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Global Prototypical Network for Few-Shot
Hyperspectral Image Classification

Chengye Zhang , Jun Yue , and Qiming Qin

Abstract—This article proposes a global prototypical network
(GPN) to solve the problem of hyperspectral image classification
using limited supervised samples (i.e., few-shot problem). In the
proposed method, a strategy of global representation learning is
adopted to train a network (fθ) to transfer the samples from the
original data space to an embedding-feature space. In the new
feature space, a vector called global prototypical representation for
each class is learned. In terms of the network (fθ), we designed an
architecture of a deep network consisting of a dense convolutional
network and the spectral–spatial attention network. For the clas-
sification, the similarities between the unclassified samples and the
global prototypical representation of each class are evaluated and
the classification is finished by nearest neighbor classifier. Several
public hyperspectral images were utilized to verify the proposed
GPN. The results showed that the proposed GPN obtained the bet-
ter overall accuracy compared with existing methods. In addition,
the time expenditure of the proposed GPN was similar with several
existing popular methods. In conclusion, the proposed GPN in this
article is state-of-the-art for solving the problem of hyperspectral
image classification using limited supervised samples.

Index Terms—Deep Learning, dense convolution, global
representations, hyperspectral image classification, small number
of samples, spectral–spatial attention.

I. INTRODUCTION

COMBINING both spatial and spectral information, hyper-
spectral remote sensing has been widely used in many

areas, e.g., agriculture, geology, environment, and ecology [1],
[2]. Hyperspectral image classification is to identify the target
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type of each pixel, which is usually a key step in the applications
of hyperspectral remote sensing in many areas.

Machine learning provides an important way for hyper-
spectral image classification automatically. In the past several
decades, many machine learning approaches were proposed to
solve the problem of hyperspectral image classification, such as
support vector machine (SVM) [3], [4], neural network [5], and
random forest (RF) [6], [7]. Since the deep learning was pro-
posed [8], it has achieved great success to solve many important
problems, such as face recognition, speech recognition, image
identification, and automatic translation. After the application
of deep learning on hyperspectral image classification [9], the
methods for hyperspectral image classification based on deep
learning attracted the attention of many scholars. A series of
deep networks were successively proposed and the classifying
accuracy of hyperspectral image was gradually improved [10]–
[16]. To make full use of the spatial–spectral information pro-
vided by the hyperspectral image, some deep-learning models
fused both the spatial and spectral features, and extracted the
comprehensive features, which also improved the classification
accuracy [17]–[23].

However, the hyperspectral image classification has not been
solved very well using deep learning. One of the most important
reasons is that a mass of labeled samples are required by deep
learning for a satisfying accuracy. In fact, it is usually very diffi-
cult to acquire enough labeled samples to meet the requirement
of hyperspectral image classification using deep learning. In
other words, the limited number of training samples hinders the
scholars from improving the accuracy of hyperspectral image
classification.

In this situation, a kind of methods called few-shot learning
was introduced into solving the problem of hyperspectral image
classification with limited samples, and obtained better accuracy
when compared with previous machine learning methods [24],
[25]. Few-shot learning is an important branch of machine learn-
ing, which is designed for solving the problems with only a few
training samples, such as object identification, face recognition,
image classification, etc. [26]–[30].

For hyperspectral image classification, several methods have
been proposed to solve the problem of limited supervised sam-
ples. A pixel-pair method was proposed to construct a new
data pair combination, which increased the amount of input
data for training [31]. Limited to the number of training sam-
ples, an unsupervised method called self-taught feature learning
was proposed to finish hyperspectral image classification [32].
Sensor-specific models were trained and directly applied on
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target datasets when tuned by only a few training samples [33].
A semisupervised convolutional neural network (CNN) and a
supervised deep feature extraction method were proposed to
realize hyperspectral image classification using 200 training
samples in each class [34], [35].

