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Abstract—Terrain classification is an important topic in polari-
metric synthetic aperture radar (PolSAR) image processing and
interpretation. A novel PolSAR classification method based on the
three-channel convolutional neural network (Tc-CNN) is proposed
and this method can effectively take the advantage of unlabeled
samples to improve the performance of classification with a small
number of labeled samples. Several strategies are included in the
proposed method. First, in order to take the advantage of unlabeled
samples, a data enhancement method based on the neighborhood
nearest neighbor propagation method is proposed to enlarge the
number of labeled samples. Second, to increase the role of central
pixel in convolutional neural network classification based on the
pixel, a spatial weighted method is proposed to increase the weight
of central pixel features and weak the weight of other types of pixel
features. Third, a specific deep model for PolSAR image classifica-
tion (named Tc-CNN) is proposed, which can obtain more scale and
deep polarization information to improve the classification results.
The experimental results show that the proposed method achieves
a much better performance than the existing classification methods
when the number of labeled samples is few.

Index Terms—Convolutional neural network (CNN),
polarimetric synthetic aperture radar (PolSAR), terrain
classification, three-channel convolutional neural network
(Tc-CNN).

I. INTRODUCTION

IN RECENT years, polarimetric synthetic aperture radar (Pol-
SAR) has caused a great deal of attention because it has

a wide range of applications on earth remote sensing in many
fields, such as marine environmental protection, target detection,
and land cover classification [1]–[3]. PolSAR is high-resolution
imaging equipment with multichannel, which records scatter-
ing echoes of different polarization modes with rich terrain
information. It has the capabilities of all-weather and day-night.
Over the past few decades, a large number of PolSAR systems
(ESAR, TerraSAR-X, AIRSAR, ALOS2, and Radarsat-2) have
been developed in and many of PolSAR images have been made
publicly available.

Among the utilization of PolSAR data, land cover classifi-
cation is much in demand. A number of PolSAR classification
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methods, including target decomposition [4], [5], multiple sta-
tistical distributions [6], [7], and sparse representation [8], [9],
have been developed in recent years. Generally, there are two
main steps for PolSAR image classification: feature extraction
and representation, and classifier designing and optimization.

For the first aspect, target decomposition methods based
on the scattering mechanism are commonly used to extract
PolSAR feature information, for instance, Pauli decomposi-
tion [4], H/a/A decomposition [5], Freeman three-component
decomposition [6], Krogager decomposition [10], and Huynen
decomposition [11]. The parameters of the polarimetric target
decomposition are related to the physical properties of terrain
object and have been utilized for unsupervised and supervised
PolSAR image classification. Meanwhile, polarimetric features
extracted by other model-based decompositions based on the
basic scattering mechanism have also been explored for the
PolSAR image classification. In addition, color features, texture
features, and some statistic features have also been used to
enhance the PolSAR image classification.

For the other hand, various classifiers based on machine
learning, such as the complex Wishart classifier [12], Bayes clas-
sifier, support vector machine (SVM) classifier [13], decision
tree [14], k-nearest neighbor (k-NN) classifier [15], and neural
networks classifier [16], have been adopted for PolSAR image
classification. What is more, the PolSAR image classification
performance has been improved with the advances of classifier
performance.

More recently, the emergence of deep learning techniques
has opened up a new way for PolSAR image classification.
The early deep learning method mainly includes three kinds
of network structures: the convolutional neural network (CNN)
[17], deep belief network (DBN) [18], and stacked sparse
autoencoder (SSAE) [19]. At present, with the development
of deep learning techniques, more and more deep learning
methods have been applied for PolSAR image classification,
such as clustering Wishart autoencoder [20], complex-valued
deep fully convolutional network [21], and deep sparse tensor
filtering network [22]. Compared with the traditional image
classification methods, feature extraction and classifier design
are two relatively independent processes. However, in the deep
learning method, the process of feature extraction and classifier
design is a whole. In the forward process, deep features are
extracted by the deep network, and then the classifier is trained
by deep features. In the process of backpropagation, according
to the output of the classifier, the depth network is fine-tuned
to make the extracted depth features more consistent with the
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classification characteristics of the classifier and improve the
classification effect.

However, the success of deep learning classification methods
is subject to the accessibility of large amounts of labeled data.
For PolSAR image, it is well known that the labeled samples are
difficult to obtain in practice and require a great deal of man-
power and material resources. Therefore, we seek to answer this
critical question in this work: How to achieve better performance
with small samples when applying deep learning techniques in
the PolSAR image classification.

