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An Improved InceptionV3 Network for Obscured
Ship Classification in Remote Sensing Images

Kun Liu , Shengtao Yu , and Sidong Liu

Abstract—Ship target classification plays an important role in
tasks such as maritime traffic control, maritime target tracking,
and military reconnaissance. The complex ocean environment of-
ten causes obscuration of the ship targets, thus resulting in low
accuracy of the obscured targets. This article presents a novel
target classification algorithm—improved InceptionV3 and cen-
ter loss convolution neural network (IICL-CNN)—based on the
well-established inception network to improve the accuracy of
obscured targets. This algorithm features a new objective function,
which is designed to learn common features of both the clear
samples and the obscured samples and, in the meantime, reduce
the intraclass distance among the obscured samples. Experiments
were performed on an optical remote sensing image dataset which
consisted of 48 000 ship images in nine categories. The proposed
method demonstrated superior performance on the obscured ship
targets compared to the original InceptionV3 model. On average,
the accuracy was 4.23%, 5.98%, and 17.48% higher on the ship
targets that were occluded by levels of 30%, 50%, and 70%,
respectively. Our experimental results showed that the proposed
IICL-CNN could effectively improve the accuracy of the ship tar-
gets at various occlusion levels.

Index Terms—Convolution neural network (CNN), deep
learning, feature extraction, fog occlusion, image classification,
remote sensing image.

I. INTRODUCTION

SHIP target classification is an emerging research area which
has a broad range of applications in civil and military fields,

such as maritime traffic control, onshore search, maritime target
tracking, and military reconnaissance. With the developments
in computer vision and machine learning, there are many recent
studies in this area. Zhu et al. [1] recently proposed a method for
ship identification, which extracted multiple high-dimensional
local features from ship images and then used support vctor
machine (SVM) for target classification. In order to identify ship
targets more accurately, SVM is combined with other methods
to improve effectiveness and robustness [2]–[5]. Aiming at the
sparseness of targets in optical remote sensing images, Li et al.
[6] proposed a method for target detection and classification
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based on morphological matching and machine learning. Gao
et al. [7] proposed a ship classification algorithm based on
hierarchical salient regions. Yu et al. [8] proposed an algorithm
for uncertain ship target extraction based on a multifeature
dynamic fusion model and variance features of optical remote
sensing images. Dan et al. [9] proposed a transduction learning
framework to solve the problem of ship target classification in
infrared images. Sun et al. [10] proposed an automatic ship
target classification method based on scale invariant feature
transform (SIFT). The methods proposed in these studies were
mainly based on hand-crafted features, such as the position of
the main structure of the vessel, length and area of the vessel,
space moment, etc. However, these methods could only capture
high-level features of the images, possibly ignoring pixel-level
details that are also important for target classification.

Recent advances in convolutional neural network (CNN) have
reshaped the research in this area and suggested an alternative
solution. CNN is capable of automatically learning features of
images end-to-end and therefore has developed rapidly in the
field of target classification. In 2012, Alex Krizhevsky proposed
the CNN model–AlexNet [11] and won the ILSVRC visual
field competition with a big lead over the traditional methods.
Gong et al. [12] refined the AlexNet network to achieve rotation
invariance of the target. In 2014, GoogLeNet [13] was proposed
and won the ILSVRC championship, with a top-5 error rate
of 6.7%. Szegedy et al. [14] indicates that very deep convo-
lutional networks have become the mainstream of computer
vision since 2014, and have achieved many improvements in
various benchmark tests. The increasing volume of labeled data,
complemented with advances in model structure, can quickly
improve model quality in most tasks. The authors actively
explore ways to extend the network, aiming to make use of
the added calculations as efficiently as possible through proper
decompression and active regularization. Using a model with 5
billion multiply-add operations per inference process and less
than 2.5 million total parameters, the method in [14] achieved
single-frame evaluations with 21.2% top-1 and 5.6% top-5 error
rates. Since then, the inception structure of GoogLeNet network
has experienced a few major updates [14], [15] with many
variants, and is still under active development. With its good
stability and robustness, the target classification methods based
on the different inception versions are becoming more popular
[16]–[19].