In few-shot image classification, there are a group of base
classes and a group of new classes. The common strategy of
few-shot learning is to train the model based on enough labeled
samples in the base classes. Then, the trained model is general-
ized to the new classes, and is used to realize the classification
based on limited supervised samples in the new classes. In
other words, the classification for “new classes” with limited
supervised samples is the task, whereas the “base classes” with
enough labeled samples are utilized to help training the model.
A deep few-shot learning (DFSL) method and a spatial–spectral
prototypical network were proposed, respectively, [24], [36] for
the few-shot hyperspectral image classification. The common
basic idea of these two methods is to learn a generalized feature
space using large amount of labeled samples and then be applied
to new datasets with limited supervised samples, which is similar
to this article. However, the differences with this article are
in the method of feature extraction. This article utilizes the
global prototypical learning with hallucinating new samples
in the new classes and realizes classification based on global
prototypical representations, and also designs the dense CNN
and the spectral–spatial attention network (SSAN) to alleviate
the vanishing of gradient information and adaptively adjust the
receptive field size. In fact, there are two kinds of few-shot
learning: First, the model is trained using base classes and then
generalized to the new classes; second, the model is trained using
both base classes and new classes, and then the trained model
is used to realize the classification of new classes. However,
a serious problem is present in these methods. That is the
disproportion of the number of labeled samples between the
base classes and new classes. In this situation, the classification
method is vulnerable to over fit to the base classes [37]. To
alleviate this problem, it is a strategy to hallucinate new samples
in the new classes and then to learn the global representation for
each class.

This article proposes a global prototypical network (GPN)
to solve the problem of hyperspectral image classification with
limited supervised samples. The proposed method combines the
learning strategy for global prototypical representations and a
novel deep network.

The main contributions of this article are listed as follows.
1) A method of global representation learning is proposed

to train a network, which is to learn a global prototypical
representation for each class in a new feature space. The
learning procedure includes hallucinating new samples,
generating episodic representations, and updating global
prototypical representations.

2) A novel architecture of deep CNN is designed, includ-
ing two branches: a dense convolutional network and a
spectral–spatial attention network. The dense convolu-
tional network is to alleviate the vanishing of gradient
information after passing through many layers, whereas
the SSAN is to adaptively adjust the receptive field size.

3) The experiments show that the overall accuracy (OA) of
the proposed method is better than that of existing meth-
ods. The ablation study demonstrates the effectiveness of
the global representation learning, the dense convolutional
network, and the spectral–spatial attention network, for
improving the classification accuracy.

This article is organized as follows. In Section II, the proposed
method is explained in detail, including the global representation
learning and the two-branch deep CNN. In Section III, the
experimental data and parameters are described. In Section IV,
the results are showed and discussed, and the ablation study and
time consumption are analyzed. In Section V, the conclusions
of this article are summarized.

II. METHOD

A. Procedure of the Proposed GPN

The procedure of the proposed GPN is shown in Fig. 1, includ-
ing training the network and testing the network. In training, the
base classes and new classes (after hallucinating new samples)
are used for training a deep network to learn a feature space
and also to learn the global prototypical representation in this
space for each class. In testing, the unclassified samples are
transformed to the embedding-feature space, and are classified
according to the similarities with the global prototypical repre-
sentations based on the nearest neighbor (NN) classifier.

B. Global Representation Learning

The global representation learning is to learn a function (i.e.,
network) fθ: RF→RD to transfer the samples from original data
space RF to an embedding-feature space RD. In the embedding-
feature space, each sample is a high-dimensional vector, and a
vector called global prototypical representation is learned for
each class during training. The number of dimensions of the
embedding-feature space is denoted as d.

Before training, ten new samples need to be hallucinated from
each new class. For the new class cj, kr samples are randomly
selected from all the kt samples in cj. The selected ith sample
can be extracted an embedding feature by the network, which
is denoted as fi. The new sample tcj hallucinated from the new
class cj is defined as (1). ceil (·) is the function to calculate the
rounded-up integer. U (0, u) is a uniform distribution ranging
from 0 to u

tcj =

kr∑

i=1

τi∑
j τj

· fi (1)

kr = ceil (kr
′
), kr

′ ∼ U(0, kt), τ i ∼ U(0, 1).
The procedure for training a batch is shown in Table I.

Call = {c1, c2, c3, …, cn} is the labels set of all the classes
and n is the number of all the classes, consisting of the labels set
of the base classes Cbase = {c1, c2, c3, …, cs} and the labels
set of the new classes Cnew = {cs+1, cs+2, cs+3, …, cs+t}. s is
the number of base classes and t is the number of new classes
(n = s + t). g (ci) is the global prototypical representation of the
class ci. G = {g (c1), g (c2), g (c3), …, g (cn)} is a d × n matrix
consisting of the global prototypical representations of all the
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Fig. 1. Procedure of the proposed GPN in this article.