According to this problem, this article starts from two as-
pects to improve the classification accuracy of PolSAR images
classification with a small number of labeled samples. One
is to increase the utilization of spatial information. For the
PolSAR image classification, spatial relation is very important
information, which can effectively improve the classification
performance of PolSAR [23]–[25]. CNN [17] as one of the
main models of deep learning method, with its unique network
structure, can effectively extract the deep spatial features. What
is more, CNN has been widely used in image processing appli-
cations and achieved remarked application results [26]–[28]. In
recently, the convolution network is used to process PolSAR data
[29]–[31], which not only extract the deep features but also ex-
tract the spatial features of PolSAR data based on the convolution
structure. However, the traditional CNN usually has only one
channel; for image processing problems, the original features
of images usually contain feature information of different sizes.
The single convolutional kernel of single-channel CNN loses a
part of the different scale features of the original image so that
the extracted features are insufficient.

Therefore, in order to obtain the richer and more diverse
spatial feature, a three-channel convolutional neural network
(Tc-CNN) is proposed in this work. This model contains three
independent CNN networks, and each convolution layer uses
different convolution kernels to extract multiscale and diversity
features. However, in the traditional PolSAR classification based
on CNN, the input of CNN is the pixel block selected from the
center of a pixel, and the output category is used to represent the
category of the central pixel. Although this pixel block selection
strategy takes into account the spatial relationship between the
pixels, it weakens the influence of central pixels on their own
categories. Accordingly, we proposed a spatial weighted (SW)
method for the pixel block selection method, which increases the
weight of the features of central pixels and weakens the weight
of the features of different pixels in the block.

Another aspect is to increase the number of training sam-
ples through data enhancement (DE). According to the region
consistency of the image, the pixels in adjacent regions have
high similarity. Therefore, combined with the characteristics of
the PolSAR image, we proposed a new DE method based on
the neighborhood nearest neighbor propagation (N3P) method,
which uses a small number of labeled samples to select the
unlabeled samples in its neighborhood and enlarge the set of
labeled samples.

Therefore, the main contributions of the present article are
summarized as follows.

1) We proposed a new PolSAR image classification method
with a small number of labeled samples. In particular,
a Tc-CNN is designed to extract the deep polarimetric
features and output class label predictions. This method is
realized that deep learning method under a small sample
can effectively solve the PolSAR image classification
problem.

2) To reduce the influence of different types of pixels in the
input pixel block on the central pixel, we propose an SW
method for feature selection of pixel blocks to increase the
influence of central pixel on their own classification and
further improve the classification results.

3) In order to further improve the performance of the pro-
posed method with the small number of labeled samples,
a DE method based on N3P is employed to enlarge the set
of training samples.

4) Finally, we apply the newly present approach to two real
PolSAR datasets. The experimental results demonstrate
that compared with the existing classification methods, the
proposed method achieves state-of-the-art classification
performance when the number of labeled samples is few.

The remainder of the article is organized as follows. Section II
explains the proposed method. Section III shows the experimen-
tal design with real PolSAR data and the experimental results
are provided in Section IV. This is followed by a discussion and
conclusions for this article in Section V.

II. PROPOSED METHOD

A. Polarimetric Features

In general, each pixel in PolSAR data can be expressed in the
form of a covariance or coherency matrix T as follows:

T =

⎡
⎢⎣
T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎥⎦ . (1)

Since T is a complex conjugate matrix and the diagonal
elements are real numbers, we utilize the coherency matrix to
define a new 9-D vector corresponding to this coherency matrix
T as follows:

v1 = [T11, T22, T33, Re(T12), Im(T12),

Re(T13), Im(T13), Re(T23), Im(T23)]. (2)

Here, Re(·) and Im(·) represent the real and imaginary parts
of a complex number, respectively.

However, in order to extract more abundant feature informa-
tion with more differences, this article presents a three-channel
convolution network for PolSAR classification. Therefore, the
feature vector view is further divided into three small fea-
ture subsets (view1 = view(1 : 3), view2 = view(4 : 6), and
view3 = view(7 : 9)), which are input to each channel. To illus-
trate the effectiveness of these three feature subsets, we analyzed
the distribution of the view1, view2, and view3 to illustrate the
effectiveness of three feature subsets, as shown in Fig. 1.
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Fig. 1. Distribution of three feature subsets. (a) Difference between view1,
view2, and view3. (b) Feature distribution of view1. (c) Feature distribution of
view2. (d) Feature distribution of view3.

