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Structure Aware Generative Adversarial Networks for
Hyperspectral Image Classification

Tayeb Alipour-Fard and Hossein Arefi

Abstract—Generative adversarial networks (GANs) have shown
striking performances in computer vision applications to augment
virtual training samples (VTS). However, the VTS generating by
GANs in the context of hyperspectral image classification suffer
from structural inconsistency due to the insufficient number of
training samples in order to learn high-order features from the
discriminator. This work addresses the scarcity of training samples
by designing a GAN, in which the performance of discriminator
is improved to produce more structurally coherent VTS. In the
proposed method, by splitting the discriminator into two parts,
GAN undertakes two tasks: the main task is to learn to distinguish
between real and fake samples, and the auxiliary task is to learn
to distinguish structurally corrupted and real samples. With this
setup, GAN will produce real-like VTS with a higher variation than
conventional GAN. Furthermore, in order to reduce the computa-
tional cost, subspace-based dimension reduction was performed
to obtain the dominant features around the training samples to
generate meaningful patterns from the original ones to be used
in the learning phase. Based on the experimental results on real,
and well-known hyperspectral benchmark images, the proposed
method improves the performance compared with GANs-related,
and conventional data augmentation strategies.1

Index Terms—Deep learning (DL), hyperspectral images (HSIs),
convolutional neural network (CNN), generative adversarial
networks (GANs), remote sensing.

I. INTRODUCTION

HYPERSPECTRAL sensors provide valuable information
of the surface of the earth including hundreds of image

bands in visible and infrared regions of the electromagnetic
spectrum at a certain spatial resolution. This rich cube of data
provides an opportunity to detect and recognize different objects
and land-cover types in hyperspectral images (HSIs). Image
classification is one of the major tasks in which HSIs are used for
information extraction purposes [1]. Some general challenges
are still to be addressed in the area of HSI classification, such as
the high dimensionality of the data, the problem related to the
relatively small sample size (SSS), the correlation of spectral
signatures among different objects in the desired scene, and the
use of spatial information in the classification process [1]–[3].
Deep learning (DL), as a novel machine learning paradigm,
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has achieved state-of-the-art performance in many applications
such as object recognition [4], handwritten digit recognition [5],
natural language processing [6], as well as image classification
and segmentation [7], [8].

Among different neural network architectures, convolutional
neural networks (CNNs) have shown notable efficiency in image
processing, due to both their powerful learning strategy and
their capabilities to models contextual information [9]–[11]. In
HSI processing, CNNs are able to extract meaningful features
automatically by training data and performing an end-to-end
classification task. Accordingly, users are not required to manu-
ally select the relevant features for the addressed problem [12].
However, despite the many advantages associated with CNNs,
there are still several critical problems in their use with hy-
perspectral data, especially with respect to the parameters to
be estimated in the learning phase of the CNN architecture. A
large number of training data is needed to achieve appropriate
estimations and thus, robust classification results in models such
as GoogleNet and VGGNet [13].

In recent years, several methods have been proposed to over-
come the scarcity problem of training data for training CNNs in
the context of HSI classification [14]–[18]. The first category in-
cludes semisupervised methods. These methods seek to increase
the number of training samples by using clustering techniques,
segmentation, and calculating spatial–spectral similarity to un-
labeled data. Ma et al. in [17] presented a two-step approach to
extend the number and the representativeness of training sam-
ples. First, the method takes two types of decisions to prelabel
each unlabeled sample: local decisions based on weighted neigh-
borhood information are made by the surrounding samples, and
global decisions based on DL are taken by the most similar train-
ing samples. Next, some unlabeled samples having high labeling
confidence are selected to extend the training set. Wu and Prasad
in [18] trained a deep convolutional recurrent neural network
(CRNN) with training data generated from the clustering of HSIs
and then performed fine-tuning with limited labeled training
data to obtain the final classification map. These methods are
computationally expensive and the design of suitable criteria
for sharing of unlabeled data for classification is very complex.
Cotraining is another important semisupervised method [19].
In the cotraining methods, two classifiers are trained separately
based on two feature subsets (views), and then unlabeled data
are selected with the most credible predicted labels as the new
labeled data. Ju et al. in [19] applied two classifiers (CNN
and CRNN) individually to HSIs. Next, credible unlabeled data
from each classifier were selected and a deeper architecture

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4777-0128
https://orcid.org/0000-0002-8014-624X
mailto:tayebalipour@ut.ac.ir
mailto:hossein.arefi@ut.ac.ir
https://github.com/TayebAlipour/SAGAN-HSI


ALIPOUR-FARD AND AREFI: STRUCTURE AWARE GANS FOR HYPERSPECTRAL IMAGE CLASSIFICATION 5399

than the two primary networks was created and trained with
the new set of training samples for the classification of HSIs.
The main challenge of this method is the creation of two views
of features that should be independent and provide classification
accuracy acceptable. In order to address this challenge, Zhang
et al. [20] created two views based on spectral and spatial
characteristics of HSIs and were able to take thus advantage
of the cotraining. However, this method did not exploit all the
benefits of spectral-spatial classification. The second category
of methods for addressing the issue of the number of training
samples is data augmentation. The most popular method that
has been shown as an effective practice for data augmentation is
to perform traditional affine and elastic transformations. Here,
the new training samples are generated from original training
data by performing rotation or reflection, zooming in and out,
shifting, applying distortions as well as changing the radiometric
palette [15], [21]. However, this method does not provide any
significant improvement in HSI classification, as it does not add
any new information on the classes. It mainly works when it
is required to generate a more robust statistics and in cases
we need to balance training examples in different classes. The
third category of methods is to perform pretrained models. A
pretrained model is a model that is created to solve a different
yet similar problem. Instead of building a model from scratch,
a pretraining model can be used and its parameters can be
fine-tuned by using a limited number of training data to solve
the specific problem considered [22]. The size of pretraining
datasets used in HSI classification is still very small and largely
insufficient in comparison with those used in the computer vision
community to train image classifiers. With these conditions,
other solutions are the use of networks such as VGGNet and
ResNet that are taught on other source images (non-HSIs) [23].
However, this strongly limits the capability to exploit the crucial
spectral measurements of hyperspectral sensors. Moreover, in
order to achieve acceptable accuracies, it is necessary to start
the fine-tuning from lower layers that are still requiring a large
number of training samples. The fourth and last category of
methods is based on the use of ensemble learning [24]. Due to the
high variance of CNN, boosting methods have been developed
to increase the overall accuracy (OA) using an implementation
of an ensemble of light CNNs working on band subset instead
of implementing a deep CNN on all bands [24]. In addition to
the above methods, techniques such as regularization, dropout,
batch normalization, and weight decay have also been used to
improve the conditions for dealing with SSS, which are now
considered as part of a standard CNN implementation [25].