Due to the diversity of ship size and rotation, ship detec-
tion from optical remote sensing images is still a difficult
task. In order to solve this problem, some of the studies have
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implemented the effectiveness of ship detection by adjusting
the CNN structure [20]–[22]. Lei et al. [23] proposed a post-
convolution neural network method to extract ships from high-
resolution optical remote sensing images. Zhang et al. [24] pro-
posed a CNN- extreme learning machine (ELM) network struc-
ture combining a convolutional neural network and an ELM.
This is used for ship high-resolution distance profile (HRRP)
target classification and automatic extraction of deep features
from data. Zou et al. [25] developed a CNN model with singular
value decomposition (SVD) to improve feature extraction for
offshore vessels. Chan et al. [26] proposed the PCANet model
based on principal component analysis (PCA), which learned
the multilayer kernels, binary hash codes, and block histograms
for image down sampling and feature encoding. Cheng et al.
[27] proposed a geometric feature extraction method based on
iterative linear regression to improve the parameter estimation
of a ship target slice. Zhao et al. [28] proposed a network
architecture based on faster R-CNN to improve the detection
performance of the model by using compression and excitation
mechanisms. Kang et al. [29] proposed a multilayer fusion con-
volutional neural network based on context region for synthetic
aperture radar (SAR) ship detection. But the performances of
these CNN-based models are usually compromised by the ship
targets in images obscured by the complex meteorological en-
vironment on the sea surface. For example, fog occlusion is one
of the common situations encountered in the sea environment.
Ship targets obscured by the fog are difficult to recognize and
therefore can lead to low accuracy or misjudgments. One indirect
solution to alleviate the impact of fog occlusion is to remove
the fog component from images before feeding them to a CNN
model. For example, Yoon et al. [30] presented a weighted
adaptive image defogging method by extracting features in the
RGB channels. Yao et al. [31] proposed a method to calculate
the defogging rate from the effective edge strength, proving
its effectiveness and robustness. Park et al. proposed a novel
depth-based stereo image dehazing method [32]. The study [33]
proposes improved methods of atmospheric light estimation and
transmission for the shortcomings of inaccurate atmospheric
light estimation. Yoon et al. [34] proposed a dehazing image
enhancement algorithm for drone images based on a wavelength
adaptive image formation model and geometric classification.
However, we believe that this challenge can be directly addressed
by refining the CNN model to jointly learn the features from both
fog occluded ship targets and the clear ship targets.

Therefore, in this study we propose a novel target classifica-
tion method based on a refined InceptionV3 network to improve
the accuracy of the obscured targets. The contribution of this
work is threefold. First, a specific dataset of 46 000 ship images
with various fog occlusion conditions was established to bench-
mark different methods. Second, we added a new constraint to
the original Softmax cross-entropy function of the CNN to in-
crease the similarity between features learned from the occlusion
samples and the clear samples, therefore allowing the features
to be shared across the samples with various levels of occlusion.
Finally, a center loss function was added to the objective function
to reduce the intraclass distances, which further improved the
discriminating power of the learned features thereby increasing

the accuracy of the obscured samples. The proposed method
demonstrated superior performance over previous methods in
ship target classification and implies a high applicability in tasks
like maritime traffic control, onshore search, maritime target
tracking, and military reconnaissance.

II. FOG OCCLUDED SHIP CLASSIFICATION BASED ON

CONVOLUTION NEURAL NETWORK

A. Fog Occluded Ship Dataset

A large number of ship images with various fog occlusion
conditions are required to enable a CNN model to learn the
features of the occluded ship targets. With only a few publicly
available ship image datasets, we were motivated to establish
our own dataset. The clear ship samples, mostly optical remote
sensing images, were obtained using Google crawler, whereas
the occluded ship samples in this dataset were obtained by
adding Berlin noise [35], [36] to the clear samples to simulate
the fog occlusion effect with a weight coefficient controlling the
degree of occlusion.