The original image of Flevoland areas is shown in Fig. 7(a).
Fig. 7(b) shows the ground-truth map. In Fig. 1, we take terrain
type of stem beans as an example to analyze the distribution
of different elements of coherency matrix T. A total of 6000
pixels are selected from stem beans. From Fig. 1, we can clearly
find that there are obvious differences between the diagonal
elements, the real part, and the imaginary part of the complex
number in the coherent matrix T. Therefore, the difference in
the coherent matrix T may be of benefit to classification.

B. DE Based on N3P

In order to effectively utilize unlabeled samples to enhance
the labeled sample set, the N3P method is adopted in the
present article. The N3P method is based on the traditional k-NN
algorithm.

For k-NN algorithm, one first needs to build a set of vertices
and distance G = (V,W ), where each node in V corresponds to
a data point, and W is the Euclidean distance between any two
points, which represents the similarity between any two points.
The smaller the value of W, the higher the similarity. For the
PolSAR image, each pixel is considered a data point, and the set
of vertices and edgesG should be constructed by all pixels of the
PolSAR image because PolSAR data obey the complex Wishart
distribution. Therefore, the Wishart distance is used to express
the similarity between any two points, and the expression is as
follows:

Wi,j =
1

2
{ln(|Ti|) + ln(|Tj |)+Tr(T−1

i Tj + T−1
j Ti)} (3)

where T is the coherency matrix and Tr() denotes the trace of a
matrix. However, for PolSAR images, it takes a large amount
of computation to calculate the distance between all pixels.
Fortunately, Xi et al. [32] show that in the PolSAR image,
the adjacent pixels in the same area are more likely to have

Fig. 2. Flowchart of the N3P method.

a similar label. Therefore, in order to reduce the computation
and increase the reliability of selected vertices, we propose a
novel N3P method, which is described as follows.

Step 1: Construct a set of vertices and distanceG by each labeled
pixel and its eight neighborhood pixels.

Step 2: Use labeled pixel as the vertices, the label is propagated
to the nearest neighbor in its eight neighborhoods, and select
the nearest neighbor to add to the vertex set V.

Step 3: Apply the new labeled pixel as the vertices to construct
a new set of vertices and distance G.

Step 4: Repeat step 2 and step 3 until enough vertices are
selected.

Fig. 2 shows the flowchart of the N3P method. The red point
in Fig. 2(a) is the initial vertex V0, the green points represent the
neighboring vertices of V0, and the gray points represent other
non-neighborhood pixels. First, calculate the distance between
the labeled pixel V0 and its eight neighborhood pixels. The
numeric value at each neighboring point denotes the Wishart
distance between V0 and that point, such as Fig. 2(a). Then,
propagate the label to the nearest pixel, such as “1,” and add this
pixel to the vertex set V. Take this pixel as a new labeled point
V1, and calculate the distance between this point and its eight
neighborhoods [see Fig. 2(b)]. Next, propagate label to point V2

nearest to V1, as shown in Fig. 2(c). Repeat this process until
enough vertices are labeled. In Fig. 2(d), the N3P method has
propagated three times, and the number of labeled samples has
expanded three times.

C. Spatial Weighted

For the PolSAR terrain classification, spatial information is
very important information. Therefore, how to effectively utilize
spatial information in the PolSAR image has been one of the
research hot topics of PolSAR classification. CNN has made
great achievements in the field of image processing by mining the
correlation between data. However, in PolSAR data processing
based on CNN, an image block is usually selected with a certain
pixel as the center, and the final class of the center pixel of this
region is determined with all the information of the whole region.
However, if most of the pixels in this region and the central
pixel belong to different categories, the final category may have
errors with the real category. Therefore, this article studies the
relationship between the center pixel and the neighborhood pixel
in the selected image block to increase the weight of the center
pixel and the similar pixel information in the neighborhood by
weighting and weakens the weight of the pixel information in the
neighborhood with a large difference. It not only considers the
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Fig. 3. Method of pixel block selection based on SW.

influence of the spatial pixel but also increases the contribution
of the center pixel to its own category.

Fig. 3 shows the method of pixel block selection based on
SW. The pixel block is selected with the center pixel, as the
center determines the mark of the center pixel. Fig. 3(a) shows
the pixel block selected under the ideal conditions: the central
pixel and its neighborhood pixels belong to the same class.
However, Fig. 3(b) shows the pixel block selected in the real
PolSAR image. There are differences between the central pixel
and its neighboring pixels, even different types. Therefore, it is
very important to highlight the weights of the central pixel and
its adjacent pixels and weaken the weights of different types
of pixels in the neighborhood. Fig. 3(c) shows the pixel block
selected after weighting, where the weight of the feature of each
pixel in the pixel block is expressed as

SWij =
wii

wij
(4)

wij =
1

2
Tr((Vi)

−1Tj) + ln |V |. (5)

wij denotes the similarity between the center pixel and its
neighborhood pixel, and the smaller the value of wij , the higher
the similarity. Vi denotes the coherency matrix of center pixels
and Ti denotes the coherency matrix of neighborhood pixels.
From (4), it can be seen that the more similar the neighborhood
pixel is to the center pixel, the larger the value of wii/wij ,
the greater the weight, the greater the proportion of the pixel
features, and the greater the impact on the final classification.

