the performance of the detailed supple-
ment model in our method, experiments were conducted on
the IKONOS dataset containing 60 images and evaluated by
CC, UIQI, Q2n, SAM, ERGAS, RMSE, and PSNR metrics.
We compared the results of the method with the detail sup-
plementation model with that of the method without a detail
supplementation model, and the results are shown in Fig. 11.
From the figure, we see that, compared with the method without
the detailed supplement model, the proposed method with the
detail supplement model greatly improves all the indicators
except SAM. The results presented here demonstrate that the
detail supplement model has a good effect.

F. Consuming Time Comparison

To compare the computational efficiency of the proposed
method and the comparison methods, the average running time
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of the fusion methods is presented. Table VII summarizes the av-
erage running time consumed by experiments on both degraded
data and real data. The degraded dataset and the real dataset each
contain 120 images. The time consumption of GSA, AIHS, and
FSRIC is extremely low, followed by MM and IMG. The time
consumption of the BFLP method in the degradation data test is
larger than that of the proposed method; however, it is smaller
than ours in the real data test. The time consumed by MMMT
and AWJDI is much larger than that by the proposed method.
Therefore, based on all the above-mentioned experimental re-
sults and the running time comparison here, it can be inferred
that the proposed method improves the performance of fusion
with acceptable consuming time.

V. DISCUSSION

In the detail injection-based pansharpening method, in order
to make the result closer to the real result, the injected details
need to contain enough information on MS and PAN images.
Most methods get the injected details by fusing HF components
of MS and PAN images, which is a rough fusion method. To
obtain more reliable details, this article proposes two models to
obtain injected details closer to the real HR MS image.

First, to better fuse the details of PAN and MS images, we
propose a fusion method based on low-rank decomposition and
fuzzy fusion to obtain the preliminary fused HF component.
In the work, the HF components of MS and PAN images are
decomposed into low-rank and sparse components, and then
the corresponding rules are set according to the properties of
different components. The low-rank component mainly contains
the approximate features of the image, reflecting the contour
information of the image, and occupying the main energy of the
image. The common low-rank component fusion criteria include
weighted average method, max-local-energy method, and max-
local-variance method. However, the weighted average method
does not consider the edge and brightness characteristics of the
image, which reduces the contrast of the fused image and affects
the visual effect of the fused image. The max-local-energy
method tends to select high-brightness areas, which refines the
edges of low-brightness areas. The max-local-variance method
gives priority to the areas with rich edge texture, which ignores
the influence of brightness, and is more sensitive to noise. Since
fuzzy logic is good at expressing qualitative knowledge and ex-
perience with unclear boundaries, this article applies fuzzy logic
algorithms to image fusion based on the characteristics of the
low-rank component, so as to better retain the useful information
from the low-rank component. The sparse component contains
important details such as the edges, lines, and boundaries of the
image. In this article, the absolute maximum rule is adopted for
sparse components. The algorithm is simple, saves computing
time and improves image processing speed, while retaining the
details to the maximum extent. Then, the fused low-rank and
sparse components are combined to obtain the preliminary HF
component.

Furthermore, in the fusion process, some information from
the PAN image is replaced by the information from the MS
image. Therefore, if the fused HF component is directly used

as the injection details, the information redundancy and spatial
resolution distortion will be caused by excessively supplemented
MS information or insufficient PAN details. In order to further
improve the fused image, we then designed a detail supplement
model, which can supplement the details of the preliminary
HF component by calculating the correlation and similarity
between the HF component of the PAN image and the fused
HF component to obtain the final injected details. Finally, the
improved modulation coefficient technique is employed to inject
the obtained details into the up-sampled MS image to achieve the
final fused image. Experimental results show that the proposed
method has the best performance on both degraded data and real
data.

Since the low-rank decomposition and fuzzy fusion strategy
has a certain computational complexity, the proposed method
takes a longer time than some traditional method, but it takes
less time than the variational optimization-based methods, like
sparse representation. In the work, we conducted experiments
on four datasets. Although we did not include all scenarios, it
still shows that our method is generalizable to a certain extent.
However, due to the spatial details of the introduced information
from MS image are relatively fuzzy, the final fused image of
most methods is difficult to achieve the desired effect. How to
introduce MS information without reducing the spatial quality
of the fusion image is still worth studying. In addition, like most
of the literature, this article conducts experiments on remote
sensing images with good registration and quality, so some other
important progresses in image fusion are ignored. Actually, for
remote sensing image fusion, in addition to spectral and spatial
inconsistency, we also need to pay attention to the haze effect
of images, the misaligned MS and PAN images, and the effects
of point spread function. For example, Li et al. [65] proposed a
PAN-modulation-based pansharpening method taking account
of haze, which is referred as a Haze- and Ratio-based method.
For images with registration problems, Jing et al. [66] proposed
an image fusion method for misaligned panchromatic and MS
data. Spatial downscaling is an ill-posed inverse problem, Wang
et al. [67] proposed a multiresolution image fusion guided by
information loss. Pardo-Iguzquiza et al. proposed a downscaling
co-kriging method for image sharpening [68], which can explic-
itly take into account the point spread function of the sensor and
has the property of prediction coherence. In the future work, we
will consider the above factors in pansharpening.

VI. CONCLUSION

This article presents a pansharpening method based on detail
optimization to obtain a more reliable injection detail. Unlike the
traditional method of obtaining details, first, the HF details of
MS images and PAN images are fused by the proposed low-rank
fuzzy fusion method. Next, we constructed the detail supplement
model to supplement the fused details to obtain the final injection
details. Finally, the modulation coefficient was used to inject
the details into each band of the MS image to obtain the final
fusion HRMS image. The Pleiades, QuickBird, IKONOS, and
WorldView-2 datasets were used to verify the performance of the
proposed method. Through the degradation data and real data
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experiments, and comparison with a series of state-of-the-art
methods, the experimental results demonstrate that the proposed
method can improve the detail information while maintaining
spectral information. In the future, we intend to further study the
structural characteristics of multiscale information and further
improve the detail information while maintaining the spectral
information.
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