TABLE I
PROCEDURE FOR TRAINING A BATCH

classes. The initialization of g (ci) is the mean of embedding
features (extracted by the initialized network) of all the labeled
samples in class ci (2). T = {t1, t2, t3, …, tm} is the labeled
samples set of all the classes and m is the number of all the labeled
samples in both the base classes and new classes. xi = fθ (ti) is
a vector representing the sample ti in the new space RD and the
dimension is d × 1

ginitial(ci) =

∑
fθ(sg)

Numi
(2)

where sg represents the labeled samples in class ci and Numi

represents the number of all the labeled samples in class ci.

In a batch, some classes are randomly selected from Call to
form Cbatch, and the number of selected classes is denoted as
nbatch. Then, a part of samples are randomly selected from each
class in Cbatch to form a support dataset S = {s1, s2, s3, …, sa},
and then another part of samples are also randomly selected from
each class in Cbatch to form a query dataset Q = {q1, q2, q3, …,
qb}. The number of samples per class in the support dataset S
and the query dataset Q is denoted as u and v, respectively. Thus,
the total number of samples in S and Q is a = u × nbatch and
b = v × nbatch, respectively. The embedding spatial–spectral
feature (a d × 1 vector) of each sample in the support dataset
S is extracted by the deep network fθ: RF→RD. The mean
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of embedding features of the samples in class ci is computed
and regarded as the episodic representation e(ci) of class ci in
this batch (3). The episodic representations of all the class in
this batch form the matrix E = {e(ci), ci�Cbatch}, which is a
d × nbatch matrix

e(ci) =

∑
fθ(se)

u
(3)

where se represents the labeled samples in class ci in a batch.
According to (4), the similarity score Hi =

[h1i , h
2
i , h

3
i , · · · , hni ]T between the episodic representation

of class ci and each global prototypical representation in
G = {g (c1), g (c2), g (c3), …, g (cn)} is calculated

hji = −||δ(e(ci))− ϕ(g(cj))||2, cj ∈ Call (4)

where δ (·) and ϕ (·) are embeddings for the episodic represen-
tation and the global prototypical representation, respectively.

In this article, a loss for class ci in support dataset (called
support loss) is defined as

Li
s = CE(ci,Hi) (5)

where CE(·) is a cross entropy loss.
The similarity score Hi = [h1i , h

2
i , h

3
i , · · · , hni ]T is normal-

ized to a probability distribution Pi = [p1i , p
2
i , p

3
i , · · · , pni ]T by

pji =
eh

j
i

∑n
j=1 e

hj
i

. (6)

The global prototypical representation of each class is then
updated according to

gupdate(ci) = GPi (7)

where G is a d × n matrix consisting of the global prototypical
representations before being updated, and Pi is a n × 1 vector.

The similarity score Wk = [w1
k, w

2
k, w

3
k, · · · , wnbatch

k ]T be-
tween the updated global prototypical representation and the
sample qk in the query dataset Q is defined as

wi
k = −||fθ(qk)− gupdate(ci)||2, ci ∈ Cbatch. (8)

A loss for the sample qk in the query dataset Q (called query
loss) is defined as

Lk
q = CE(C(qk),Wk) (9)

where CE(·) is a cross entropy loss. C(qk) belongs to the set
Cbatch and is the class type of the sample qk.

Based on the support loss and the query loss, the total loss in
this article is defined as

Ltotal =

nbatch∑

i=1

Li
s +

v∑

k=1

Lk
q . (10)

At the last of training a batch, the parameters of the network
θ are updated based on the total loss. The learning rate α of
the network is set as 1 × 10−3, whereas the weight decay and
momentum of the proposed network are set as 1 × 10−4 and
9 × 10−1, respectively.

C. Deep Networks

The architecture of the deep network (fθ: RF→RD) is shown
in Fig. 2, which consists of two parts: a dense convolutional
network and an SSAN.