D. CNN Architecture

In this article, a Tc-CNN model is proposed to select diversi-
fied depth features and classification. In this model, each channel
network is a single-channel CNN network, and each channel
CNN network has different input features. Therefore, we will
first introduce the CNN model in this section. As shown in Fig. 4,
a CNN model generally consists of convolution layers, pooling
layers, and fully connected layers.

Convolutional layers play an important role in feature ex-
traction. In the deep CNN model, the initial convolutional layer
captures the low-level features and the deeper convolution layers
extract the abstract features. In the process of feature extraction,
each unit of the convolutional layer is connected to a local patch
in the feature maps of the previous layer by the convolutional
kernels. In this process, all inputs in a feature map share the
same convolutional kernels, and different feature maps use the
different convolutional kernels. The convolution operation is as

follows:

xl = g
(∑

xl−1∗W l + bl
)

(6)

where xl−1 denotes the input of the lth layer, W l denotes
the weight of the convolution kernel, bl denotes the basis, ∗
represents the convolution operation, and g(·) denotes the non-
linearity activation function, such as ReLU, tanh, sigmoid, and
so on.

The pooling layer is also named subsampling layers. It aims
to reduce the dimension of the previous layer feature map. There
are mainly two kinds of polling methods: average pooling and
max pooling. Average pooling extracts the average value of the
pooling region, and max pooling extracts the maximum value of
the pooling region. Concrete operation is shown as follows:

xl = g(down(xl−1) + bl) (7)

where xl−1 is the input, and down(xl−1) denotes pooling the
features map of the layer (l-1)th.

A fully connected layer is usually used at the end of the
network. The last feature map is usually reshaped into a 1-D
feature vector. Then, the 1-D feature vector is taken as the input
of the output layer and output the final results.

E. Architecture of the Proposed Tc-CNN Model

This section describes the proposed method in detail. Fig. 5
shows the framework of the complete process of the proposed
method. As can be seen from Fig. 5, the proposed method
consists of two processes: training and classification. In the
training process, there exist three steps. First, preprocessing the
initial polarimetric data. This process contains two parts: DE and
SW. Second, the input polarimetric features are divided into three
feature subsets based on the statistical distribution of features.
These three data subsets are used to separately extract different
deep polarimetric features. Finally, a three-channel convolu-
tional network model is used to extract multiscale depth features.
In the classification process, the trained Tc-CNN classifier is
used to analyze all unlabeled samples and determine their final
labels. The detailed process is described as follows.

1) Randomly select the initial training sample set L.
2) The proposed DE method is used to strengthen the initial

sample set L and then obtain the enhanced training sample
set L’.

3) Each pixel in the PolSAR image is taken as the center, and
the block of pixels of size n× n is selected as the basic
input unit for the network model.

4) Each pixel block is processed by an SW method to increase
the impact of the central pixel on the final results.

5) Three CNN networks are used to construct a three-channel
convolutional network model. In this three-channel net-
work, each CNN network uses different input information
(view1, view2, and view3), and the number of convolu-
tional layers and convolution kernels is different in each
CNN network.

6) The inception model is used to contact the feature maps of
the output of three different CNN networks. Then, these
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Fig. 4. CNN model.

Fig. 5. Framework of the proposed method.

Fig. 6. Structure and parameters of the proposed method.

contacted features map as the input to the fully connected
layer and output the final results.

7) Input the training sample and train the proposed Tc-CNN
network.

8) Use the trained Tc-CNN network to classify the whole
PolSAR image.

III. EXPERIMENTAL DESIGN

In the present work, a number of experiments are carried
out with the Tensorflow2.0 on a desktop computer that runs
Windows 10 operating system with an Intel(R) Core(TM) CPU
processor (3.20 GHz) and 16 GB memory. The structure and
some parameters of the proposed method are shown in Fig. 6.
The size of the input pixel block is set to 9× 9, the learning

rate is set to 0.1, weight decay is set to 0.002, the pooling
mode is mean pooling, and ReLU is used as a nonlinearity
activation function. Two real PolSAR datasets are used as
shown in the following text. By comparing the performance
of different classification methods, the overall accuracy (OA)
and the kappa statistics of classification results are adopted
to demonstrate the effectiveness of the proposed classification
method.