Recently, to overcome the SSS problem, generative adver-
sarial networks (GANs) provide a unique way to train DL
algorithms by creating training data from the existing training
samples [14], [26]–[29]. Zhu et al. [14] pioneered to use GANs
for hyperspectral data processing by proposing 1-D and 3-D
GANs. However, they used large amounts of training data (e.g.,
about 50% of the whole image in the Indian Pines dataset as a
training sample), and they ignored the discriminator’s compo-
nent in the cost function and made significant simplifications.
They also did not provide any criteria for quality assessment
of generated training samples. Zhong and Li [28] proposed an

integration of GANs and probabilistic graphical models and
adopted a conditional random field to refine the results of GANs
for HSI classification. He et al. [29] presented a semisupervised
GAN method by adding a supervised term to the standard cost
function of GANs and using unlabeled pixels.

As introduced by Goodfellow et al. [30] for the first time,
GANs consist of two competing models named as generator
and discriminator. Generator takes noise as the input and gen-
erates samples. Discriminator receives the samples from both
generator and training data, and distinguishes between the two
sources. The discriminator is the leader in the development of
the GAN. The main problem of GAN is the limited performance
of discriminator during the training process. The function space
from which the discriminators are selected significantly affects
GANs’ performance, as the discriminator contributes to the
creation of quality virtual training samples (VTS) by passing a
quality signal to the generator. The regular architectural choice
for the discriminator is a CNN [31], [32]. Because of SSS
problem in HSI, the discriminator is not readily amenable to
learning higher-order features to preserve structural consistency
in training samples. In other words, the considering of deep
CNNs networks (more than four convolution layers) for the
discriminator only increases the computational volume and
does not have the required efficiency. This shortcoming led to
generation of spatially corrupted VTS, reducing the accuracy
in modeling the HSI classification problems. The inclusion of
poor-quality VTS into the classification process significantly
impacts on the effectiveness of the learning process.

In this article, in order to produce more realistic training
samples with structurally coherent content, an auxiliary task is
assigned to the discriminator, which is to identify real samples
whose structure has been manually disassembled. To this end,
the two regions that are randomly selected in the intermediate
convolutional feature maps of sample are swapped, then the
resulting modified feature map is transferred through the next
consecutive layers of discriminator network. This process, along
with the main objective of discriminator, which is the distin-
guishing of real and fake samples, acts as an auxiliary task. As a
result, the discriminator has two losses: the normal loss and the
auxiliary loss. By combining the two losses, the signal provided
to the generator by discriminator is enhanced and the generator
is directed to generate VTS with coherent structure. We term
our method “structurally aware sample generation by genera-
tive adversarial network (SA-GAN).” It is worthy of mention
that the SA-GAN is not a three-player minimax optimization
game, but the two-player minimax assumption persists and the
intermediate feature maps of discriminator are manipulated and
modified. In general, the borders between the different classes
in HSI are very little (in terms of labeled samples), so finding an
optimal Nash equilibrium in original HSI feature space (original
number of bands) is practically impossible. For this reason,
the SA-GAN considers the use of subspace feature extraction
to obtain optimal feature space and also dominant features in
input patch for each class and accordingly produce VTS for
each class. To the best of our knowledge, generation of VTS
by GANs with a coherent structure in the HSI classification
has not been addressed so far. The main contributions of this
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article are as follows: 1) generating structurally coherent VTS
by GANs to overcome the lack of training data in HSIs by
developing an auxiliary task for the conventional GANs; 2)
implementing subspace dimension reduction (DR) methods to
reduce the dimensionality of HSIs and generating high-quality
real training sample, which are more compatible with the nature
of SA-GAN. The proposed approach has been compared with
some of the most recent and widely used classification methods
on standard hyperspectral benchmark datasets. The final results
demonstrate the effectiveness of the developed approach in terms
of quantitative classification accuracy metrics and quality of
generated maps.

The rest of this article is structured as follows. Related re-
search works are discussed in Section II. Section III presents the
detail of the proposed method. In Section IV, the experimental
results are illustrated and discussed. Finally, Section V draws
the conclusion of this article.

II. RELATED WORKS

The number of parameters to be estimated in CNNs is much
higher than the number of training samples. For this reason, a
successful implementation of CNNs for HSI requires a large
number of training samples. Given the fact that the collection of
real training samples is very time consuming and costly, research
studies have led to new ways of generating VTS. These methods
attempt to generate VTS and increase the proportion of number
of training samples compared to the number of CNN unknown
parameters. Also, the enrichment of training samples increases
the CNN generalization [33]. GAN is one of the approaches that
has gained a lot of attention in recent years [14], [26]–[29].
Discriminator and generator play a continuous game, where
the generator is learned to produce more and more realistic
samples, and the discriminator is learned to get better and better
at distinguishing the generated data from real data. The most crit-
ical challenge of developing the GAN framework is to produce
samples that are realistic as possible [31]. In the recent study,
the authors suggested to use collaborating learning and attention
mechanism to assists the generator to provide real VTS [34]. Gao
et al. [35] proposed using multidiscriminator with scoring mech-
anism rather than single discriminator to overcome the problem
of insufficient diversity of generated samples. A training sample
generated by the generator might partially be real and partially
be fake. However, in the conventional GANs, this generated
sample can only take one (real) or zero (fake) label, thus reducing
the accuracy in modeling the HSI classification problems. This is
critical, because in a training sample (a window around a labeled
pixel) in HSI there may be several different classes. Feng et al.
in [36] proposed the multiclass spatial–spectral GAN (MSGAN)
to overcome this problem. In MSGAN two generators are pro-
posed to produce spectral vector (by 1-D transpose convolution
operator) and spatial patches (by 2-D transpose convolution
operator) of HSIs, and a discriminator is designed to extract
joint spatial–spectral features and output multiclass probabili-
ties. Tao et al. [37] proposed a semisupervised variational GAN
by taking advantages of decoder–encoder network to build a
collaborative relationship between generator and classification

Fig. 1. General idea of multitask GANs.

task. Their proposed method led to the generation of real-like
and meaningful training samples.