The fog map formation algorithm described in [36] was used
to simulate the fog occluded ship images. A simulated fog image
is defined as

I(x) = D(x)t(x) +A(1− t(x)) (1)

where I(x) is the generated fog image, D(x) is the origi-
nal image, A is the global atmospheric light component, and
t(x) is the medium transmission defined by users to describe
the ability of foggy air to transmit light. We first identified
the minimum value of RGB channels of the input image to
obtain a dark primary channel image, which was then used
to estimate the global atmospheric light A through average
filtering. To produce the obscured ship samples, a set of K
occlusion levels ϕ = {ϕ1, ϕ2, ϕ3, . . . , ϕk} and occlusion trans-
formsTϕ = {Tϕ1

, Tϕ2
, Tϕ3

, . . . , Tϕk
}were defined, whereTϕk

represents a transform with an occlusion level ϕk. Each occlu-
sion transform in Tϕ was then applied to all training samples
X = {x1, x2, . . . , xN} to derive the obscured samples TϕX =
{Tϕ1

x1, Tϕ2
x2, Tϕ3

x3, . . . , Tϕk
xN}, where a single occlusion

sample was defined as Tϕxi = {Tϕk
xi|k = 1, 2, . . . ,K}. The

clear samples and their corresponding occluded samples, χ =
{X,TϕX}, were then used together to train and test the proposed
model. In this study, we set K = 5 and ϕ = {30, 40, 50, 60, 70}.

The dataset used contains 46 000 samples across nine types
of ships, including aircraft carriers (5196 samples), bulk carriers
(5070), cruise ships (5100), warships (5112), submarines (5088),
container ships (5130), tankers (5094), barges (5106), and small
boats (5106). We split the dataset into 40 000 training images,
∼4000 validation images, and ∼2000 test images. All images
were standardized by rescaling to an image size of 299 × 299
pixels and applying zero-mean normalization. Fig. 1 illustrates
a few clear ships and simulated occluded ships from the dataset.

B. Improved InceptionV3 and Center Loss-CNN

InceptionV3 network can be efficiently decomposed into
small convolution kernels, which greatly reduces the number
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Fig. 1. Examples of the generated fog obscured ship images at different
occlusion levels.

of parameters of the model and the chance of overfitting. Mean-
while, it also increases the nonlinear expression ability of the
network by extracting features at different abstraction levels and
encoding them to high-level features [37]. In this article, we
propose two improvements to the InceptionV3 network. First,
a fully connected layer (FC layer) was added to the network
to merge the features learned from clear targets and occluded
targets. Second, a center loss function was added to the loss
function to reduce the distance between classes. Therefore, the
proposed network is named as improved InceptionV3 and center
loss CNN (IICL-CNN).

Fig. 2 shows the structure of the proposed IICL-CNN, where
i is the ith sample, m is the category, and N is the number of
samples. This model consists of three different types of inception
modules, with 3, 5, and 3 inception structures, respectively [13].
Although the model has 43 layers, the number of parameters is
only one-twelfth of that of AlexNet, which has a great advantage
in model deployment. The network configuration is shown in
Table I.

IICL-CNN, like other CNN models, can extract the low-
level features from the input images using its convolutional
and pooling layers. The low-level features can be transformed
to high-level abstract features through the inception modules,
and further transformed to a linear feature vector using the
linear and FC layers. The main function of the FC layer is to
merge the features learned from samples with and without fog
occlusion and to reduce the impact of feature divergence on
target classification.

The process of training IICL-CNN includes calculating the
deviation and characteristic error between the predicted value
and the ground real situation through forward propagation after
the initialization of random parameters. The deviation and the
characteristic error are further tested to ensure that they fall
within the allowable range, followed by weight update through
backpropagation. The network parameters and thresholds are
fixed and saved when the termination criteria are met. Adam
optimizer [38] is used with a learning rate of 0.001, momentum
of 0.9, super parameter β1 of 0.9, β2 of 0.999, epsilon ε of 10−8,
batch size of 32, and 30 000 iterations. To evaluate a trained
IICL-CNN model, test samples are taken as inputs to obtain the

output predictions, and the average accuracy of the network is
calculated by comparing the predictions with the ground truth
labels of the test samples.