A. Datasets

1) AIRSAR Data in Flevoland: The first dataset is an L-band
PolSAR data acquired by the NASA/JPL ARISAR system in
Flevoland, The Netherlands, in August 1989 [28]. Fig. 7 shows
both the Pauli image and the ground-truth image of this data.
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Fig. 7. AIRSAR dataset in Flevoland I. (a) Pauli image. (b) Ground-truth
image.

Fig. 8. RADARSAT-2 data in San Francisco. (a) Pauli image. (b) Ground-truth
image.

The ground-truth image is obtained from the article presented in
[33]. The size of the Pauli image data is 750× 1024 pixels, while
the size of the ground-truth data is around 167 712 pixels. The
pixel size of the Pauli image is 6.6 m in the slant range direction
and 12.1 m in the azimuth direction. There are 15 various
terrain types marked in the ground truth, and most of which
are agricultural classes, including water, rapeseed, grasses, bare
soil, potatoes, beet, wheat, Lucerne, forest, peas, buildings, and
stem beans.

2) RADARSAT-2 Data in San Francisco: Fig. 8 shows the
Pauli image and the ground-truth image of the San Francisco
dataset. This dataset is a C-band PolSAR data acquired by the
RADARSAT-2 system in San Francisco, CA, USA, in April
2008. The ground-truth image is obtained from the article pre-
sented in [34]. The size of the Pauli image data is 1300× 1300
pixels, while the size of the ground-truth data is around 1 341 917
pixels. The pixel size of the Pauli image is 10 m in the slant range
direction and 5 m in the azimuth direction. As marked in the
ground-truth image [see Fig. 8(b)], there are five different terrain
types, including water, man-made, vegetation, low density, and
high density.

B. Key Parameters in the Training Process

Two key parameters, including the number of propagation in
the N3P method and the labeled samples in the training process,
dominate the performance of the proposed method. In this

Fig. 9. Effects of the number of propagation on the OA and kappa statistics.

section, the effects of those two parameters on the classification
results of the proposed method are investigated experimentally
with the Flevoland dataset.

1) Number of Propagation in the N3P: In this section, we
only consider the DE method and do not consider the effect of
SW. Fig. 9 shows the OA and the kappa statistics of the classifi-
cation results of the Flevoland dataset given by the proposed
method as a function of the number of propagation used in
the N3P method. In Fig. 9, the left data point (the number of
propagation is equal to zero) of each curve corresponds to the
case that the N3P method is not used in the training process.
The OA and kappa statistics at this point have the lowest values
for each curve. The data points with the number of propagation
greater than zero refer to the cases where the proposed propa-
gation method is applied and 1‰ labeled samples are used in
the initial training dataset. As can be seen from Fig. 9, both the
OA and kappa statistics increase as the number of propagation
increases. This indicates that the proposed N3P method is an
effective DE method, which effectively increases the number of
training samples and improves the classification results.

In addition, Fig. 9 shows that the OA and kappa statistics
of the classification results increase rapidly with increasing the
number of propagation in a nonlinear fashion until the number of
propagation reaches 10, and OA increased by 3.31%. However,
as the number of propagation is greater than 10, both curves of
the OA and kappa statistics become nearly flat. OA increased by
0.74% when the number of propagation increases from 10 to 20,
and OA increased by 0.24% when the number of propagation
increases from 20 to 30. This is mainly because the similarity
between the root nodes and their subnodes might be weakened
when the number of propagation increases. This weakening
makes the enlarged labeled samples not play the role of expand-
ing the labeled sample set. Thus, it does not obviously improve
the classification performance of the network. In addition, with
the increase of the number of propagation, the classification
accuracy increases very little when the number of propagation
increases from 10 to 30, but because of the increase of the
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Fig. 10. OA and kappa statistics of the classification results of three PolSAR
datasets vary with the number of labeled samples used in the proposed method.

number of propagation, the number of training samples also
increases rapidly, which makes the time cost of training network
increasing rapidly. Therefore, considering both classification
accuracy and time cost, the number of propagation between 10
to 12 is suggested in the proposed method.