1) Dense Convolution: For a normal convolutional network,
a connection point is present only between two neighbor layers.
In other words, there are n−1 connections in a normal convolu-
tional network with n layers. However, in a normal convolutional
network, the information about gradient can vanish after passing
through many layers [38]. In this article, a dense convolutional
network is designed with five convolutional layers (see Fig. 2).
The difference from a normal convolutional network is that more
connections are present, i.e., ten connections are in a five-layer
network (see Fig. 2): the first layer is connected to the second,
third, fourth, and fifth layer, respectively; the second layer is
connected to the third, fourth, and fifth layer, respectively; the
third layer is connected to the fourth and fifth layer, respectively;
and the fourth layer is connected to the fifth layer.

2) Spectral–Spatial Attention Network: In a normal convo-
lutional network, the size of the convolutional kernel is settled,
resulting in a constant size of receptive field for a layer. However,
from the view of optic nerve science, the size of receptive field
should be different for different nerve cells in a same layer,
to response to different stimulations. In this article, an SSAN
is proposed to realize different sizes of receptive fields in a
same layer. The strategy of SSAN is based on selective kernel
network [39]. Kernels with different sizes are applied on a layers,
respectively, and the size of receptive field is adjusted adaptively.
The SSAN in this article consists of three sections: split, fuse,
and select (see Fig. 2).

a) Split: In this section, the SSAN is split to two branches.
The one is a convolutional block using a 3 × 3 × 3 kernel,
and the other is to use a 5 × 5 × 5 kernel. To improve the
operational efficiency, the 5 × 5 × 5 convolution is realized by
dilated convolution [40].

b) Fuse: The number of spectral bands of the hyperspec-
tral image is denoted as N. The convolutional results from two
branches are fused by the following (“Fuse 1” module in Fig. 2):

Y = Yk1 +Yk2 (11)

where Yk1 and Yk2 are the convolutional results from two
branches, respectively. Y�R5 × 5 × N is the fused result.

The global information is embedded by the “global average
pooling” module (see Fig. 2) to generate the spectralwise statis-
tics U = [u1, u2, u3, …, uN]T �RN × 1 by

uc =
1

5× 5

5∑

i=1

5∑

j=1

Yc(i, j) (12)

where uc is the cth component of the spectralwise statistics U,
corresponding to the cth spectral band. Yc is the cth component
of Y, which is a 5 × 5 matrix (Yc�R5 × 5).

The compact feature Z is computed by the “full connected 1”
module (see Fig. 2) according to (13). “ceil (·)” is an operator
to acquire the rounded-up integer. Z is a ceil (N/r) vector (i.e.,
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Fig. 2. Architecture of the deep CNN network in this article.

Z�Rceil (N/r) × 1). r is the reduction ratio

Z = ψ(MU) (13)

where ψ is the ReLU function. M�Rceil (N/r) × N is a parameter
matrix needing trained in the network. The purpose of Z is to
guide the adaptive selections.

c) Select: “Spectral–spatial attention 1” and “Spectral–
spatial attention 2” are two branches with different receptive
scales of spectral–spatial information (see Fig. 2). For the cth
spectral band, the weights (ac, bc) of the two branches are
calculated by

ac =
eAcZ

eAcZ + eBcZ

bc =
eBcZ

eAcZ + eBcZ
(14)

where Ac and Bc are the cth components of the parameter ma-
trixes A and B, needing trained in the network. Ac�R1 × ceil (N/r),
Bc�R1 × ceil (N/r), A�RN × ceil (N/r), and B�RN × ceil (N/r).

“Fuse 2” is to adaptively select different scales of spectral–
spatial information (see Fig. 2). For the cth spectral band, the
output (Oc) of “Fuse 2” module is realized by (15). O = [O1,
O2, O3, …, ON] is the output of SSAN for all the spectral bands
(Oc�R5 × 5 and O�R5 × 5 × N)

Oc = ac ·Yk1
c + bc ·Yk2

c . (15)

D. NN for Classification

In this article, all the testing samples are transferred to an
embedded-feature space, and the embedded features are ex-
tracted by the trained deep network. The similarity scores be-
tween the last global prototypical representations and the each
testing sample are calculated according to (8). The maximum
similarity score determines the class type of each testing sample.
In fact, (8) is to calculate the opposite number of the Euclidean
distance between a global prototypical representation and the

TABLE II
DETAILS OF THE TRAINING DATASETS

TABLE III
DETAILS OF THE THREE TESTING DATASETS

embedded features of a sample. Thus, the maximum similarity
score corresponds to the minimum Euclidean distance. In other
words, the classification of the testing samples is finished based
on Euclidean distance using NN classifier.