C. Constrained Objective Function With Center Loss Function

We hypothesize that, if the difference between features
learned from the clear samples and the occlusion samples is
reduced, or in other words, the features are commonly applicable
to, both, clear samples and obscured samples, then the accuracy
for the occlusion samples will increase. Therefore, we added
a constraint to the objective function to enforce the similarity
between clear sample features and occlusion sample features.
In addition, since the Softmax cross-entropy loss function can
only expand the distance between classes but cannot reduce the
intraclass distance, a center loss function was added to control
the intraclass distances to further improve the discriminating
power of the model. The proposed objective function is defined
in (2)

L = Ls + λ1Ll + λ2Lc (2)

where λ1 and λ2 are the tradeoff coefficients of the objective
function. Ls is a Softmax cross-entropy loss function as defined
in (3)

Ls = − 1

N +NK

∑

xi∈χ

C∑

k=1

yxi
[k]· log eW

T
yi

xi+byi

∑C
j=1 e

WT
j xj+bj

[k] (3)

where yxi
represents the ground truth label of the sample, N is

the total number of initial training samples in X, K is the total
number of occlusion transformations per xi ∈ X , and C is the
total category.
Ll is the objective function feature similarity constraint,

which is applied to enforce similarity between features of the
clear sample X and occlusion samples TϕX . In this study,
the logarithmic hyperbolic cosine function is chosen as the
constraint function as it is a smoother loss function than the
L2 loss function. When the sample characteristic error is small,
logcosh(x) is similar to the L2 loss function. When the error
is large, logcosh(x) is similar to abs(x)-log2 and abs(x)−log2
is similar to the Huber function when δ = 1. Logarithmic
hyperbolic cosine function ensures that the loss function has
a continuous derivative. Fig. 3 shows the comparison of the
logarithmic hyperbolic cosine function and other functions.

The hyperbolic cosine function uses mean square error (mse)
to evaluate the similarity of clear sample features and occlusion
sample features. The error is minimized during model training to
enforce the model to learn the common features that are shared
by both clear and occlusion samples, thereby improving the
robustness of the model. Ll is defined as

Ll =
1

N

∑

xi∈X
log cosh(OFC(xi)−OFC(Tϕxi)) (4)

where N is the total number of initial training samples in X;
OFC(xi) is the output of the FC layer and also the IICL-CNN
feature of the training sample xi; OFC(Tϕxi) represents the
averaged IICL-CNN features of the occluded training sample
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Fig. 2. Ship classification simplified model based on IICL-CNN.

TABLE I
IICL-CNN NETWORK’S CONFIGURATION

Fig. 3. Comparison of logarithmic hyperbolic cosine functions.

Tϕxi

OFC(Tϕxi) =
1

K
(OFC(Tϕ1

xi)+OFC(Tϕ2
xi)

+ · · ·+OFC(TϕK
xi)). (5)

To reduce the intraclass distance within each class, a center
loss function [39] is added to impose the feature discriminant

degree of the model, thereby improving the accuracy of the
occlusion sample

Lc =
1

2

m∑

i=1

||OFC(χi)− cyi
||22. (6)

Among them, OFC(χi) is the feature of the FC layer, and
cyi

represents a feature center of the yith category.
The class center was derived by averaging the features of the

corresponding class. To avoid unnecessary fluctuations caused
by a small number of erroneously labeled samples, a scalar was
then to control the learning rate [0, 1] when calculating the center
loss. The updated calculation of the echelon sum with respect to
the characteristics is shown in (7) and (8)

∂Lc

∂OFC(χi)
= OFC(χi)− cyi

(7)

Δcj =

∑m
i=1 δ(yi − j)(cj −OFC(χi))

1 +
∑m

i=1 δ(yi = j)
(8)

where δ(condition) = 1 if the condition is satisfied, and δ
(condition) = 0 if not. Parameters {cj |j = 1, 2, . . . ,n}in loss
layer. Reorganizing (2) to (6) we can get the objective function

L = − 1

N +NK

∑

xi∈χ

C∑

k=1

yxi
[k]· log eW

T
yi

xi+byi

∑C
j=1 e

WT
j xj+bj

[k]

+
λ1

N

∑

xi∈X
log cosh(OFC(xi)−OFC(Tϕxi))

+
λ2

2

m∑

i=1

||OFC(χi)− cyi
||22 (9)

III. RESULTS

A. Comparison Between IICL-CNN and InceptionV3

To compare the difference between the features learned by In-
ceptionV3 and IICL-CNN, the features for each sample selected
from the test set were extracted at the linear layer of the two net-
works. Fig. 4 illustrates the extracted high-dimensional features,
which were processed using the principal component analysis
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Fig. 4. Aircraft carrier characteristic histogram and feature line graph with occlusion levels of 0, 30, 50, and 70. (a) Input. (b) Inception V3 characteristic
histogram. (c) Inception V3 characteristic difference line graph. (d) IICL-CNN characteristic histogram. (e) IICL-CNN characteristic difference line graph.

