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A Deep Cross-Modality Hashing Network for SAR
and Optical Remote Sensing Images Retrieval
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Abstract—The content-based remote sensing image retrieval
(CBRSIR) has recently become a hot topic due to its wide appli-
cations in analysis of remote sensing data. However, since conven-
tional CBRSIR is unsuitable in harsh environments, this article
focuses on the cross-modality CBRSIR (CM-CBRSIR) between
synthetic aperture radar (SAR) and optical images. Besides the
large interclass and small intraclass in CBRSIR, CM-CBRSIR is
limited by prominent modality discrepancy caused by different
imaging mechanisms. To address this limitation, this study proposes
a deep cross-modality hashing network. First, we transform optical
images with three channels into four different types of single-
channel images to increase diversity of the training modalities. This
helps the network to mainly focus on extracting the contour and
texture shared features and makes it less sensitive to color informa-
tion for images across modalities. Second, we combine any type of
randomly selected transformed images and its corresponding SAR
or optical images to form image pairs that are fed into the networks.
The training strategy, with paired image data, eliminates the large
cross-modality variations caused by different modalities. Finally,
the triplet loss, in combination with the hash function, helps the
modal to extract the discriminative features of images and upgrade
the retrieval efficiency. To further evaluate the proposed modality,
we construct a SAR-optical dual-modality remote sensing image
dataset containing 12 categories. Experimental results demonstrate
the superiority of the proposed method with regards to efficiency
and generality.

Index Terms—Cross-modality content-based remote sensing
image retrieval (CM-CBRSIR), deep cross-modality hashing
network (DCMHN), modality discrepancy, synthetic aperture
radar (SAR)-optical dual-modality remote sensing image dataset
(SODMRSID).

I. INTRODUCTION

UNPRECEDENTED advances in earth observation tech-
nologies, over the past few decades, have caused a sig-

nificant increase in both quality and quantity of remote sensing
image archives [1], [2]. Generally, content-based remote sens-
ing image retrieval (CBRSIR), which is simply defined as the
search for remote sensing images of similar information content
within a large archive with a given query image serving as a
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reference, has attracted numerous research interest due to its
broad applications in management of large volumes of remote
sensing data. In the field of natural images, previous studies
have proposed concerted efforts for improving image retrieval
tasks [3], [4]. However, unlike natural images, remote sensing
images contain very small and intricate targets, making retrieval
of discriminative features difficult. Advancement of the con-
volutional neural network (CNN) has tremendously improved
both accuracy and efficiency of CBRSIR retrieval [5]–[7]. Im-
ages from optical sensors considerably limit the application of
CBRSIR, since the optical sensors only function well during
day time and fine weather, but not at night or under bad weather
scenarios.

Synthetic aperture radar (SAR) images have several advan-
tages, including excellent functioning at all times, and under all
weather conditions. However, they present numerous limitations
including low resolution, side-looking imaging, blurred target
details, need for visual interpretation, and lack of wide range
of target detection. On the other hand, optical remote sensing
images have many advantages over SAR images. For instance,
they are intuitionistic and easy to understand, have rich color
and texture information, present obvious target structure char-
acteristics, high resolution, and a large field angle. However,
optical images are also greatly affected by light, cloud cover,
seasons, shadows, and other conditions, hence there is a need
to complement them with SAR images to ensure adequate
exploitation of the aforementioned strengths. Therefore, a re-
trieval system that can retrieve an image across optical and SAR
sensors, would operate well in almost any real-world condition.
However, the modality disparity caused by the different imaging
mechanisms between the two sensors complicates the retrieval
task.

Rapid development of feature learning has accelerated explo-
ration of cross-modality retrieval tasks in the field of natural
image analysis. These include retrieval between image and text
[8], [9], image and audio [10], [11], as well as RGB and infrared
images [12], [13]. However, these methods reportedly yield
unsatisfactory results when applied to remote sensing images,
owing to huge differences between natural and remote sensing
images. In addition, only a handful of works [14]–[16] have
reported use of CM-CBRSIR, which allows sensing between
panchromatic and multispectral sources. Besides, SAR images
lack the specific imaging principle and presence of speckle noise,
as well as the rich color information contained in optical images
(see Fig. 1). Based on these factors, the existing works cannot
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Fig. 1. Sample images from our proposed SODMRSID datasets.

effectively be extended to image retrieval between SAR and
optical images.

