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Abstract—Deep learning-based methods based on convolutional
neural networks (CNNs) have demonstrated remarkable perfor-
mance in hyperspectral image (HSI) classification. Most of these
approaches are only based on 2-D CNN or 3-D CNN. It is dramatic
from the literature that using just 2-D CNN may result in missing
channel relationship information, and using just 3-D CNN may
make the model very complex. Moreover, the existing network
models do not pay enough attention to extracting spectral-spatial
correlation information. To address these issues, we propose a
deep collaborative attention network for HSI classification by
combining 2-D CNN, and 3-D CNN (CACNN). Specifically, we
first extract spectral-spatial features by using 2-D CNN, and 3-D
CNN, respectively, and then use a “NonLocalBlock” to combine
these two kinds of features. This block serves as a typical spatial
attention mechanism, and makes salient features be emphasized.
Then, we propose a “Conv_Block” that is similar to the lightweight
dense block to extract correlation information contained in the
feature maps. Finally, we consider a deep multilayer feature fusion
strategy, and thereby combine the features of different hierarchical
layers to extract the strong correlated spectral-spatial information
among them. To test the performance of CACNN approach, several
experiments are performed on four well-known HSIs. The results
are compared with the state-of-the-art approaches, and satisfactory
performance is obtained by our proposed method. The code of
CACNN method is available on Dr. J. Liu’s GitHub.1

Index Terms—Convolutional neural network (CNN), feature
extraction, hyperspectral image classification, multilayer feature
fusion, spatial attention mechanism.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) have high spectral res-
olution with abundant spectral bands, and each spectral

band corresponds to an image with a specific wavelength.
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They are capable of characterizing various properties of objects
including physics, chemistry, materials, etc. Therefore, HSI has
been widely applied to many fields, such as ecological science,
earth exploration, and environmental monitoring [1]–[4]. One
of the most important application is to classify every pixel in the
HSI.

In the past decades, HSI classification methods have been
developed from using the hand-designed feature description
to extracting discriminative feature via efficient and automatic
ways. In the early stage, typical hand-designed feature classifi-
cation approaches pay attention to exploring the role of spectral
features for enhancing HSI classification performance [5], [6].
Thus, a large number of pixel classification methods, including
support vector machine (SVM) [7] [8], multinomial logistic re-
gression [9], [10], sparse representation [11], [12], collaborative
representation [13], [14], and so on, have been proposed. In
addition, the high dimensionality of HSI easy to produce the
Hughes phenomenon [15], so other classification methods focus
on dimension–reduction technique, such as principal component
analysis (PCA) [16], [17], independent component analysis
[18], etc. However, there often exist redundant or even noisy
spectral bands in the HSI since the drawback of imaging mech-
anism and the sensor. To overcome the deficiency of only using
spectral bands, many classification methods based on spectral-
spatial features are proposed by incorporating spatial-contextual
information into classifiers [19]–[23]. For instance, Tarabalka et
al. [24] proposed a new spectral-spatial approach that combines
the results of a pixel-wise SVM classification and the segmen-
tation map obtained by partitional clustering using majority
voting. Fauvel et al. [25] proposed the method based on the
fusion of morphological information and original hyperspectral
data. Kang et al. [26] proposed a novel spectral-spatial classifi-
cation framework based on edge-preserving filtering. Due to the
limitation of resolution and the complexity of imaging process,
different materials often have similar spectra, while the same
materials exhibit different spectra.

Recently, deep learning, which automatically and hierarchi-
cally extract feature by learning parameters, has attracted in-
creasing attention in many computer vision tasks, such as image
classification [27], object detection and tracking [28], semantic
segmentation [29], and so on. Chen et al. [30] first apply deep
learning to HSI classification. With the development of deep
learning, many other approaches based on this are employed
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in HSI classification to improve performance [31]–[35]. The
representative models based on deep learning include convolu-
tional neural network (CNN) [36], deep belief network [37], and
recurrent neural network [38]. Moreover, different structures of
CNN models have been investigated, such as 2-D CNN [39], and
3-D CNN [40], [41], due to its remarkable performance gain over
the hand-designed features [42]. For combining the advantages
of these network structures to improve classification perfor-
mance, researchers have also proposed many deep networks. For
instance, Yang et al. [43] proposed a deep CNN with two-branch
architecture (Two-CNN) to extract the joint spectral-spatial fea-
tures from spectral domain as well as spatial domain of HSIs.
Fang et al. [44] use deep hash neural networks (SPDF-SVM)
to expand discrimination among different classes and extract
hyperspectral features for HSI classification, simultaneously.
Whereas, with the increase of network depth, the classification
accuracy of some CNN models decrease. To overcome this
drawback, Zhong et al. [45] have proposed the spectral-spatial
residual network (SSRN) using the identity mapping to connect
every other 3-D convolutional layer. Paoletti et al. [46] have
proposed pyramidal network based on residual blocks (pResNet)
that gradually increases the feature map dimension at all con-
volutional layers while balancing the workload among all units.
To obtain complementary spectral-spatial features among dif-
ferent hierarchical layers, Guo et al. [47] present discriminative
multiple spatial-spectral feature fusion (FFDN). Xiao et al. [48]
propose a new method with variable convolution for HSI classi-
fication. Pan et al. [49] use mapping layers to map the input patch
into a low-dimensional subspace by multilinear algebra with a
convolutional neural for HSI classification. More recently, many
studies have shown that HSI classification framework based on
deep spectral-spatial features can achieve state-of-the-art results.
So the spectral-spatial joint HSI classification methods based on
deep network have become the mainstream [50]–[55].