(PCA) [40]. The aircraft carrier in Fig. 4(a) is a sample with
occlusion levels of 0, 30, 50, and 70, respectively. Fig. 4(b) shows
the features of InceptionV3 and Fig. 4(d) shows the features of
IICL-CNN. As the level of occlusion deepens, the features of
the InceptionV3 network change markedly, while the features
of the IICL-CNN remain stable. To analyze the transformation
trend in more detail, the sample features with occlusion levels
of 30, 50, and 70 are compared with the clear sample features
with occlusion level of 0. The feature difference is illustrated
by a line graph. As shown in Fig. 4(c) and Fig. 4(e), noticeable
changes are represented in the different lines of InceptionV3,
whereas IICL-CNN shows only minor oscillations. Overall, the
features learned by IICL-CNN are highly similar between the
clear samples and occlusion samples, which provide the basis
for improving the accuracy and robustness.

B. Verification of the Constrained Objective Function

To further verify the effectiveness of the proposed feature
similarity constraint in IICL-CNN, we randomly extracted 20
images with occlusion levels of 30, 40, 50, 60, and 70 from

each of the nine categories. The average feature vector of the
100 samples of each category was then compared to that of the
100 clear images. Four metrics, including average value (Avg),
standard deviation (Std), Interquartile Range (IQR), and signal-
to-noise ratio (SNR) were derived from the average features
with and without the feature similarity constraint, as shown in
Table II. For all the nine categories, features with the constraint
showed lower Avg, Std, and IQR, but higher SNR, indicating that
the volatility of features was small when the similarity constraint
was implemented.

C. Verification of the Center Loss

To verify whether center loss can reduce the distance between
intraclasses, we randomly extracted 2000 samples from the test
set of nine categories, and derived their features at the logits layer
using InceptionV3 and IILC-CNN, respectively. To visualize the
feature space, we reduced the dimension of the feature space to 2
using the t-distributed stochastic neighbor embedding (t-SNE)
method [41]. Fig. 5(a) and (b) illustrates the reduced feature
space of InceptionV3 and IICL-CNN, respectively. The feature
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Fig. 5. Illustration of the clusters and the interclass distances using InceptionV3 and IICL-CNN features. (a) reduced feature space of InceptionV3. (b) reduced
feature space of IICL-CNN. (c) inter-class distances of InceptionV3. (d) inter-class distances of IICL-CNN.

TABLE II
CONTRAST ERROR COMPARISON OF CATEGORY 9 SHIP FEATURES

space shows that the clusters of the InceptionV3 features with no
center loss are overlapped whereas, the clusters of the IICL-CNN
features are more separable with higher compactness within each
cluster.

We further calculated the mean Euclidean distances between
the ship categories based on the InceptionV3 and IICL-CNN
features to quantitatively evaluate the effectiveness of the center
loss function. Fig. 5(c) and (d) shows the interclass distance

between the ship categories using InceptionV3 features and
IICL-CNN features, respectively. The interclass distances using
IICL-CNN (6.53 ± 0.90) are much larger than those when
using InceptionV3 (1.40 ± 0.26). Table III shows the intraclass
distances within each ship category using the two models, and
IICL-CNN demonstrates significantly lower intraclass distances
than InceptionV3 (p < 0.00001). Higher interclass distances
and lower intraclass distances imply that IICL-CNN has higher
discriminating power.