III. EXPERIMENTS

A. Experimental Data

1) Training Data: There are four hyperspectral datasets that
are used as training data in this article. A brief introduction of
the hyperspectral datasets for training the network is shown in
Table II [24].

2) Testing Data: There are three hyperspectral datasets that
are used as testing data in this article. Both the training datasets
and the testing datasets are popular and well known in the
academic community of hyperspectral remote sensing. A brief
introduction of the testing datasets is shown in Table III [24].

Figs. 3–5 show the ground-truth classifications (i.e., real land
cover) of the three testing datasets. Salinas dataset is located
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Fig. 3. Real land cover of the Salinas hyperspectral image.

Fig. 4. Real land cover of the IP hyperspectral image.

in California. IP is short for Indian Pines located in Indiana,
whereas UP is short for the University of Pavia located in Pavia.

B. Architecture Details of the Proposed Deep CNN

The architecture and parameters of the proposed network are
shown in Table IV. The inputting size of GPN is 9 × 9 × N_
BAND. N_BAND is the number of spectral bands. Hence, both
the spectral curve of a pixel and a neighborhood (9 × 9) of the
pixel (spatial information) are input to the network. The layers
described in Table IV can be found in Fig. 2. An experiment of
parameter sensitivity was conducted to set the parameter d, with
L = 15 (the number of supervised samples in each new class) as
an example. The result is shown in Fig. 6. d was set to be 150,
where the OA reached the highest.

IV. RESULTS AND DISCUSSION

A. Accuracy

In this study, for the Salinas and the UP datasets, the ex-
periments were conducted with the number (L) of supervised

Fig. 5. Real land cover of the UP hyperspectral image.

Fig. 6. OA with a variety of d.

samples in each class as 5, 10, 15, 20, and 25, respectively. For
the IP dataset, L was set to be 5, 10, and 15, respectively, due
to the limited number of labeled samples for a class (i.e., there
are only 20 labeled samples in the class “Oats”). The results of
classification are shown in Figs. 7–9. For each case of L, ten runs
of experiments were performed repeatedly. The averages of the
OA are shown in Tables V–VII, which also show the standard
deviation (STD). The OA of the our method (GPN) is compared
with that of existing popular methods, which is also shown
in Tables V–VII, including SVM, DFSL+SVM [24], spatial-
contextual semisupervised SVM (SC3SVM) [41], DFSL+NN
[24], MSDN (end-to-end 3-D dense convolutional network)
[42], spatial–spectral label propagation based on the SVM
(SS-LPSVM) [43], double-branch multiattention (DBMA) [44],
Laplacian SVM [45], k-NN+ spatial neighborhood information
(KNN+SNI) [46], MSDN with spectralwise attention mech-
anism (MSDN-SA) [42], multinomial logistic regression +
random selection (MLR+RS) [47], Transductive SVM [48],
3D-CNN [21], and SVM+Siamese-CNN [24].

In Tables V–VII, the average OA and STD in ten runs of
DBMA, MSDN, MSDN-SA, and 3D-CNN were tested by this
article, whereas others were from Liu et al. [24]. Tables V–VII
show that the proposed GPN obtains the better results than other
popular methods. Hence, the results in this article suggest that
the proposed GPN is state-of-the-art in terms of OA.
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TABLE IV
ARCHITECTURE AND PARAMETERS OF THE DEEP CNN

Fig. 7. Classification results of the Salinas dataset. (a)–(e) Number (L) of supervised samples is 5, 10, 15, 20, and 25 in each class, respectively.
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Fig. 8. Classification results of the IP dataset. (a)–(c) Number (L) of supervised samples is 5, 10, and 15 in each class, respectively.

Fig. 9. Classification results of the UP dataset. (a)–(e) Number (L) of supervised samples is 5, 10, 15, 20, and 25 in each class, respectively.