To solve the aforementioned CM-CBRSIR challenges, we
propose a deep cross-modality hashing network (DCMHN).
First, to extract rich image features from different spectrum
channels, we transform optical images with RGB three channels
into four types of single-channel images via different spectrum
channels including red, blue, green, and gray. Second, to solve
the cross-modality discrepancy caused by imaging mechanisms,
we randomly select four types of the transformed single-channel
images to form image pairs with each corresponding SAR or
optical images. Finally, the triplet loss combined with the hash
function helps the modal to extract the discriminative features
of images and upgrade the retrieval efficiency. We propose a
new SAR-optical dual-modality remote sensing image dataset
(SODMRSID), comprising 12 categories, owing to absence
of any open source cross-modality dataset between SAR and
optical image for retrieval tasks. To validate the effectiveness of
this method, we perform extensive experiments on the proposed
SODMRSID.

The main contributions of this article can be summarized as
follows.

1) To the best of our knowledge, this is the first study con-
ducting CM-CBRSIR between SAR and optical sensors,
and proposes the possibility and potential values of CM-
CBRSIR.

2) We provide an end-to-end framework for CM-CBRSIR,
coupled with good flexibility and controllability. Besides,
the model, proposed herein, is applicable to other cross-
modality tasks in the field of remote sensing images.

3) We provide a large-scale benchmark dataset, named
SODMRSID, that can be used to evaluate the proposed
method and largely advance the task of cross-modality
image processing technology between SAR and optical
sensors.

The rest of this article is organized as follows: Section II
reviews existing literature related to CBRSIR, supervised cross-
modality hash methods, and retrieval of cross-modality in
remote sensing; Section III describes the SAR-optical dual-
modality remote sensing image dataset (SODMRSID); Sec-
tion IV presents our proposed DCMHN, Section V outlines the
experimental results and analyses; and Section VI concludes this
article.

II. RELATED WORK

A. Content-Based Remote Sensing Image Retrieval (CBRSIR)

The most important part of CBRSIR entails extracting the
effective features of images. However, a key challenge to this
involves designing a robust feature extractor that can accom-
modate the diversity of remote sensing image types as well as
the complexity of remote sensing image content. Most existing
feature extractors are based on low-level visual features, includ-
ing global features related to spectral (color) [17], texture [19],
shape [22], as well as local features based on scale invariant
feature transform (SIFT) [23], difference of Gaussian (DoG)
[24], and speeded up robust features (SURF) [25]. To represent
the highly complex remote sensing images, most approaches
produce more discriminative features by aggregating local fea-
tures, such as bag-of-words (BoW) [26], a vector of locally
aggregated descriptors (VLAD) [27], and Fisher vector (FV)
[28] or their variants. However, the features obtained by these
methods are handcrafted, requiring sufficient domain expertise
and engineering skills. Generally, handcrafted features cannot
accurately describe the rich information of the images due to
the complex background of the remote sensing image. Specif-
ically, the same class of remote sensing images might have a
diverse appearance [29]. Numerous studies have shown superior
performances to the traditional handcrafted features in CBRSIR,
based on the great success of the CNN in representing high-level
visual features of images [31]–[38]. Similarly, numerous studies
are underway to increase retrieval accuracy by extracting more
discriminative features of the images, considering the small
and intricate targets contained in the remote sensing images.
For instance, some researchers have combined the attention
mechanism with multitask learning to extract discriminative
features of the remote sensing image [39]. On the other hand,
a deep hashing neural network was successfully used to solve
CBRSIR in a large-scale dataset and transform the image feature
to binary codes [40]. Moreover, both deep semantic features and
weighted distance were reportedly used to successfully construct
a retrieval framework and improve performance [41]. To further
cope with large-scale complex retrieval problems in remote
sensing, a two-steps strategy was reportedly used to obtain
multihash codes, achieving a high retrieval accuracy over a short
period of time [42]. Besides, a novel multilabel method based
on fully convolutional network [67] is used for CBRSIR task,
which shows great advantages over some single-label methods
for interpreting complex remote sensing images.