2) Number of Labeled Samples: Fig. 10 shows the OA and
kappa statistics of the classification results of the Flevoland
dataset as a function of the number of labeled samples used in
the proposed method. In this section, the number of propagation
is set to 10. The classification results are shown in Fig. 10.
As can be seen from Fig. 10, the OA and kappa statistics are
84.41% and 0.8308, respectively, when 1 labeled samples (the
left point in the figure) are used for the dataset of the Flevoland.
The values of the OA and kappa statistics become 96.63% and
0.9633, respectively, as the number of labeled samples is 1‰.
When the number of labeled samples is 1%, the OA is 98.19%,
and the kappa statistics is 0.9803. These results show that the
OA increases 12.22% as the number of labeled samples used
increases from 1 to 1‰ but only increases 1.56% as the number
of labeled samples used increases from 1‰ to 1%. This is
mainly because the fewer the labeled samples used in the training
process, the greater the role of the proposed method, resulting in
greater changes in the classification results. Thus, the proposed
method is very effective for the PolSAR data where the labeled
samples are few. It also indicates that with the increase of labeled
samples used, the advantage of the proposed method is gradually
weakened. To increase the efficiency of the proposed method
and obtain satisfactory classification results, we suggest that 1‰
number of the labeled samples are used of the Flevoland dataset.

C. Effects of Speckle Filtering

To investigate the effect of suppressing speckle noise on
classification results, Lee filter [35] with a 7× 7 window is used.
In this section, the Flevoland dataset is used as an example, 1‰
labeled samples are used as the training sample, and the number
of propagation is set to 10. Fig. 11 and Table I presents the

Fig. 11. Classification results of the Flevoland dataset. (a) Proposed method
without a filter. (b) Proposed method with a filter. (a1) and (b1) are masked
results according to the ground truth of (a) and (b), respectively.

TABLE I
CLASSIFICATION ACCURACY (%) OF THE FLEVOLAND DATASET WITH AND

WITHOUT FILTER

Bold number indicates the best result in each row.

classification results of the proposed method with and without
the filter method.

As can be seen from Fig. 11 and Table I, the classification
results of the proposed method without a filter are very poor. Its
OA is only 47.78%, which is 48.85% lower than the proposed
method with filter. This poor performance is mainly caused by
two aspects. On the one hand, due to the influence of speckle
noise, pseudolabels are added in the N3P process. This causes
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Fig. 12. Classification results of the Flevoland dataset. (a) Proposed method. (b) Tc-CNN+DE. (c) Tc-CNN+SW. (d) Tc-CNN. (e) CNN+DE+SW. (f) CNN+DE.
(g) CNN+SW. (h) CNN. (a1), (b1), (c1), (d1), (e1), (f1), (g1), and (h1) are masked results according to the ground truth of (a), (b), (c), (d), (e), (f), (g), and (h),
respectively.

that the newly added training samples contain an incorrect label,
and this incorrect label will reduce the effectiveness of the
proposed method, especially when the labeled samples are few.
On the other hand, because there is no effective suppression of
the speckle noise, it makes the training of neural networks more
difficult, resulting in poor performance. Therefore, it indicates
that the proposed method is very sensitive to speckle noise.

IV. EXPERIMENTAL RESULTS

In this section, the classification results of the two above-
mentioned real PolSAR datasets given by the proposed method
are presented and verified by the ground-truth measurements of
those PolSAR datasets. The experiments are repeated ten times
and the average values are used as the final classification results.

The experimental results are also compared with that obtained
with a number of existing classification methods.

A. Classification Results of the Flevoland Acquired by
AIRSAR in 1989

Fig. 12 shows the classification maps of the Flevoland dataset
with different classification methods. Fig. 12(a) shows the results
of the proposed method. Fig. 12(b) shows the classification of the
method of the Tc-CNN plus only the DE (named Tc-CNN+DE).
Fig. 12(c) shows the classification of the method of the Tc-CNN
plus only the SW (named Tc-CNN+SW). Fig. 12(d) shows the
classification of the method of the Tc-CNN (named Tc-CNN).
Fig. 12(h) shows the classification of the traditional CNN [17]
method. Fig. 12(e) shows the classification of CNN plus the
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TABLE II
CLASSIFICATION ACCURACY (%) OF THE FLEVOLAND AREA ACQUIRED BY AIRSAR

Bold number indicates the best result in each row.

DE and SW (named CNN+DE+SW). Fig. 12(f) shows the
classification of CNN plus only the DE (named CNN+DE).
Fig. 12(g) shows the classification of CNN plus only the SW
(named CNN+SW). Table II presents the classification accuracy
of each category with different classification methods and the
OA for the Flevoland dataset. The results shown herein are
obtained with 1‰ randomly selected labeled samples, and the
number of propagation in the N3P is set to 10.