D. Ship Target Classification

The target classification experiments were carried out using
a workstation with an Intel i5-7300HQ (2.5 GHz) CPU and
a NVidia GeForce GTX1060 GPU. During training, the clear
samples and the corresponding occlusion samples were fed into
the network for training as a batch with a small batch size
of 6. The ratio between the clear samples and the occlusion
samples is 1:5, and the occlusion samples include samples with
the occlusion degrees of 30, 40, 50, 60, and 70. The total learning
rate was set to 0.001 and the learning rate in center loss was
set to 0.5. The models were trained with 30 000 iterations.
We used grid search to identify the optimal combination of
tradeoff coefficients of λ1 and λ2 for the cross-loss function
and the feature similarity constraint. The tested values for both
coefficients were {0.01, 0.005, 0.001, 0.0005}. Fig. 6 shows that
when the parameter λ1 was set to 0.001 and λ2 was set to 0.01,
the average accuracy was the highest.

Fig. 7 shows the accuracy and loss curves for the InceptionV3
and IICL-CNN. Compared with the InceptionV3 network,
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TABLE III
INCEPTIONV3 AND IICL-CNN INTRACLASS DISTANCE WITHIN EACH SHIP CATEGORY

Bold entities means the effect is better than other methods.

Fig. 6. Average accuracy of different parameters λ1 and λ2.

TABLE IV
AVERAGE ACCURACY OF EACH OBJECTIVE FUNCTION OF THE MODEL

Bold entities means the effect is better than other methods.

IICL-CNN had a faster convergence rate, higher accuracy, and
more stable network as the number of iterations increased.

To test the role of Ll and Lc in the IICL-CNN model, Ll and
Lc are trained separately and compared with joint training. The
results are shown in Table IV. It can be seen that when the objec-
tive function is only Ll, the accuracy rate is not much different
from the joint training, but when the objective function is only
Lc, the accuracy rate drops rapidly after the occlusion degree is
50. Therefore, the contribution of the similarity constraint loss
and center loss is validated.

To test the target classification performance of the IICL-CNN
model, we compared it with InceptionV3 [14], InceptionV4
[15], SVDNet [25], PCANet [26], defogging algorithm [30],
Resnet50 [42], and a traditional method using SVM classifier
and the histogram of oriented gradients (SVM + HOG) [43].
The test set contains 335 clear ship images and their simulated
fog occluded images at five occlusion levels resulting in a total
number of 2010 samples. After training each network model,

Fig. 7. Accuracy and loss curve for InceptionV3 and IICL-CNN networks.

test sets with different occlusion levels were used to calculate
the average accuracy rate of each network model. As shown in
Table V, the average accuracy of all models decreased as the level
of occlusion increased. When the occlusion level was greater
than 50, the average accuracy of InceptionV3, InceptionV4, and
the traditional method were significantly reduced. IICL-CNN,
SVDNet, and PCANet were robust to occlusion samples, and
IICL-CNN achieved the best performance among all the com-
pared algorithms.

The IICL-CNN model is used to test the accuracy of different
ships under different degrees of occlusion. Table VI shows that
as the degree of occlusion increases, the accuracy for all ship
categories decreases. Also, similar shaped ship categories of
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TABLE V
AVERAGE ACCURACY OF EACH NETWORK MODEL (%)

Bold entities means the effect is better than other methods.

TABLE VI
ACCURACY OF DIFFERENT SHIPS FOR EACH DEGREE OF OCCLUSION (%)

TABLE VII
REAL-TIME CALCULATION TIME FOR EACH NETWORK MODEL (UNIT: S)

bulk carriers, container ships, and tankers resulted in an accuracy
lower than other ships.

In order to verify the time efficiency of the IICL-CNN
model, we compared the calculation time of the model with
InceptionV3, InceptionV4, SVDNet, PCANet, defogging algo-
rithms, and traditional SVM + HOG methods. The calculated
average classification running time is shown in Table VII. The
SVM+HOG method has the shortest average classification time
of 6.465 s, whereas IICL-CNN is about 30% slower (8.432 s).

Overall, IICL-CNN shows a good applicability in the field
of maritime transportation with excellent accuracy, but longer
calculation time than the SVM + HOG method, indicating there
is room for further improvement in its real-time performance.

IV. DISCUSSION

Complex meteorological environment on the sea surface may
lead to incomplete information of the ship targets and make
them less recognizable. Fog occlusion is one of the common
situations encountered in the sea environment. Ship targets
that are obscured by the fog will pose changes to the ship
target classification algorithms, thus leading to drop in accuracy.