The aforementioned methods were all aimed at solving the
optical image retrieval tasks. Based on the specific image con-
tent of SAR images, several methods have been conducted to
improve retrieval performance of SAR images. For example,
a compression-based image retrieval technique was previously
designed for measuring similarities between SAR on the original
and despeckled TerraSAR-X images [43]. In addition, a general
SAR image retrieval approach was developed, according to the
region-based similarity measure and semantic categorization
[44], whereas an image reranking method was used to improve
the retrieval accuracy of SAR images [45]. Moreover, multiscale
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property and speckle noise were successfully applied to help in
designing a content-based SAR image retrieval method [46],
whereas the fly algorithm, based on hash codes, effectively
improved the retrieval speed and reduce the storage cost for
the SAR image retrieval task [47]. In addition, an unsupervised
domain adaption model for SAR image retrieval reportedly
coped with the shortage of labeled SAR images [48]. Despite
these methods adequately addressing the single-modality CBR-
SIR for SAR sensors, they cannot be effectively extended to
CM-CBRSIR.

B. Supervised Cross-Modality Hash Methods

Hashing methods have attracted considerable attention due to
their low storage costs and fast retrieval speed. However, con-
structing semantic correlations among heterogeneous features
from different modalities with the binary hash codes remains
the method’s main challenge. Semantic correlation maximiza-
tion (SCM), which integrates semantic label information into
hashing codes, was previously used to reduce the storage cost
and improve the query speed [49]. Similarly, studies have suc-
cessfully applied semantic information and manifold structure
of data to reveal the association among heterogeneous modalities
[50]. Apart from these, a discrete method was used to improve
accuracy and training speed by directly learning the binary hash
codes [51], with the discriminative hash codes produced by
learning the modality-specific hash functions [52]. Since these
traditional methods mainly use hand-crafted features to learn
binary vectors, their performance in real-world applications is
limited by the independent feature extraction process.

Generally, deep cross-modality hashing methods are supe-
rior to traditional cross-modality ones, owing to their powerful
feature representation capability. To learn the modality-specific
information, an end-to-end deep learning architecture, which
generates compact hash codes, has been previously used [53].
However, this architecture cannot be extended to other cross-
modal cases. Deep cross-modal hashing (DCMH), which utilizes
both hash codes and feature learning strategies and can be
optimized from scratch in the same deep learning framework,
has been proposed [54]. An adversarial cross-modal retrieval
(ACMR) method based on the adversarial learning approach
is also proposed, and shown to successfully generate discrim-
inative and modality-invariant binary hash codes for the data
across different modalities [55]. Typically, deep learning-based
cross-modal hashing methods can outperform traditional ones,
both on retrieval efficiency and accuracy. However, all these
methods work for cross-modality retrieval tasks in natural im-
ages or documents, which are extremely different from remote
sensing ones, both in spatial and spectral resolution. Therefore,
the complexity of remote sensing images limits performance of
these methods on remote sensing area.

C. Cross-Modality Retrieval in Remote Sensing

Rapid development of remote sensing technology has grad-
ually increased the types of remote sensing data that can
be acquired by different sensors. Consequently, cross-model
retrieval has received widespread attention in recent years.

Cross-modality retrieval techniques can be divided into three
categories: the retrieval tasks allowing the model between re-
mote sensing images and spoken audio [56], [57], remote sensing
images and sentences [58]–[60], and panchromatic and multi-
spectral images [14]–[16]. However, the retrieval between audio
and image differs from the cross-modality retrieval between
images from different modalities. There is not much connection
between the two retrieval tasks, because the semantic infor-
mation contained in remote sensing image exceeds that in an
audio signal. Thus, the model cannot be directly applied to
CM-CBRSIR between SAR and optical images. Additionally,
the network structure of text feature extraction is not applicable
to the images, making it unsuitable for our task. Furthermore,
methods for solving the retrieval tasks between panchromatic
and multispectral images pay little attention to images’ texture
information, which is extremely important during presentation
of features from SAR images. Inspired by these studies, we adopt
a DCMHN approach to solve the CS-CBRSIR task between SAR
and optical images.