TABLE V
AVERAGE ± STD (OA, %) OF TEN RUNS FOR SALINAS DATASET (THE BOLD RESULT IS THE HIGHEST ACCURACY WITH EACH L)

B. Ablation Study

The proposed method in this article consists of three main
modules, i.e., global representation learning, dense CNN, and
SSAN. An ablation study was performed in this article to demon-
strate that every module was effective for improving accuracy.
In other words, the accuracy of the method was tested when
the three modules were replaced, respectively. In the ablation
study, the strategy of global representation learning was replaced
by a traditional normal triplet learning [49]. The dense branch

and SSAN branch were replaced by a normal CNN module,
respectively. When a module was replaced, other modules were
kept same with the proposed method (GPN). The results of ab-
lation study are shown in Tables VIII–Table X. When the global
representation learning, dense CNN, and SSAN were replaced,
respectively, the classification accuracy presented decline. In
other words, the accuracy of the proposed method is better
than that of other cases where the three modules were replaced,
respectively. Thus, it is demonstrated that all the three modules
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TABLE VI
AVERAGE ± STD (OA, %) OF TEN RUNS FOR IP DATASET (THE BOLD RESULT IS THE HIGHEST ACCURACY WITH EACH L)

TABLE VII
AVERAGE ± STD (OA, %) OF TEN RUNS FOR UP DATASET (THE BOLD RESULT IS THE HIGHEST ACCURACY WITH EACH L)

TABLE VIII
AVERAGE ± STD (OA, %) OF TEN RUNS FOR SALINAS DATASET IN THE ABLATION STUDY

TABLE IX
AVERAGE ± STD (OA, %) OF TEN RUNS FOR IP DATASET IN THE ABLATION STUDY
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TABLE X
AVERAGE ± STD (OA, %) OF TEN RUNS FOR UP DATASET IN THE ABLATION STUDY

TABLE XI
TIME COMPARISON BETWEEN THE PROPOSED GPN AND SOME EXISTING METHODS

make contribution to improving the accuracy of the proposed
method. Specifically, when the dense branch was replaced by a
normal CNN, the accuracy presented a little decline, whereas the
accuracy with replacing global representation learning declined
most in the three modules. In other words, the accuracy reached
the worst when the global representation learning was replaced,
whereas the accuracy with replacing dense CNN was better than
replacing SSAN and global representation learning. Hence, it
can be inferred that the strategy of global representation learning
makes the most contribution to improving the accuracy, whereas
the SSAN and dense CNN take the second and third places,
respectively. But it should be emphasized that all the three
modules are effective for improving classification accuracy. In
particular, the experiments that directly applied dense CNN and
SSRN were conducted without global representation learning,
and the results of the declining accuracy in Tables VIII–X where
global representation learning was replaced have demonstrated
the effectiveness of the global representation learning. It is
worth noting that, in the ablation study, the proposed method
is not compared to existing methods, and is compared to the
method with one module being replaced by a normal module. For
example, when the dense CNN was replaced by a normal CNN,
the method for comparison still used the global representation
learning and SSAN, so the difference in accuracy was just be-
cause of the absence of dense CNN, which was less obvious than
the comparison to existing methods (e.g., SVM and SC3SVM).

In addition, the dense CNN was used alone for supervised
classification. The results are shown in Tables VIII–X. The
accuracy with using the dense CNN alone is lower than that with
using two or three modules simultaneously, which confirms the
effectiveness of the proposed GPN.

C. Time Consumption

The time consumption of the proposed method was tested and
compared with some existing methods using the IP dataset. The
details of computer environment for time testing were same for

different methods in this article. The results of time consumption
for different methods are shown in Table XI. It suggests that the
time consumption of GPN is similar with that of several popular
methods.

V. CONCLUSION

This study proposed a GPN for hyperspectral image classi-
fication using limited supervised samples (i.e., few-shot hyper-
spectral image classification). The experiments were conducted
for verification, and some main conclusions were reached as
follows.

1) The accuracy of GPN shows better than existing popular
methods under the condition of small samples. The com-
parative analysis suggests that the GPN is state-of-the-art
for solving the classification problem of hyperspectral
image using limited supervised samples.

2) The ablation study demonstrates that all the three modules
(global representation learning, dense branch, and SSAN
branch) are effective for improving the accuracy, whereas
the strategy of global representation learning makes the
most contribution.

3) The time expenditure of the proposed method (GPN) and
several existing popular methods is similar in the same
operational environment.

In the follow-up study, more hyperspectral datasets should be
used to test the effectiveness of the proposed GPN for few-shot
hyperspectral image classification.
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