The multitask GAN is proposed to force GAN to simulta-
neously learn different but related tasks, thus increasing the
generalization power of their hidden representations [38]–[40].
The general idea is that if there is a certain relation between the
tasks, the quality signals could be transferred to the generator
from the discriminator (see Fig. 1). Auxiliary classifier GAN
proposed by Mirza and Osindero [38] includes the class label as
an auxiliary task in the first layer of the generator and the last
layer of the discriminator. Chen et al. [39] added an auxiliary
task to the GAN to predict correct rotation of input images by
exploiting global structure in real data. The multitask cGAN is
proposed to refine the digital surface model and, at the same time,
produced roof-type classification maps from the high-resolution
satellite images [40].

Outside of the GANs, VTS are generated by modifying the
variance of the real training samples by applying random co-
efficients and linear and nonlinear combinations of them [41].
Adjusting the parameters and choosing the appropriate linear
or nonlinear combination to control the uncertainty caused by
the injection of random parameters is one of the challenges of
this approach. Indeed, a slight change in parameters results in
sharp changes in the classification accuracy. In addition, VTS
are propagated by applying geometric operators such as rotation
in different directions and changing the scale on real training
samples [21]. One of the important parameters of this method
is choosing the optimal input patch size. If the input patch size
is too small, the accuracy of the CNN algorithm is reduced,
whereas if the size of the input patch increases, the spatial quality
of the final classification map decreases and the classes with
small structure (such as buildings in urban areas) are merged
into other classes.

Another relevant challenge to design CNNs and GANs is to
adopt an appropriate DR approach. Although it has been claimed
that CNNs are being utilized end to end, when considering
HSI there is consensus in the literature on the fact that DR is
necessary [12], [41]–[44], also taking into account the impos-
sibility of have millions of labeled data for the training phase.
Moreover, the high dimensionality of HSI gives rise to compu-
tational challenges in spite of the advantages in distinguishing
similar spectral signatures. Chen et al. in [41] used the principal
component analysis (PCA) method to reduce the dimension of
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Fig. 2. General flow of the proposed approach (SA-GAN) for VTS generation for HSIs (L: number of subspaces in DR method, d: input patch size, DeConv.:
deconvolution (upsampling) operator, BN: batch normalization, Conv.: convolution operator).

HSI. The authors evaluated the effectiveness of their proposed
CNN method with the extracted features in three scenarios using
only spectral information, only spatial information, as well as
spectral–spatial information. Kernelized PCA method was used
to reduce the dimension of HSI in the framework of unsupervised
CNNs [44]. In a similar work, Zhao and Du [42] provided the
PCA method with local marginal information classes to increase
the capability to model for separation among classes. Moreover,
this method requires a large amount of training samples and does
not have the required performance against other supervised DR
methods such as subspace-based DR [2]. Evolutionary-based
DR methods like particle swarm optimization were also pre-
sented for DR [12]. However, they did not achieve significant
accuracy improvement in HSI classification by CNNs. There are
also some studies in which the CNNs have been implemented on
the original images without using DR [45], [46]. The advantages
of this naive approach are to maintain the end to end of the
implementation process with CNNs. The problem is that a huge
amount of training samples is needed.

III. METHODOLOGY

The structure of our proposed method (SA-GAN) is shown
in Fig. 2. As we can see, the SA-GAN requires two main
steps, including DR and designing the SA-GAN components
(discriminator, generator, and loss function). The output of the
DR method is an input to the SA-GAN step. Then, the set
of training samples (i.e., the combination of real and virtual
training samples) are the input to the CNN. Definition of the
CNN architecture to produce final classification map is discussed
in Section III-C. The details of the proposed method are given
in the following sections.

A. Dimensionality Reduction

Hyperspectral sensors acquire images in hundreds of spectral
bands. This results in the curse of dimensionality problem that

Fig. 3. 2-D subspace L defined from the 3-D space. L is defined by its basis
vectors u1 and u2 [2].

is one of the main obstacles for automatic classification. In
this context, the main contribution of this article is getting
good generalization properties in the generated virtual samples
to overcome this problem. As mentioned in Section II, the
between classes distance in original HSI bands is very small
and causes to mode collapse of GAN. For fighting mode collapse
and finding an optimal Nash equilibrium, we need to have the
discriminative subspace of original HSI and the high-quality
real training sets made up of reliable samples as an input to the
SA-GAN. To take advantage from an adaptive feature subspace
for each class, we apply subspace DR to HSI. The use of
subspaces to represent class models is based on the assumption
that the vector distribution in each class lies approximately on
a lower dimensional subspace of the feature space [2]. The
most common way to define an l-dimensional subspace is to
utilize a set of linearly independent basis vectors, {u1, ..., ul},
which can be combined into a d× l matrix U having rank l.
Fig. 3 illustrates this concept with a 2-D subspace in a 3-D
space. Let U(c) be a set of r(c)-dimensional orthonormal basis
vectors for the subspace associated with classes c = 1, 2, ...l.
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U(c) is computed as U(c) = {e(c)1 , ..., e
(c)

r(c)
}, whereas E(c) =

{e(c)1 , ..., e
(c)
d } is the eigenvector matrix computed from the

correlation matrix R(c) = E(c)ΛE(c)
′
. Here, Λ is the eigen-

value matrix defined with decreasing magnitude and e is an
eigenvector corresponding to the eigenvalue of correlation ma-
trix R(c). We use a subspace projection accounting for 99.9%
of the original spectral information in order to determine the
size of U(c). The feature space is defined by the nonlinear
functions h(xi) = [‖Xi‖2, ‖X ′

iU
1‖2, . . ., ‖X ′

iU
k‖2]′ , i.e., the

feature vectors containing as components the energy of the
projections on all class subspaces plus the energy of the original
vector.