III. SAR-OPTICAL DUAL-MODALITY REMOTE SENSING

IMAGE DATASET

The increasing ability to acquire remote sensing data has
generate numerous remote sensing image scene datasets [61]–
[63], [68], [69]. These existing datasets were constructed by
only one kind of remote sensing data modality. Intuitively,
these single-modality datasets would not cope with the increas-
ingly complex environmental and diverse data in real-world
conditions. Consequently, cross-modality datasets, which allow
modality between panchromatic and multispectral images, re-
mote sensing images and spoken audio, as well as remote sensing
images and sentences, have been proposed in [14], [57], and
[58]. To promote the all-time and all-weather image retrieval
system, constructing a cross-modality remote sensing image
dataset between SAR and optical sensors is a priority. Therefore,
we collected a new SAR-optical dual-modality remote sensing
image dataset. (SODMRSID).1

Specifically, the SODMRSID was collected from remote
sensing images captured by SAR and optical sensors. The
SODMRSID comprises of a great number of patch pairs, with
each patch pair representing a combination of a SAR and an
optical image, covering the same area across the globe and
throughout all four seasons. Notably, although they show dif-
ferent aspects of the captured ground region because of the
different geometric and radiometric appearance, the SAR and
optical images in one patch-pair represent the same type of scene.
SODMRSID is constructed based on SEN1-2 [64], which com-
prises 2 82 384 remote sensing images acquired by Sentinel-1
[65] and Sentinel-2 [66]. Dual sample description is outlined in
Table I.

The SODMRSID contains a total number of 24 000 images,
covering 12 typical scene classes that include agriculture, beach,
forest, harbor, industrial, lake, meadow, mountain, pond, resi-
dential area, river, and water. Each class of the image consists

1[Online]. Available: https://pan.baidu.com/s/1xR7h-
NP143Ju9chGuDBDMw with password “p1b2”.

https:&sol;&sol;pan.baidu.com&sol;s&sol;1xR7h-NP143Ju9chGuDBDMw
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Fig. 2. Examples from the proposed SODMRSID.

TABLE I
DESCRIPTION OF THE DATASET

of 1000 SAR-optical patch-pairs, some of which are shown in
Fig. 2.

The SAR-optical patch-pairs datasets are represented byD =
{(xS

i ,x
O
i , Li)|i = 1, 2, . . . , N}, where i denotes the index of

patch-pairs, N denotes the SODMRSID volume, xS
i ∈R256×256

indicates the SAR image, xO
i ∈ R256×256×3 denotes the optical

image, and Li denotes the image label.

IV. PROPOSED METHOD

This section describes the proposed DCMHN processes, in-
cluding image transformation, training with image pairs, and
triplet hashing loss. The proposed method framework is shown
in Fig. 3 and entails the following: First, Section IV-A describes
how to increase the diversity of the input modality by transform-
ing the three-channel optical images into four types of single-
channel images; Second, Section IV-B presents how to conduct
a paired training strategy to extract discriminative features of the
image across the modalities; and Third, Section IV-C introduces
the triplet hashing loss function to improve retrieval accuracy
and deduce storage costing.

A. Image Transformation

Modality discrepancy is the key challenge restricting cross-
modality retrieval task between SAR and optical sensors, since

their respective images considerably differ in the same scene.
Generally, optical images usually contain intensity information
of multiple wave bands, which is convenient for target recog-
nition and classification extraction. On the other hand, SAR
images record echo information of only one wave band, in binary
complex form. In addition, amplitude information contained in
SAR images is less than the imaging level of optical images. As
shown in Fig. 2, SAR images lack the rich color information in
optical images. However, some scene and target-related rich in-
formation, which is contained in SAR images, such as geometric
structure and material property, cannot be ignored.

Based on this observation, our network mainly focuses on
the contour and texture information of SAR and optical im-
ages, and less on the color information. To achieve this goal,
the network needs to learn the features of the same scene of
images across different modalities. Therefore, a novel image
transformation strategy, that can produce images of different
spectrum channels, is proposed. By adding the cross-modalities
images in the training process, the spectrum channels of the
image have been disrupted, the network cannot focus on learn-
ing the color information of spectrum channels, it will pay
more attention to the texture and contour part. Specially, for
each optical image with RGB three channels, the transformed
single-channel images of the different spectrum are obtained by
selecting the corresponding spectrum channel from the original
optical image. Furthermore, a grayscale image is also produced
by transforming the optical image, to increase the diversity of
the image modalities. In this article, the original optical image is
denoted xO

i , whereas it is corresponding single-channel images
with red, green, and blue spectral channels are represented by
xR
i , xG

i , xB
i , respectively. The corresponding grayscale image

is denoted xH
i . A few examples can be found in Fig. 4.