However, most existing methods have inherent limitations
because of the need of extracting enough spectral and spatial cor-
relation information in classification models. On the one hand,
deep network structures are only based on 2-D CNN, making
model easy to miss channel relationship information. Similarly,
model only based on 3-D CNN may be very complicated and
perform worse for classes having similar textures on many
spectral bands. Obviously, 2-D CNN and 3-D CNN have their
own technique shortcomings. 2-D CNN focuses on extracing
spatial feature information, and 3-D CNN focuses on extracing
spectral-spatial feature information. With the fusion of the two
feature maps, the new feature map contains more discriminative
spectral-spatial information. On the other hand, to address this
problem, attention mechanism is applied in computer vision,
which makes people pay more attention to the most important
component. Recently, several attempts have been made to in-
corporate attention processing to improve CNN’s performance
in classification tasks. SE-Net [56] uses global average pooling
to compute channelwise attention. Haut et al. [57] designed a
new visual attention-driven mechanism into a ResNet. More-
over, several attention techniques have been developed for HSI
classification. Fang et al. [58] proposed a network to apply the
spectralwise attention technique in a densely connected 3-D

CNN. Dong et al. [59] designed a cooperative spectral-spatial
attention dense network (CS2ADN) with the dense connection
for HSI classification. Attention mechanism has been favored
by more and more researchers because of its good effect in HSI
classification.

In this article, we propose a deep collaborative attention
network for HSI classification by combining 2-D CNN with 3-D
CNN (CACNN). In the pre-processing phase, PCA algorithm is
used to extract the most informative components on hyperspec-
tral data. In deep network model, we first use 2-D CNN and 3-D
CNN to extract spectral-spatial features, respectively, and then
combine these two kinds of features with a “NonLocalBlock”
[60]. This block is termed as a typical spatial attention mecha-
nism to make salient features be emphasized. Then, we proposed
“Conv_Block” which is similar to the light weight dense block
to extract correlation information contained in the feature maps.
In addition, we consider a deep multilayer feature fusion to
extract the strong correlated spatial-spectral information among
different hierarchical layers. Finally, the obtained discriminative
spatial-spectral features are fed into a 1 × 1 convolution layer
to assist classification.

Some of the innovative characteristics of the proposed ap-
proach are highlighted as follows.

1) The 3-D CNN and 2-D CNN layers are collaborated for
the proposed model in such a way that we will achieve
abundant spectral as well as spatial feature maps. By
combining of these feature maps, the new feature maps
contain rich spectral-spatial correlation information.

2) The NonLocalBlock and Conv_Block are utilized to em-
phasize spatial correlation features and extract high-level
abstract correlation information, separately.

3) To make full use of complementary spectral-spatial fea-
tures among different hierarchical layers, CACNN adopts
a multilayer feature fusion strategy. And the obtained
discriminative feature maps are contributed to achieving
expected classification results.

The remainder of this article is organized as follows.
Section II describes the proposed CACNN and the correspond-
ing algorithms. The experiments are shown in Section III. Fi-
nally, Section IV concludes this article with some remarks and
future research directions.

II. PROPOSED FRAMEWORK

The main procedure of the proposed CACNN is shown in
Fig. 1, including spectral-spatial feature extraction by combining
2-D CNN and 3-D CNN, NonLocalBlock, Conv_block, deep
multilayer feature fusion, and a 1× 1 convolution layer followed
by a softmax function. Generally, the input of the original HSI
can be denoted as X ∈ RH×W×D, the output Y ∈ RH×W×C

denotes the class probability of each pixel, where H , W , D, and
C are indicated as height, width, number of bands, and number
of classes, separately. In the CACNN, due to high spectral res-
olution and hundreds of channels along the spectral dimension,
we use PCA algorithm to remove the spectral redundancy in
raw HSI data (X). The PCA reduces spectral bands from D to
B while maintaining the same spatial dimensions (i.e., width
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Fig. 1. Overall flowchart of HSI classification based on the CACNN.