As can be seen from Table II, the proposed method performs
the best in the majority of categories. The classification accuracy
of 11 categories in the proposed method is higher than 95%, and
the lowest classification accuracy of one category is 88.30%.
In contrast, only five categories in the Tc-CNN method can
achieve the classification accuracies above 95%, while the low-
est classification accuracy of one category is only 74.88%. In the
traditional CNN method, the classification accuracies of three
categories are higher than 95%, and the classification accuracies
of three categories are lower than 70%. In the CNN+DE+SW
method, the classification accuracy of eight categories is higher
than 95%, while the lowest classification accuracy of one cate-
gory is 79.77%. Therefore, by comparing the proposed method
with the traditional CNN method, one can see that the classifi-
cation accuracy of the proposed method is 12.16% higher than
the traditional CNN method. This indicates that the proposed
method is an effective classification method that can signif-
icantly improve the classification accuracy of PolSAR data.
Compared the Tc-CNN method with the CNN method, it is
obvious to find that the classification accuracy of the Tc-CNN
method is 6.41% higher than the CNN method. This indicates
that the proposed Tc-CNN network is better than the CNN
network for the PolSAR classification. This is mainly because
the Tc-CNN network obtains the richer and more convolution
features by different channels. These richer and diverse features
improve the classification results of PolSAR data. Compared

the Tc-CNN+DE method, Tc-CNN+SW method, and TC-CNN
method, one can see that the classification accuracy of the Tc-
CNN+DE method is 1.66% higher than the Tc-CNN method,
and the Tc-CNN+SW method is 2.16% higher than the Tc-CNN
method. This indicates that both the proposed DE method and
the SW method can significantly improve the classification
results of the Tc-CNN method. Comparing the CNN+DE+SW
method, CNN+DE method, CNN+SW method, and CNN, the
classification accuracy of CNN method is 8.23%, 5.78%, and
2.92% lower than CNN+DE+SW, CNN+DE, and CNN+SW,
respectively. This indicates that the proposed DE method and
the SW method are not only effective for the proposed method
but also effective for the traditional CNN method.

By comparing the classification accuracy of each category, as
shown in Fig. 12, one can see that the classification accuracies
of the proposed method in the stem, rapeseed, bare soil, pota-
toes, peas, wheat 2, wheat 3, Lucerne, barley, wheat, grasses,
and forest are obviously higher than the other classification
methods. For kappa statistics, the proposed method is 0.9633,
which is notably higher than the other comparison methods.
Therefore, we can also conclude that the proposed method is an
effective method when the number of labeled samples is few.
What is more, the proposed DE method and the SW method
are both effective methods and can effectively improve the
classification accuracy, especially when there are few labeled
samples.

B. Classification Results of the San Francisco Acquired by
Radarsat-2 in 2008

In this experiment, 1 labeled samples are randomly selected
as the training samples. Fig. 13(a)–(h) shows the classification
maps of different methods. The classification accuracy of these
methods is given in Table III.
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Fig. 13. Classification result of the San Francisco data acquired by Radarsat-2. (a) Proposed method. (b) Tc-CNN+DE. (c) Tc-CNN+SW. (d) Tc-CNN. (e)
CNN+DE+SW. (f) CNN+DE. (g) CNN+SW. (h) CNN. (a1), (b1), (c1), (d1), (e1), (f1), (g1), and (h1) are masked results according to the ground truth of (a),
(b), (c), (d), (e), (f), (g), and (h), respectively.

Table III presents that the overall classification accuracy
of the proposed method is best than the other comparison
methods. From Fig. 13 and Table III, it is clearly found that
the classification accuracy of the proposed method is 93.64%,
which is 9.78%, 10.51%, and 17.6% higher than Tc-CNN+DE,
Tc-CNN+SW, and Tc-CNN methods, respectively. This indi-
cates that each part of the proposed method can effectively im-
prove the classification accuracy of the Tc-CNN network for Pol-
SAR data. From Fig. 13 and Table III, it is clearly found that the

classification accuracy of the Tc-CNN method is only 44.80%
in the low-density area and 69.17% in the developed area.
However, the classification accuracy of the proposed method
is 88.54% in the low-density area and 90.90% in the developed
area, which is 43.47% and 21.73% higher than the Tc-CNN
method, respectively. This further shows that a large number
of unlabeled samples and spatial information play an important
role in the PolSAR classification method and the effectiveness
of the proposed method. Compared CNN+DE with CNN, the
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TABLE III
CLASSIFICATION ACCURACY (%) OF THE SAN FRANCISCO AREA ACQUIRED BY RADARSAT-2

Bold number indicates the best result in each row.

classification accuracy of the CNN+DE method is 5.3% higher
than that of the CNN method after combined with individual DE.
Comparing CNN+SW with CNN, the classification accuracy is
3.22% higher than that of CNN method after combined with
individual SW. This conclusion also proves the validity of the
proposed DE method and the SW method.