B. Structure Aware GAN

1) Review of GAN: GANs are inspired from the game be-
tween two players in which one player, the Generator (G), is
responsible for producing training samples and the other one,
the Discriminator (D), is to determine whether they are real or
fake [30]. The GAN framework should define the discriminator,
the generator, the architecture, and the training process. The
definition of the architecture is the first and most important step
for designing a GAN. The discriminator should be trained on
real training samples of each class and be locked in advance.
Then, the generator generates fake data from a random variable
and this VTS feed into the discriminator to predict them. The
training phases of these networks occur simultaneously and can
be described as a minimax game. The discriminator tries to
maximize its own performance in distinguishing between real
and generated samples, whereas the generator maximizes its
ability to generate samples that manage to fool the discriminator.
What generator does is to estimate the density, from the noise
to real data, and to provide it to the discriminator. Goodfellow
et al. [30] suggest (1) as standard objective function for GAN

V (G,D) :=Ex∼P(x)
[log(D(x))]+Ez∼P(z)

[log(1−D(G(z)))]
(1)

where p(x) is the data distribution, z ∈ Rdz is a latent variable,
p(z) is the standard normal distribution, and D(x) denotes the
probability of x being sampled from p(x). After enough iter-
ations, p(z) will converge to p(x), which indicates that G is
capable of learning the true distribution of p(x). The solution
to this problem is an equilibrium point of the game, which is a
saddle point of the discriminator loss. Theoretically, Goodfellow
et al. [30] proved the convergence of GAN training by assuming
that the generator is always updated according to the temporarily
optimal discriminator at each training step. Practically, this
assumption is too difficult to satisfy and GANs remain difficult
to train. A general solution is to meet the Lipschitz-continuity
condition [47]. Weight clipping [48], gradient penalty [49], and
spectral normalization [50] are the most important methods that
are recently proposed. Another group of researchers believe that
the main solution is to change the cost function [47]. Methods
such NS-GAN, LS-GAN, and W-GAN are based on the change
of the cost function and the minimization of statistical diver-
gences between the model and target distributions.

TABLE I
NETWORK ARCHITECTURE FOR THE SA-GAN

The number represents the tensor shapes after convolution (for the discriminator)
and upsampling (for the generator).

2) Architecture of SA-GAN: Our proposed SA-GAN model
attempts to incorporate an auxiliary task learning system into
the GAN, which will allow the discriminator to identify incon-
sistency in input real training samples (by exchanging regions
in the feature map) to enhance the quality of the VTS. As
demonstrated in Fig. 2, the proposed discriminator is divided into
two consecutive parts: D1 and D2. The feature map produced
by D1 in the middle row of discriminators box is duplicated and
the two regions (randomly selected) are exchanged in the feature
map. To this end, we define the exchange operator. Suppose
X ∈ RW×W×d denotes a feature map cube where W and d
represent the spatial size of the cube and the number of features,
respectively, and let X(p,q) ∈ Rd represent the feature vector
at spatial location (p, q). Then, the exchange operator ξ(X, δ),
which inputs X and outputs a feature map cube that is identical
to X except that its feature vector at some spatial location (i, j)
is exchanged with that at location δ(i, j), where δ denotes a
random permutation of the location index set

ξ(X, δ)(p,q) =

⎧⎪⎪⎨
⎪⎪⎩

X(i,j) if (p, q) = δ(i, j)

Xδ(i,j) if (p, q) = (i, j)

X(p,q) otherwise

. (2)

Discriminator is expected to distinguish the real cubes from
the structurally corrupted ones by exchange operator. Table I
lists the architecture of the discriminator network, which is
comprised of four convolution layers by giving the size of the
cube in the spatial and channel dimensions. The input size of
discriminator is 32× 32× L, (L: number of subspaces from DR
method, which vary according to each dataset). In Section IV-B2,
the effect of input patch size has been investigated and we find
the 32× 32 is optimal input size.

For the discriminator, D1 is the primary two layers and D2
is the last two layers (see Fig. 2). The input to the D goes
through D1 to produce a feature cube, on which an exchange
operator may be used if the input was a real training sample. The
cube is then passed through D2 to produce the discriminator
output. The kernel size of four 2-D convolution layers is the
same and padding operator is used to make the output spatial
size unchanged. After each convolution operator, a max-pooling
operator is added to reduce the spatial size by two times. As-
sume X [L], where L ∈ {1, 2, 3, 4}, is the output of the [L]th
convolution layer, the computational process can be written as

X [L] = β(W [L] ∗X [L−1] + b[L−1]) (3)

where X [0] = X , W [L] is the [L]th convolution kernel, * is
the convolution operator, b[L] is the bias, and β is the batch
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normalization operator that normalizes the output cube between
[−1, 1].

For the generator, the input noise is first converted into a cube
of 4× 4× 256 elements, then passed through a sequence of
deconvolution/upsampling filters to increase the spatial size. The
objective of the generator module is to generate X with four
upsampling layers. For the first upsampling layer, X [4] is first
upsampled by two times in the spatial domain and then a 2-
D convolutional operator is applied to it. The process of the
convolutional operator is the same as (3) and the kernel size is
set to 3× 3 (see Table I).

The design of suitable loss functions is essential for GAN
models. The idea of SA-GAN can be combined with a variety of
existing GAN algorithm. In the context of HSI classification, due
to the spectral mixing and very little border between different
classes, finding the Nash equilibrium is very hard. Therefore,
we use a margin [value “1” in (4) and (5)] to make the training
more robust, as proposed in [50]

VD(Ĝ,D) = (4)

Ex∼P(x)
[{min(0, 1 +D(x))] + Ez∼P(z)

[min(0, 1−D(Ĝ(z)))]

VG(G, D̂) = −Ez∼P(z)
[D̂(G(z))]. (5)

The discriminator’s target is to produce a score less than −1
for the fake images and producing a score greater than 1 for
the real images. The proposed method is designed to produce
samples with consistent structure. To this end, for discriminator
network, instead of one scalar output, we have two outputs. One
is Dr/f , that is the standard discriminator output of recognizing
whether its input is real or fake and the other is Dsc to recognize
whether or not its inputs have been structurally changed. Based
on two outputs, we have a new discriminator (D

′
) and we can

state the final objective of SA-GAN learning problem as

VD′ (Ĝ,D
′
) = Ex∼P(x),z∼P(z)

[Lr/f (x, z) + λ1Lsc(x)] (6)