Using the transformed images, as input in the network, sig-
nificantly increases diversity of the training data, while the
spectrum channels are disrupted by training with different
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Fig. 3. Framework of our proposed method.

Fig. 4. Examples of the transformed images.

spectrum images. Thus, the network focuses on contour and
texture information, but not color information. Moreover, adding
the transformed images into the training data largely increases
diversity of the modalities, making the networks to have more
image modalities under the same scene. Thus, the network
learns some shared features across different modalities, thereby
significantly reducing the influence of the modality discrepancy.

B. Training With Image Pairs

Remote sensing images always suffer from hard negatives
owing to the complex content of images and modality discrep-
ancy [see Fig. 5(a)], where intraclass distance is often larger

Fig. 5. Hard negatives caused by modality discrepancy. (a) “a” and “a′”
represent the different images of the residential area category captured by an
optical sensor, whereas “b” represents the image of the industrial category
captured by optical sensor. (b) “a” and “A” represents the images of the residential
area category captured by optical and SAR sensors, respectively. “C” represents
the image of the mountain category captured by SAR sensors.

than interclass distance (D(a, a′) > D(a, b)). Besides, it is
more obvious when the images are from different modalities
(D(A, a) > D(A,C)) [see Fig. 5(b)]. Therefore, these prob-
lems negatively impact the accuracy and efficiency of cross-
modality retrieval, resulting in poor performance during the
training process. Extraction of robust and discriminative features
across different modalities requires an urgent solution.

To address this problem, we propose a novel paired training
strategy (see Fig. 3). Specifically, for each input original image,
we randomly choose one image from all the transformed images
xR
i , xG

i , xB
i , and xH

i for its corresponding optical image xO
i

and SAR image xS
i , as the image pairs before feeding them to-

gether into the network. Since the number of spectrum channels
between optical and transformed images is different, channels
for the transformed images and SAR images are triplicated to
create a three-channel image, making them similar to optical
images with three channels. Consequently, the networks for both
modalities begin with a uniform architecture.
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In addition, training with image pairs strategy significantly
eliminates the intra- and inter-modality variations caused by
modality discrepancy, thereby propelling the network to extract
discriminative features across different modalities.

C. Triplet Hashing Loss

To extract powerful discriminative features and improve re-
trieval efficiency, we adopt the hashing-based triplet loss func-
tion to constrain and encode intraclass images as closely as
possible, while encoding interclass ones as far apart in the feature
space as possible.

During the training process, Resnet18 [20] and Resnet50 [20]
are used as feature extractors, to obtain the feature maps of
the input images after the last convolutional layer. Thereafter,
a global average pooling (GAP) layer is applied to extract
the unified features from the images. Subsequently, the latent
layer Fl is introduced to construct the relationships between
input images and binary codes, and preserve the rich semantic
information of the images. For each image xi, the output of
the latent layer is denoted fi, and fik ∈ [0, 1](k = 1, . . . ,K)
represent the kth of the latent vector fi, which is activated by
the sigmoid function.

Triplet loss [18], as a loss function, is then introduced to help
the network to extract discriminative features. For each triplet
image I = {(xa

i ,x
p
i ,x

n
i )}, the deep featuresT = {(fai , fpi , fni )}

are obtained in the latent layer Fl. The triplet loss is built with
the intuition that an anchor image xa

i is closer to all positive
images xp

i , than to all negative images xn
i in the feature space.

A triplet loss function is constructed as follows:

LTriplet =

m∑

i=1

[d (fai , f
p
i )− d (fai , f

n
i ) + α] (1)

where m is the size of mini-batch, d is the similarity metric,
and α is a margin that is enforced between positive and negative
pairs.