Previous effort to alleviate the impact of fog occlusion aims to
remove the fog component from images, such as the defogging
method proposed by Yoon et al. [30]. However, this method
only uses the statistical color features and, therefore, is not
able to cover the full spectrum of fog occlusion conditions.
Furthermore, defogging, as a preprocessing step, is independent
of the ship target classification model and thus cannot be trained
in an end-to-end fashion like the CNN models.

We believe this challenge can be directly addressed by em-
powering the CNN model to learn the most robust and represen-
tative features of the occluded ship targets. We hypothesize that if
the features are commonly applicable to both clear samples and
obscured samples, then the accuracy for the occlusion samples
will increase. To test our hypothesis, an IICL-CNN model was
proposed based on the well-established inception network. The
prominent improvement of IICL-CNN over InceptionV3 is that a
FC layer was added to merge the features learned from samples
with and without fog occlusion and to reduce the impact of
feature divergence on target classification.

Furthermore, we added a similarity constraint and a center loss
function to the objective function, which enforce the similarity
between clear ship features and occlusion ship features, and
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minimized the intraclass distances for further improvement of
the features’ discriminating power.

The InceptionV3 model was chosen in consideration of both
performance gain and time cost. The performance of Incep-
tionV3 and V4 are very similar according to our experiments
as shown in Table V. The performance of InceptionV4 is
slightly higher than that of InceptionV3, but when occlusion
degree reaches 70, differences between the two become min-
imal (difference in accuracy < 0.0006). We also compared
Resnet50 with InceptionV3, and similar pattern was noticed
(difference< 0.0015). In terms of time cost, InceptionV4 almost
doubles the training time compared to InceptionV3 (0.621 versus
0.316 s per step). InceptionV3 is also 30% faster than Resnet50
(0.411 s per step). To balance performance gain and time cost,
we chose InceptionV3 as the basic network architecture in this
study, and other networks were used as baseline models.

Compared to InceptionV3, the features learned by IICL-CNN
are highly similar between the clear samples and occlusion
samples as evaluated using the Avg, Std, IQR, and SNR met-
rics, which implies high robustness of the IICL-CNN features.
Furthermore, the higher interclass distances and lower intra-
class distances of the IICL-CNN features further imply higher
discriminating power of the IICL-CNN model. In terms of the
model’s performance, as the level of occlusion increases, the
difference in accuracy of the two models also increases, from
0.9% on clear samples to 17.48% on severely occluded sam-
ples (70% occlusion level). Compared to other state-of-the-art
CNN-models and traditional feature extraction and classifica-
tion method, our model demonstrates superior performance on
classification of both the clear and occluded ship targets.

Another important contribution of this study is that we shaped
a specific ship image dataset, which has a high potential to be
used for benchmarking the state-of-the-art ship target classifi-
cation algorithms. There are 48 000 ship images in this dataset
across nine different ship categories covering various fog occlu-
sion conditions. All images are standardized by removing the
land component, resizing to 299 × 299 image size and applying
zero-mean normalization. As the remote sensing images are
becoming increasingly available, this dataset can be expanded
to cover more samples and ship categories, which may further
improve the ship target accuracy.

V. CONCLUSION

Ship target classification is a key technology in maritime
traffic control, maritime target tracking, and military recon-
naissance, etc. The complex ocean environment, including fog
occlusion, often obscures the ship targets and poses challenges
for ship target classification.

To improve the accuracy of the fog occluded ship targets, we
propose the IICL-CNN model which refines the InceptionV3
structure and loss function to allow learning of similar fea-
tures from both clear ship samples and obscured ship samples.
Compared with the original InceptionV3, the average accuracy
of the ship targets with 30%, 50%, and 70% fog occlusion
levels are increased by 4.23%, 5.98%, and 17.48%, respec-
tively. For the clear samples alone, the proposed IICL-CNN also

demonstrates superior performance compared to other state-
of-the-art CNN-models and traditional feature extraction and
classification method. As the remote sensing images become
increasingly available, we believe the performance of IICL-CNN
can be further improved and will have a high applicability in
tasks including maritime traffic control, onshore search, and
maritime target tracking.
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