By comparing the kappa statistics, the kappa statistics of
the proposed method is 0.9040, which is higher than the other
comparison methods. This shows that the regional consistency of
this method is obviously better than other comparison methods.
What is more, by comparing Fig. 13, the regional consistency of
the proposed method is better than other methods in the water
area, vegetation area, low-density area, and developed area.

C. Comparisons With Existing Methods in Terms of the
Number of Labeled Samples

In this part, the first dataset Flevoland is used to verify the
effectiveness of the proposed method and compare the pro-
posed method with the existing five traditional classification
methods: CNN [17], SVM [13], sparse Autoencoder (SAE)
[19], DBN [18], and Wishart classifier [12]. In this section, we
select different proportions of labeled samples (Nl) to test the
proposed method and other comparison methods. Fig. 14 shows
the classification accuracy of different methods when different
proportions of labeled samples are used as training samples. In
order to better show the effect of Fig. 14, the abscissa is expressed
in logarithmic form. In Fig. 14, the color notation (Nl, OA)
on the curves represents the coordinates of the corresponding
points, where Nl denotes the proportions of labeled samples,
and OA denotes the classification accuracy. (Nl, OA) represents
the classification accuracy of the points when selecting certain
labeled samples as training samples. From Fig. 14, it can be
clearly seen that the classification accuracy is higher than 90%,
the proposed method needs 5 (5 ≈ 100.6990) labeled samples,
the traditional CNN method needs 40 (40 ≈ 101.6021) labeled
samples, the SAE method needs 80 (80 ≈ 101.9031) labeled
samples, and the SVM method needs 1000 (1000 ≈ 103) labeled
samples. However, when the proportion of training samples is
1000, the classification accuracy of DBN and Wishart classi-
fier is 83.39% and 80.22%, respectively. Moreover, when the
number of labeled samples is very few about 1, the classi-
fication accuracy of the proposed method is 84.04%, while

Fig. 14. Classification result of the Flevoland with different proportions of
labeled samples. (In (Nl, OA), Nl denotes the proportions of labeled samples,
and OA denotes the classification accuracy.)

the classification accuracy of other methods is less than 60%.
This is mainly because CNN, SVM, SAE, DBN, and Wishart
methods require sufficient labeled samples as training samples.
When the labeled samples are few, the classification accuracy
of these five methods is poor. When the labeled samples are not
sufficient, increasing the number of labeled samples means the
classification accuracy of these five methods is also increased.
This also indicates that when the labeled samples are few, the
proposed method can obtain better classification results than the
other comparison methods, but with the increasing of labeled
samples, the classification accuracy of the traditional methods
will gradually increase and finally approach the classification
accuracy of the proposed method.

V. CONCLUSION

This article has presented an effective deep network model
for the PolSAR image when labeled samples are few, which
combines the traditional CNN network and spatial information
of PolSAR data. In the proposed method, we proposed a DE
method based on N3P to enlarge the labeled samples. Then, in
order to strengthen the influence of the center pixel in the selected
pixel block on its final category, an SW method is proposed to
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weight the features of different pixels in a pixel block to weaken
the feature weights of pixels that are weakly similar to the
central pixel. Finally, we proposed a new three-channel network
model to obtain more scale and deep polarization information
to improve the classification results.

The experiments with two real PolSAR datasets showed that
the proposed method is able to achieve satisfactory classification
accuracy, especially when training samples are few. The exper-
imental results show that the proposed method is an effective
method and superior to other contrasting methods. In these
two datasets, not only the overall classification accuracy of the
proposed method is higher than the other contrasting methods
but also the accuracy of the proposed method performs best in
most classes. Furthermore, the experiments with the different
training samples showed that the proposed method is able to
achieve better classification results than the traditional methods.
In addition, we analyzed the influence of the DE and SW on
the results of the experiment. Fig. 9 indicates that the proposed
DE method is reliable, and the performance of the classifier is
gradually improved by the number of propagation to expand
the label samples set. Figs. 12 and 13 indicate that the spatial
information can effectively improve the classification results
of PolSAR. In our future work, we will focus on the deep
learning method of semisupervised learning to solve the PolSAR
classification problem in small samples.
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