VG(G, D̂′) = −Ez∼P(z)
[Dr/f (G(z))] (7)

where λ1 is a regularization parameter used to tradeoff two
losses, i.e., Lr/f and Lsc, which are defined as follows:

Lsc(x) = Ex∼P(x)
[min(0, 1 +Dsc(x))] (8)

+ Ex∼P(x)
[min(0, 1−D(ξ(x))]

Lr/f (x, z) = Ez∼P(z)
[min(0, 1 +Dr/f (G(z)))]

+ Ex∼P(x)
[min(0, 1−Dr/f (x))]

+ λ2Ex∼P(x)
[min(0, 1−Dr/fξ(x))]. (9)

The loss defined in (8) identifies whether the real input images
are structurally corrupted. The loss Lr/f in (9) is an extension
of the loss in (4), but it differs in that we also include a term
for the structurally corrupted real images (which are considered
real). Also, empirically we found it beneficial to use weighting
λ2 for this new term. To take advantages of labeled training
data, conditional GAN is utilized. Ideally, conditional GAN
results in a generator that generates convincingly realistic data

that corresponds to the input labels and a discriminator that has
learned strong feature representations for each label.

C. Classification by CNN

The use of CNNs on HSI comprises two major challenges. The
first challenge is to adopt an appropriate DR approach. Indeed,
the curse of dimensionality results in decreasing the accuracy
of the classification by increasing the number of bands. The
second challenge belongs to the lack of training samples. The
two above-mentioned challenges are addressed in Sections III-A
and III-B2. Afterward, to obtain the classification map, the set of
training samples (i.e., the combination of real and virtual training
samples) are given to the CNN (see Fig. 4). A CNN is a sequence
of layers, where each different layer plays a different role in the
processing of input data by imposing a different function [4], [7].
In the present study, the main types of layers were employed to
build the CNN architectures including convolution layer, recti-
fied linear unit (ReLU) layer, pooling layer, dropout layer, and
fully connected layer. The convolution layer aims to learn feature
representations of the inputs. Convolution layer is composed of
several convolution kernels (receptive fields), which are used
to compute different feature maps. ReLU performs a max(·)
function between 0 and the input data. In comparison to the
conventional activation functions, ReLU prunes the negative
values to zero and retains the positive value in order to reduce
the effect of the vanishing gradient. Robustness to noise and
distortions are the main motivation of pooling the feature maps
obtained by previous layers. Max pooling is used to get faster
convergence during training with respect to other strategy like
average pooling. Dropout is used for addressing the overfitting
problem by randomly skipping some units or connections with
a certain probability. This random drop generates different thin
network architectures, and ultimately one network with small
weights is chosen [51]. Following the dropout layer, a traditional
fully connected layer is used to map the feature domain to the
class domain. After max pooling (also dropout), the feature map
should be unfolded and fully connected to each class. In HSI
classification, an increase in the number of fully connected layers
leads to a significant increase in the number of parameters [25].
Regarding a classification problem with more than two classes,
the output unit activation function is the softmax function. The
softmax output layer provides an estimation of the probabilities
that the considered sample belongs to each class. Then a metric
is necessary to measure the similarity between the output of the
network (highest probability in the previous layer) and the label
of each pixel to perform the backpropagation procedure. The
loss function is the cross entropy function for 1-of-L classes.
The classification layer is the last layer in CNNs and Adam
optimization algorithm is used to update the parameters of the
objective function in an iterative manner. Therefore, these layers
were stacked up to form a complete architecture of CNNs in the
present analysis. Furthermore, ReLU manipulates the transfor-
mation between the layers as an activation and dropout layer to
reduces the effect of gradient vanishing and overfitting issues,
respectively.
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Fig. 4. Architecture of CNN for HSI classification after VTS generation by the proposed SA-GAN model. (Same convolution, stride=1, L: number of classes).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In order to study the performance of the proposed model
for HSI classification, an implementation has been developed
and tested on a hardware environment with a Sixth Generation
Intel Core i7-6800K processor with 6M of Cache, installed
over an ASUS motherboard, 64 GB of DDR4 RAM. A graphic
processing unit NVIDIA GeForce GTX 1080Ti with 8 GB RAM
is also used. The proposed method was implemented over the
Keras framework, with Ubuntu 18.04.2 x64 as operating system.

A. Dataset Description

The proposed method was applied to four well-known bench-
mark HSIs: 1) the Indian Pines 2010, 2) the Houston University
2012, 3) the Houston University 2017, and 4) the Pavia Univer-
sity datasets. Details of each dataset are provided in the following
sections.

1) Indian Pines 2010 Dataset (IP-10): The first dataset is
an image of an agricultural area obtained by the ProSpecTIR
system over near Purdue University, Indiana, between 24th and
25th of May 2010. Its spatial resolution is 2 m and the spectral
width of 5 nm. The spatial size of data is 445× 750× 360 and
contains 16 classes. In total, 20 bands have been removed due
to water absorption. Fig. 5(a) shows the RGB-composite and
the available sample distribution in each class for training and
testing.

2) Houston University 2012 Dataset (HU-12): Houston
2012 scene was collected by CASI on 2012 over the neighboring
urban area of University of Houston campus. The dimension
of this scene is 349× 1905× 144, containing 15 ground-truth
classes and its spatial resolution is 2.5 m. In this sense, HU
scene provides an interesting benchmark dataset. This scene
was first presented by the IEEE Geoscience and Remote Sensing
Society Image Analysis and Data Fusion Technical Committee
during the 2013 data fusion contest [52]. Fig. 5(b) shows the
RGB-composite and the available sample distribution in each
class for training and testing.

3) Houston University 2017 Dataset (HU-17): This dataset
was acquired on 2017 by the hyperspectral imager CASI 1500
over the area of the University of Houston [53]. It has a larger
spatial size (1 m) but fewer spectral bands compared with the
data from Houston 2012 dataset. The dimension of this scene is

Fig. 5. Visualization and distribution of training/validation and test samples
in the (a) Indian Pines 2010 and the (b) Houston University 2012 HSI datasets.
The number of training/validation (top middle) and test samples (top right for
IP-10 and top (bottom row) for HS-12) used for each class is shown in the
training/validation and test column, respectively.