Activation by a sigmoid function in the latent layer results in
a value of fik that lies between 0 and 1. Inspired by [21], we
design a regularization loss function to constraint the feature
representation to be close to either 0 or 1. The regularization
loss function is defined as follows:

LReg =
m∑

i=1

‖fi − 0.5e‖22 (2)

where e represents the K-dimensional vector of all elements 1.
Apart from making the final feature approach binary, the

balancing loss function is designed to push the feature vector
across different modalities since data imbalance can hurt the
retrieval performance during the training process. Constrained
by balancing loss, the fik values have the same number of 0 and
1 for each bit k. The balancing loss function is then shown as
follows:

LBalancing =
m∑

i=1

(mean(fi)− 0.5)2 (3)

where mean(•) denotes the average value of elements in a
vector. The total loss function is described by the following:

LTotal = LTriplet + βLReg + γLBalancing (4)

where β and γ denote the two hyperparameters.
Finally, after training with the total loss, we design the hash

layer to transfer the high-dimensional deep features into compact
K-bit hash codes. To obtain the binary hash codes, we quantize
the unified feature using a simple threshold as follows:

bi = (sgn (fi − 0.5) + 1) /2 (5)

where bi denotes the binary code vectors, sgn(•) denotes
element-wise operations, i.e., sgn(x) = 1 if x > 0 and −1 if
otherwise.

V. EXPERIMENTS AND ANALYSIS

To validate our proposed method, we consider an extensive
series of experiments. Section V-A introduces the experimental
setup and evaluation criteria, Section V-B describes validation
of the proposed DCMHN, Section V-C analyzes the impacts of
parameters α, β, and γ on the results for the cross-modality
retrieval, whereas Section V-D presents a comparison between
our results and some baselines.

A. Experimental Setup and Evaluation Criteria

During the training process, we adopt the proposed SODMR-
SID dataset for evaluating performance of our DCMHN for the
CM-CBRSIR tasks. Specifically, SODMRSID is randomly split
into two subsets and used to construct the training and testing
sets, denoted as: Dtrain = {(Si,Oi, Li)|i = 1, 2, . . . , V } and
Dtest = {(Si,Oi, Li) | i = 1, 2, . . . , Q}, respectively. Where
V and Q are set to 11 000 and 1000, respectively, implying
that 11 000 images pairs of the SODMRSID is used for training
while the remainder is used for testing.

In the experiment, two feature extractors, Resnet18 and
Resnet50, are introduced as shallow and deep networks, respec-
tively. The DCMHN architecture is provided in Table II. More-
over, Adam optimizer with a learning rate of 0.001 is introduced
to optimize loss of function. Furthermore, two evaluation metrics
namely, the precision at k samples (P@k) and the mean average
precision (mAP), are adopted for comparison.

All experiments are implemented under PyTorch deep learn-
ing framework on a 64-b station with Ubuntu16.04, 32GB of
RAM, 8 Intel(R) Core(TM) i7-6770K CPU, and NVIDIA RTX
2080Ti.

B. Effective of the DCMHN

This section quantitatively evaluates the overall performance
of our proposed method, under several loss function, to validate
the DCMHN. Particularly, four loss function parameters are
considered:β andγ are set to 0 to represent the adoption of triplet
loss function;β and γ are set to 1 and 0, respectively, to represent
the combination of triplet and regularization loss function; β is
set to 0 and γ to 1 to represent the combination of triplet loss
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Fig. 6. mAP curves with respect to different code lengths under different loss functions: (a) SAR → Optical, Resnet18. (b) SAR → Optical, Resnet50. (c) Optical
→ SAR, Resnet18. (d) Optical → SAR, Resnet50.

TABLE II
ARCHITECTURE OF THE PROPOSED NETWORK

function and balancing loss function; and finally,2 β and γ are
set to 1 to represent the combination of triplet loss function,
regularization loss function, and balancing loss function.

Results from two evaluation protocols (precision at top-200
retrieved images and mAP) are reported under various loss
functions and hashing feature coding lengths in Tables III and IV.
According to Table III, when the network structure is fixed, the
combination of three loss functions results in a more favorable
performance relative to other loss functions under the same hash-
ing feature coding length for the SAR → Optical retrieval task.
Similarly, the best performance is also achieved by combining
the three-loss functions for the Optical → SAR retrieval task
(see Table IV). Besides, a higher accuracy is recorded in the

Optical → SAR retrieval task under similar conditions than
with SAR → Optical retrieval task. This is mainly because the
speckle noise contained in SAR images makes the feature rep-
resentation not accurate enough. Moreover, the deeper network
achieves better performance than the shallower network for both
SAR → Optical and Optical → SAR retrieval tasks, although
the improvement is not apparent.