W and height H). The low-dimensional I ∈ RH×W×B is a
new data after PCA. In order to exploit better spectral-spatial
features, we design a substructure with 2-D CNN and 3-D CNN.
In this substructure, spatial feature information are extracted by
2-D CNN, and meanwhile spectral-spatial contexts are exploited
by 3-D CNN. In the proposed framework, batch normalization
(BN) [61] and ReLU [62] are added after some convolution
layers.

A. Spectral-Spatial Feature Extraction

In order to make the extracted feature maps contain enough
spectral-spatial correlation contexts, 2-D and 3-D convolutional
operation is designed in CACNN model. As shown in Fig. 1,
Conv2D and Conv3D, respectively, denotes 2-D CNN and 3-D
CNN. As we all know, the kernel in 2-D CNN is strided cover full
spatial dimension convolution happens in fact by computing the
sum of the dot product between feature maps and kernel, which
generates new feature maps. At spatial position (p, q) in the jth
feature map of the ith layer, the activation value vp,qi,j is generated
by the following equation:

vp,qi,j = Φ

(
nl−1∑
η=1

ρ∑
γ=−ρ

σ∑
δ=−σ

wδ,γ
i,j,η × vp+δ,q+γ

i−1,η + bi,j

)
(1)

where Φ is the activation function, wi,j and bi,j is weight and
bias parameter in the jth feature map of the ith layer, respectively,
nl−1 is the number of feature map in (l-1)th layer, 2ρ+ 1 and
2σ + 1 are width and height of kernel.

In 3-D CNN, the input data are convolved with 3-D kernels
before going through activation function to produce the feature
maps. At spatial position (p, q, u) in the jth feature map of the
ith layer, the activation value vp,q,ui,j is generated as follows:

vp,q,ui,j = Φ

(
nl−1∑
η=1

ε∑
θ=−ε

ρ∑
γ=−ρ

σ∑
δ=−σ

wδ,γ,θ
i,j,η

× vp+δ,q+γ,u+θ
i−1,η + bi,j

)
(2)

where 2ε+ 1 is the depth of kernel in spectral dimension and
other parameters are the same as in (1).

The following part will describe in detail how to make the
feature maps contain abundant spectral-spatial correlation infor-
mation by combining 2-D CNN and 3-D CNN. In terms of layer
types, input and output map dimensions, a detailed summary
of the proposed model is given in Table I. Before feeding the
deep network, we create neighboring patches P ∈ RS×S×B by
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TABLE I
LAYERWISE SUMMARY OF THE PROPOSED CACNN ARCHITECTURE WITH A WINDOWS SIZE 11 × 11 FOR ALL DATASETS

choosing an S × S neighborhood of the central pixel from I,
centered at the spatial location (α, β) and including B bands.2

For spatial correlation feature extraction, 2-D convolution
operation is adopted as a basic element of spatial features extrac-
tion. As shown in Table I, the spatial extraction section includes
four 2-D CNN (conv2D_{i}4i=1) layers to obtain feature maps
with different spatial sizes. For Conv2D_1, Conv2D_2, and
Conv2D_4, 3 × 3 spatial kernel with a subsampling stride
of (1, 1) are all applied in these convolutional operation. The
Conv2D_3 includes 2 × 2 spatial kernel with a stride (2, 2).

For spectral correlation feature extraction, 3-D convolutional
operation is applied to capture spectral correlations in spec-
tral dimension. As shown in Table I, four 3-D convolutional
layers (conv3D_{i}4i=1) are utilized to obtain spectral features
with different depth. For conv3D_1, conv3D_2, and conv3D_4,
3 × 3× 4, 3 × 3× 4, and 3 × 3× 2 spectral-spatial kernel with
a subsampling stride of (1, 1, 1) are utilized in these convolu-
tion operation, respectively. The conv3D_3 includes 2 × 2× 2
spectral-spatial kernel with a stride (2, 2, 2).

We fuse the first three spatial correlation feature maps with
spectral-spatial correlation feature maps, which make the fusion
feature maps contain ample correlation information. And the fu-
sion of fourth spatial correlation feature map and spectral-spatial
correlation feature map is employed to assist classification.

2We set S to 11 and B to 10 in our experiments.