601× 2384× 48, containing 20 ground truth classes. Fig. 6(a)
shows the RGB-composite and the available sample distribution
in each class for training and testing.

4) Pavia University Dataset (PU): The Pavia University im-
age was collected by reflective optics system imaging spec-
trometer (ROSIS) over the city of Pavia in Italy [54]. The
ROSIS sensor captured an image with a spatial resolution of
1.3 m and acquired 115 spectral bands in the spectral range
between 430 and 860 nm. The size of the image in pixels is
610× 340, containing nine ground truth classes. Fig. 6(b) shows
the RGB-composite and the available sample distribution in each
class for training and testing.

B. Analysis on the SA-GAN Model

In order to study the analysis of the proposed method, several
different experiments were carried out.

1) The first experiment focuses on the effect of two main
hyperparameters of the SA-GAN (i.e., λ1 and λ2). In this
experiment, the optimal value of hyperparameters for each
dataset was determined.
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Fig. 6. Visualization and distribution of training/validation and test samples in
the (a) Houston University 2017 and the (b) Pavia University HSI datasets. The
number of training/validation (top middle) and test samples (top (bottom row) for
HS-17 and top right for PU) used for each class is shown in the training/validation
and test column, respectively.

2) The second experiment focuses on the effect of input patch
size on classification accuracy.

3) The third experiment focuses on the size of the region
for the exchange operator. It is another hyperparameter
of the SA-GAN, which is essential for generating virtual
samples.

4) The fourth experiment investigates the visual quality of
the VTS produced by the proposed method.

5) The fifth experiment analyzes the contribution of the DR
and SA-GAN models to classification accuracy.

6) The sixth and last experiment focuses on classification
accuracy obtained by SA-GAN compared to the cutting-
edge methods related to VTS expansion and enrichment.
Six CNN-based methods were selected from the literature
to assess the performance of the proposed method: a) stan-
dard CNN framework to HSI classification (S-CNN) [55];
b) changing radiation-based virtual samples generation for
HSI classification by CNN (CRVS-CNN) [41]; c) meta-
heuristic dimension reduction method (MDR-CNN) [12];
d) standard GAN for producing virtual training samples
(S-GAN) [14]; e) the Wasserstein GAN for HSI classi-
fication (W-GAN) [56]; and f) self-attention GAN for
HSI classification (Self-GAN) the same as [57]. For all
the comparison models, the best settings indicated in the
relevant paper are used, except for the number of real
training samples considered to be equal for a fair com-
parison. The performance of each classification procedure
was measured by the OA, the average accuracy (AA), as
well as the Kappa coefficient (K).

Fig. 2 and Table I visualize and report the proposed architec-
ture for the generator and discriminator (which are the building
blocks of SA-GAN). Table I lists the layers of G and D with the
specific dimensions of each layer. The input of G is a noise vector
of dimension drawn from a Gaussian distribution. The generator

basically transforms this input vector into a32× 32× L training
image by passing through each layer in G. In the IP-10, HU-12,
HU-17, and PU datasets, the L (the number of subspaces and
also the number of classes in each dataset) is 16, 15, 20, and
9, respectively. The discriminator takes an image (an image
from real training samples and an image from the generator) and
calculates the outputs of (8) and (9) to recognize whether its input
is real or fake and to recognize whether or not its inputs have
been structurally changed. Prior to the aforementioned studies of
GANs, the discriminator (D) and the generator (G) are optimized
by Adam optimizer [58], [59]. The hyperparameters associated
with the Adam optimizer are learning rate (lr), β1, β2, and ε,
which are set to 0.001, 0.5, 0.9, and 0.1× 10−7, respectively.
The number of the epochs to run the whole network for learning
phase and the minibatch size are 400 and 32, respectively, and the
input patches for SA-GAN are normalized into [−1 1]. These
empirical settings are the same for all datasets, except for the
HU-17 dataset, where the number of the epochs increased to
500 to meet the condition of the Adam optimizer.

1) Experiment 1. The Effects of Hyperparameters λ1 and λ2:
There are two hyperparameters (regularization parameters) in
the objective function of SA-GAN [(6) and (9)]. To investigate
their effects on the classification performance, the parameter
values are chosen from a grid of candidate set {0.0001, 0.001,
0.01, 0.1, 1} for both λ1 and λ2, then the optimal values of both
parameters were obtained simultaneously. Fig. 7 shows the OAs
of classification versus the change in the two parameters.

To evaluate the effect of each parameter separately, Fig. 8
demonstrates the OAs acquired by SA-GAN with different HSI
datasets. When λ1 = 0.1, SA-GAN can achieve the highest OA
on the all datasets or the values close to the highest ones on
the Indian Pines 2010. Consequently, it is reasonable to select
0.1 for λ1. Similarly, OA follows the same trend in terms of
λ2. It is obvious to find that λ2 = 0.001 is the best choice for
the all datasets, if we disregard the small variations. One of
the noteworthy findings is that sensitivity of IP-10 dataset [see
Fig. 8(a)] to changing λ1 is lower than the other three datasets. It
is because the IP-10 dataset was collected from an agricultural
area, whereas the other three datasets were collected from an
urban area with features at various scales. If we focus on the
results on IP-10 [Fig. 8(a)] and HU-17 [Fig. 8(c)] datasets,
we can see that the effect of the λ1 on the HU-17 dataset is
significant because there are classes in different scales (small
and big structures), so the producing structurally consistent VTS
is essential and improves the efficiency of the model. However,
the resulting form the IP-10 dataset, which is the scene in the
agricultural area, is more like a hill (with soft changes) because
there are fewer classes with different structures.

2) Experiment 2. The Effects of Input Patch Size: One of the
parameters in the generation of training samples is the choice
of the optimal dimension of the input patch (spatial size). This
parameter must be determined in a way that it is large enough
to have the information to make variation to the generated
training samples. However, choosing relatively large dimensions
increases the computational cost and causes to merge small
structures such as buildings area in final classification map. We
tested spatial sizes in the set {8× 8, 16× 16, 32× 32, 64× 64}
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Fig. 7. Effects of λ1 and λ2 on the classification performance. (a) Indian Pines 2010, (b) Houston University 2012, (c) Houston University 2017, and (d) Pavia
University datasets.