The superiority of the proposed method is intuitively captured
in Fig. 6, as evidenced by the impact of the hash code lengths
on the result mAP value. Particularly, the “baseline” means the
only adoption of the triplet loss (i.e.,β and γ are set to 0) (see
Fig. 6). Based on these comparisons, it is clear that a combi-
nation of three loss functions has a consistent advantage over
individual loss functions. Besides, combining the triplet loss
with balancing loss or regularization loss results in a relatively
better performance. The total loss also provides a stable and
most favorable performance for the different code lengths. This
may be attributed to the fact that the total loss, resulting from
a combination of the three losses, may produce more effective
binary codes to represent the discriminative features. In addition,
all advocated loss functions may gradually improve performance
of the proposed methods along with the increase of the hash
code lengths. Results from the analysis of varying tendency
of precision, as the number of top retrieved images changes
based on 32-b hash codes, are illustrated in Fig. 7. Generally,
the precision curves for total loss are considerably above other
losses, which is sufficient to prove the superiority of retrieval
ability of the total loss.

To enable feature visualization, we employ the t-distributed
stochastic neighbor embedding (t-SNE) algorithm [30] to obtain
the 2-D representation of the feature vectors under various loss
function, under a fixed network structure (see Fig. 8). Specifi-
cally, principal component analysis is introduced to compress the
high dimensional features to two-dimensions. This intuitively
reveals feature distributions for SAR and optical images under
triplet loss, triplet loss with regularization loss, triplet loss with
balancing loss, a combination of triplet loss, regularization loss,
and balancing loss. Furthermore, the illustrations indicate that
the feature distribution in Fig. 8(d) are more compact than those
in Fig. 8(a)–(c). In conclusion, the binary codes produced by
the proposed total losses are discriminative enough to enable

2K: hash code length.
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TABLE III
COMPARED RESULTS OF DIFFERENT LOSS FUNCTION ON SAR → OPTICAL RETRIEVAL TASK

TABLE IV
COMPARED RESULTS OF DIFFERENT LOSS FUNCTIONS ON OPTICAL → SAR RETRIEVAL TASK

Fig. 7. Precision curves with respect to different number of top retrieved images under different loss functions: (a) SAR → Optical, Resnet18. (b) SAR → Optical,
Resnet50. (c) Optical → SAR, Resnet18. (d) Optical → SAR, Resnet50.

Fig. 8. Feature visualization of the learned features under different loss functions: (a) baseline. (b) baseline + β. (c) baseline + γ. (d) baseline + β + γ.
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TABLE V
QUANTIFYING THE EFFECTIVE OF PROPOSED NETWORK UNDER DIFFERENT ALPHA

TABLE VI
QUANTIFYING THE EFFECTIVE OF PROPOSED NETWORK UNDER DIFFERENT BETA

TABLE VII
QUANTIFYING THE EFFECTIVE OF PROPOSED NETWORK UNDER DIFFERENT GAMMA

clustering of samples in the same category and separate those
under different categories on the cross-modality retrieval task.

C. Parameter Analysis

In this section, the effect of the hyperparameters α, β, and
γ on mAP values are mainly explored with the code length set
to 32. γ and β are set to 1. Table V shows the influence of the
margins α with values ranging between 0.1 and 0.9 on the two
cross-modality retrieval tasks. It can be seen that the best mAP
value is obtained when the α is set to 0.3 for both Optical →
SAR and SAR → Optical retrieval tasks, and the mAP value de-
creases gradually asα increases. Therefore, a reasonable margin
value increases the ability of DCMHN to discriminate features.
Table VI shows the influence of β with values ranging between
0 and 4 for the two cross-modality retrieval tasks with α set to
0.3 and γ set to 1. Table V demonstrates that DCMHN obtains
competitive results whenβ = 1. By contrast, the results obtained
at β = 0 are poor, indicating that an appropriate proportion level
of regularization loss is required to produce efficient binary hash
codes. Table VII shows the influence of γ with values ranging
between 0 and 4 on the two cross-modality retrieval tasks with

α set to 0.3 and β set to 1. These data indicate that DCMHN
achieves slightly better results when γ = 1 than when the value
is 2 and 4.