Fig. 8. Investigate the effects of λ1 and λ2, separately, on classification
performance. (a) Indian Pines 2010, (b) Houston University 2012, (c) Houston
University 2017, and (d) Pavia University datasets. The vertical axis and the
horizontal axis indicate the OA (%) and candidate set for λ1 and λ2, respectively.

Fig. 9. Effects of input patch size on classification performance.

to capture sufficient spatial information avoiding possible over-
smoothing. For evaluation, real training samples were extracted
according to each size from HSI datasets (IP-10, HU-12, HU-17,
and PU datasets) and the architecture of the discriminator and
generator was adjusted based on the input patch size and then
the process of production of VTS was performed. The quality
of virtual samples produced with different size was evaluated
using the OA. Fig. 9 presents the results for each dataset based
on OA for all VTS. The output of the sensitivity analysis and
the test with different sizes is that the optimal input size for the
IP-2010, HU-12, and HU-17 datasets is 32× 32. The best input
patch size for PU dataset is 16× 16.

3) Experiment 3. The Effects of Region Size: Another impor-
tant parameter of the proposed method that needs to be adjusted
is the selection of the appropriate region size of feature vectors
that are exchanged within that feature map. In order to investigate

TABLE II
EFFECTS OF VARYING THE REGION SIZE TO EXCHANGE

For each region size, the table shows the average OA and standard deviation our
proposed method on four datasets.

Fig. 10. Example of generating process of 64 VTS by GAN in class metal-
sheet in the Pavia University dataset—Each epoch has 64 VTS that are arranged
in eight rows and eight columns in the given figures. (a) Zoomed real training
sample. (b)–(h) VTS generated by SA-GAN.

the effect of region size, we trained a SA-GAN with different
region size on all datasets with input patch size 32× 32 and
measured the OA. Table II lists the average OA and standard
deviation results when the feature exchange operator is utilized
with different region sizes after the algorithm is tested 50 times
because of random permutation parameter (δ) in the exchange
operator (2). It shows that when the region size is increased,
OA reduces. When the region size is large, it is easy to see
whether the feature map is being exchanged or not and the
efficiency of the proposed method is reduced. The maximum
standard deviations were 1.95, 0.95, 2.12, and 0.07 for IP-10,
HU-12, HU-17, and PU datasets, respectively. Approximately
with increasing region size, the standard deviation decreases but
the classification accuracy decreases (for dimensions larger than
5× 5).

4) Experiment 4. The Visual Quality of VTS: Fig. 10 illus-
trates the process of creating VTS for the class of metal sheets
from the Pavia University dataset in different training epochs.
As one can see, the initial epochs of the generated virtual sample
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Fig. 11. Examples of interpolated VTS between two latent vectors by the
proposed SA-GAN for PU dataset class �4, “Trees.” (a) Real training sample.
(b) Images contain some VTS with different variety compare to real training
sample.

are free from any kind of information, but the generated samples
in the final epochs are similar to real training samples.

Fig. 11 shows the example of samples generated from the pro-
posed SA-GAN. Samples are created from vectors (latent space
corresponds to specific class from generator network), whose
values were linearly interpolated [60]. To display the samples,
three vectors were sampled from the latent space belonging to
class �4 of Pavia University dataset (see Fig. 11), and then to have
more diversity, samples were produced by averaging the distance
between the three vectors and passing those vectors through the
generator network (see Table I). The virtual samples extracted
by the proposed method are shown in Fig. 11(b). Considering
the real training sample [see Fig. 11(a)], we can see the variety
of VTS and the preservation of the structure in Fig. 11(b). By
a qualitative analysis of the generated images, the following
observations can be made.

1) The SA-GAN is able to capture the global structure of the
training samples.

2) The SA-GAN is able to generate the sharper training
samples compared to the real training samples.

3) The SA-GAN is capable to generate diversity in training
samples including changing shade, rotation and intensity.

4) The SA-GAN is able to approximate the distribution of
real training samples to produce virtual samples, which
are structurally consistent.

5) Experiment 5. The Effect of DR and SA-GAN: DR and pro-
posed new formulation of GAN (6)–(9) are essential components
of SA-GAN. For evaluating their effects on the classification
performance, we perform the classification procedure by CNN
(see Fig. 4) and standard GAN on original bands of four datasets
(without DR preprocessing) as a basis for comparison. Then,
we set the hyperparameters to their optimal values (obtained by
previous experiments) on different dataset to achieve another
result with the help of SA-GAN. Also, the experiment was

Fig. 12. Effects of the proposed SA-GAN model and dimensionality reduction
on classification performance.

performed with DR. Fig. 12 compares their performance in
terms of AA, OA, and K. In this figure, blue bars are the
results with CNN+standard GAN, whereas red bars represent the
performance improvements by proposed SA-GAN and finally
the green bars represent the performance improvement with
SA-GAN+DR. On the basis of these findings, it is reasonable
to infer that the proposed approach indeed have a significant
contribution to the HSI classification.

6) Experiment 6. Accuracy Performance and Visual Analysis
of Classification Maps: For comparison, six methods have been
selected, which are divided into two categories. Three meth-
ods based on the CNN that generate the VTS using methods
other than the GAN idea (i.e., S-CNN [55], CRVS-CNN [41],
and MDR-CNN [12]) and three methods based on the GAN
idea to generate VTS (i.e., S-GAN [14], W-GAN [56], and
Self-GAN [57]). In this experiment, we used training and test
data shown in Figs. 5 and 6 for each dataset. To fairly com-
pare the methods, the number of considered training and test
samples are the same. To obtain the classification results by the
proposed method, we use three main types of layers to build
CNNs architectures: convolution layer, pooling layer, and fully
connected layer. We stacked these layers to form a full CNNs
architecture (see Fig. 4). During the training phase, virtual and
real training samples were concatenated and then the estimation
of learning parameters of the CNN was conducted by the Adam
optimization strategy in order to determine the parameters of
weights and bias of the convolution layers. The basic CNN
architecture for classification was considered the same for all
methods. Of course, for S-CNN, CRVS-CNN, and MDR-CNN,
the architecture presented in their respective articles was also
examined and the best results for each method were evaluated.
The size of input patches is 32× 32. All the real and virtual
samples (after VTS generation) were normalized into [−1 1]
and the number of epochs was set to 500 for the proposed CNN
in Fig. 4. Other settings are explained in Section IV-B. During the
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TABLE III
CLASSIFICATION ACCURACIES(%) OBTAINED BY DIFFERENT TECHNIQUES FOR THE INDIAN PINES 2010 DATASET

TABLE IV
CLASSIFICATION ACCURACIES(%) OBTAINED BY DIFFERENT TECHNIQUES FOR THE HOUSTON UNIVERSITY 2012 DATASET

testing phase, pixels were classified with the parameters obtained
during the training phase.