To intuitively show the influence of parameters on retrieval
accuracy, a bar graph showing changes in mAP value with
parameters is shown in Fig. 9. Notably, there is no significant
difference between Fig. 9(c)–(f) and Fig. 9(a) and (b). We
conclude that the performance of DCMHN is more sensitive
to β and γ than α.

D. Comparison With Several Baselines

The performance of the proposed DCMHN is determined
by comparing the mAP values of our method with various
baselines under different code lengths on the proposed SODMR-
SID dataset as shown in Table VIII. DCMHN_18 denotes the
proposed method with Resnet18 as the architecture network,
and DCMHN_50 is the method with Resnet50 as the archi-
tecture network. All methods shown in Table VIII adopt deep
features except DCH [49] and SCM [52]. The performance
of the method based on handcrafted features is inferior in the
two cross-modality retrieval tasks compared with deep features.
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Fig. 9. The influence of different parameters on retrieval accuracy: (a) The influence of α on retrieval accuracy, SAR → Optical. (b) The influence of α on
retrieval accuracy, Optical → SAR. (c) The influence of β on retrieval accuracy, SAR → Optical. (d) The influence of β on retrieval accuracy, Optical → SAR. (e)
The influence of γ on retrieval accuracy, SAR → Optical. (f) The influence of γ on retrieval accuracy, Optical → SAR.

TABLE VIII
COMPARISON OF MAP VALUES WITH DIFFERENT METHODS UNDER DIFFERENT CODE LENGTHS

This is because the hash methods based on handcrafted features
cannot effectively preserve the semantic information and learn
the discriminative hash codes. For this reason, the performance
of DCMH [54] and DVSH [53] improve significantly, attributed
to the fact that deep network produces more effective binary hash
codes than the handcrafted ones. However, the methods based on
deep features facilitate the retrieval of natural images and texts.
The complexity of CM-CBRSIR tasks between SAR and optical
sensors limit the performance of the two deep hash methods. Of

note, SIDHCNNs [14] protects the modality-specific informa-
tion by adopting two different deep architectures. However, the
purpose of SIDHCNNs [14] is to solve CM-CBRSIR between
panchromatic and multispectral sensors, but this success cannot
be transferred to the CM-CBRSIR between SAR and optical
sensors tasks. The complexity of the feature representation of the
content of SAR images makes it hard for SIDHCNNs to perform
well. The proposed DCMHN_18 consistently outperforms all
the baselines on both SAR → Optical and Optical → SAR
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TABLE IX
TIME COMPARISON WITH DIFFERENT METHODS

retrieval tasks with different code lengths. The DCMHN_50
described in this study yields the best retrieval results among
all methods.

The computational complexity of the proposed method is
determined by comparing the training and testing time of our
method with various baselines as shown in Table IX. Consider-
ing that DCH [49] and SCM [52] are based on the hand-crafted
features, it is unfair to compare computational complexity both
for the training and testing phase. SIDHCNNs [14] is the faster
one with its light network structure, but it cannot obtain a
satisfactory retrieval accuracy. We can find that the proposed
DCMHN_18 can achieve a competitive performance within a
short time.

VI. CONCLUSION

In this article, we have proposed a novel deep cross-modality
hashing network for CM-CBRSIR between SAR and optical
sensors. To the best of our knowledge, this is the first work to
solve the problem of CM-CBRSIR allowing the sensor between
SAR and optical. In the proposed method, an image transforming
strategy is introduced to convert optical images with three chan-
nels to four different types of single channel images. In this way,
the diversity of the modalities is considerably increased, making
the network pay more attention to the texture information of the
SAR and optical images. Afterward, the paired training strategy
is employed to extract the discriminative features across differ-
ent modalities. Finally, triplet loss combined with hash codes
is conducted to reduce the dimension of feature and produce
the efficient binary codes which further increases the retrieval
accuracy and efficiency.

The dataset named SODMRSID is first proposed to evaluate
the effectiveness of the proposed method. The results demon-
strate that the proposed method is superior to several baselines.
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