Tables III–VI report the results of the proposed SA-GAN
methods and the other techniques used for comparisons. In
these tables, the first three rows are corresponding to OA, AA,
and K of the whole data, whereas the next rows report the
individual class accuracies and for each row, the bold fonts
indicate the best performance. Several conclusions can be drawn
on the basis of these results. Generally, from Tables III–VI,
the GAN-based models (i.e., S-GAN, W-GAN, Self-GAN, and
SA-GAN) achieve higher performance than the other models
(i.e., S-CNN, CRVS-CNN, and MDR-CNN), in terms of OA,
AA, and K, due to the advantage of adversarial networks for VTS
generation. The MDR-CNN method has the lowest performance
in HU-12, HU-17, and PU datasets. This is due to metaheuristic
DR method, which has caused the loss of input information to
the CNN classifier. The CRVS-CNN method, which uses PCA

for DR, is more efficient than the MDR-CNN method in IP-10,
HU-17, and PU datasets.

In all four datasets, the performance of the proposed method
in term of OA, AA, and K is higher than that of GAN-based
methods, because the structure of the training samples is con-
sidered and the appropriate DR method is utilized in our SA-
GAN model. One can see that the SA-GAN has been able to
increase the OA by 2.42%, 2.15%, 2.78%, and 0.02% on IP-10,
HU-12, HU-17, and PU datasets, respectively. Regarding the
IP-10 dataset (see Table III), for each-class accuracies, SA-GAN
model can obtain the highest values for 12 out of the total 16
classes, which validates the performance of our proposed model.
Focusing on Table V, one can see that for the challenging HU-17
dataset, the SA-GAN shows the highest OA, AA, and K, with
an improvement of 2.78%, 1.66%, and 0.0314 over the S-GAN
method, respectively. Another observation is that GAN-based
model provides very good performance compare to other models
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TABLE V
CLASSIFICATION ACCURACIES(%) OBTAINED BY DIFFERENT TECHNIQUES FOR THE HOUSTON UNIVERSITY 2017 DATASET

TABLE VI
CLASSIFICATION ACCURACIES(%) OBTAINED BY DIFFERENT TECHNIQUES FOR THE PAVIA UNIVERSITY DATASET

Fig. 13. Classification maps obtained by the different methods on the Indian Pines 2010 dataset. (a) RGB image. (b) Classification map obtained by the S-CNN
method. (c) Classification map obtained by the CRVS-CNN method. (d) Classification map obtained by the MDR-CNN method. (e) Classification map obtained
by the S-GAN method. (f) Classification map obtained by the W-GAN method. (g) Classification map obtained by the Self-GAN method. (h) Classification map
obtained by the SA-GAN method (proposed).
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Fig. 14. Classification maps obtained by the different methods on the Houston University 2017 dataset. (a) RGB image. (b) Classification map obtained by the
S-CNN method. (c) Classification map obtained by the CRVS-CNN method. (d) Classification map obtained by the MDR-CNN method. (e) Classification map
obtained by the S-GAN method. (f) Classification map obtained by the W-GAN method. (g) Classification map obtained by the Self-GAN method. (h) Classification
map obtained by the SA-GAN method (proposed).

(i.e., S-CNN, CRVS-CNN, and MDR-CNN) that the OA of the
SA-GAN compared to the S-CNN has increased by about 14%.
As can be seen from Table VI, the OA of the proposed method
reaches 99.82% for PU dataset. All of the above findings can
confirm the effectiveness of the proposed model.

The last two rows in Tables III–VI report the computation
time of various models in four datasets, including the training
time and the test time. As expected, for each model the training
process requires much more time than the test process. By
comparing the computation time of two groups (CNN-based
models and GAN-related models), it can be concluded that the
GAN-related models need more time for training, because the
GAN process takes time for convergence. In terms of the training
time and test time, S-CNN takes less time than the other models
on the four datasets. Although the proposed method is slightly
more time consuming than the S-GAN and the W-GAN, the
classification results show the higher efficiency of the SA-GAN
in term of OA, AA, and K.

In terms of visual analysis, the quality of the classification
maps of the proposed method is highly remarkable. Figs. 13
and 14 show the classification maps provided by the proposed
method on Indian Pines 2010 and Houston University 2017

dataset, respectively. From the figures, one can see the impact of
different methods on the classification results. By comparing the
results with the reference data, we can see that the classification
map obtained by the proposed method is more accurate, which
confirms that the SA-GAN is a suitable method for classifying
HSIs. This is due to the inclusion in the same framework the
generation of structure aware virtual samples by GAN and the
subspace base reduction.

V. CONCLUSION AND FUTURE LINES

In this article, we proposed an SA-GAN for HSI classification.
We extend the discriminator ability in such a way that it can
simultaneously indicate the real and fake samples and recognize
structural inconsistency. A new loss function is proposed to train
the multitask discriminator, which leads to a regularized feature
representation for the discriminator and thus a better generator.
The discriminator architecture was divided into two parts to
produce structure-aware virtual samples with high diversity
and quality. In order to evaluate the performance of the pro-
posed model, we conducted experiments on four HSI datasets,
and compared it with six models including GAN-based and
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conventional models for generation of virtual samples. We
analyzed the effects of different hyperparameters of SA-GAN
on the classification performance, including the regularization
parameters, the input patch size, and the region size. Moreover,
the visual quality of virtual samples and the adversarial effect
of SA-GAN were investigated. Experiments and analysis con-
firmed the efficiency and effectiveness of the proposed approach.

Future studies can be conducted for further improving the
generalization capability of the CNN-based methods. In this
regard, we plan to study a new architecture for the generator and
the discriminator to generate more realistic training samples.
Also, the development of quantitative evaluation methods for
assessing the quality of VTS used in GAN training is a topic for
future research.
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