B. Spatial Attention Module (NonLocalBlock)

In Section III, we observed that CACNN model including
attention module NonLocalBlock can offer better classification
results. However, how to account for the phenomenon that this
attention module help CACNN improve classification perfor-
mance? we conduct thorough research and dive into experiments
to seek the answer to this question. Specifically, effectiveness of
NonLocalBlock will be explained with theory and experiment
in following steps.

In our proposed model, we apply the NonLocalBlock to em-
phasize correlation information in fused spectral-spatial feature
maps. First, denote by Xin = {x1,x2, . . .,xN} all pixels in a
feature map, where N represents the number of pixels, and each
pixel xi is an E-dimensional vector, where E is the number
of feature map channels. The output Oout = {o1,o2, . . .,oN}.
The pairwise similarity between every two feature pixels xi and
xj can be modeled as

oi = softmax(φ(xi)
Tϕ(xj))g(xj)

=
1∑

∀j exp(φ(xi)Tϕ(xj)
(φ(xi)

Tϕ(xj))g(xj)
(3)

whereφ(·),ϕ(·), and g(·) all denote a Conv2D with 1× 1 spatial
kernel of E/2 in Fig. 2. By multiplying matrices twice and once
normalizing (softmax), we obtain a feature map h× w × E/2
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Fig. 2. Overall flowchart of NonLocalBlock.

Fig. 3. Conv_Block with five composite layers.

(h and w are width and height of X in, separately). Then, it is
transferred to h× w × E with Conv2D including 1 × 1 spatial
kernel of E. Finally, we add this feature map with X in to Oout.

Compared with convolution and pooling operation, NonLo-
calBlock considers weight of all position to establish the rela-
tionship between two pixels at a remote distance on the feature
maps. And NonLocalBlock considers the correlation between
the pixels in the entire feature map while convolution and pool-
ing operation only consider the pixels of kernel size. As shown
in Table I, the spatial size of fusion feature maps are 9× 9, 7× 7,
3 × 3, which is not very big and generate a little computational
complexity with NonLocalBlock. We confirm the validity of
NonLocalBlock on improving classification performance from
the theoretical viewpoint.

In Section III, we will confirm the validity of NonLocalBlock
on improving classification performance from the experimental
viewpoint.

C. Lightweight Dense Block (Conv_Block)

In this subsection, we will elaborate on reasons of
using Conv_Block in the CACNN model. Inspired by
Dense_Block [62], we design the Conv_Block with a little
computational complexity due to only deliver previous features
to a subsequent layer with the mathematical addition. It makes
the spectral and spatial size keep constant between input and
output, and meanwhile strengthens representative features and
weakens the nonsignificant information.

In Fig. 3,X0 andX6 denote the input feature map and output
feature map. {Xi}5i=1 denoted feature maps are obtained by a
series of Conv2D, BN, and ReLU operation. Each feature map

is calculated as follows:

X1 = C2D
1 (X0)

X2 = C2D
2 (X0 +X1)

X3 = C2D
3 (X0 +X1 +X2)

X4 = C2D
4 (X2 +X3)

X5 = C2D
5 (X3 +X4)

X6 = X0 +X4 +X5 (4)

where {C2D
i (·)|i = 1, . . . , 5} is defined as consecutive opera-

tions of each layer: Conv2D, BN, and ReLU. Such connectivity
pattern strongly encourages feature transfer to deep layers. We
confirm the validity of Conv_Block on improving classification
performance from the theoretical viewpoint.

In Section III, the effectiveness of Conv_Block on improving
classification performance will be described in detail.

D. Deep Multilayer Feature Fusion

To gain high-level discriminative features, we design
deep multilayer feature fusion. After NonLocaLBlock and
Conv_Block, feature maps contain abundant high-level spectral-
spatial correlation information. As shown in Table I, to fuse
multilayer feature maps (concat_4), we reduce spatial size of
feature maps by Max-Pooling and Conv2D and make them
with same spatial size. Moreover, the obtained feature maps are
transformed to new feature maps (1 × 1× 296) with conv2D
so as to better assist classification. The concat_5 denotes fu-
sion of deep spatial features, spectral-spatial features and ob-
tained discriminative features, which is fed into a 1 × 1 con-
volutional layer to achieve expected results. The output vec-
tor is ŷ = [ŷ1, ŷ2, . . . , ŷC ]. And the truth one-hot label y =
[y1, y2, . . . , yC ] is the number of land-cover categories. The loss
function of CACNN is defined as

L = − 1

nτ

nτ∑
k=1

[yklog(ŷk) + (1− yk)log(1− ŷk)] (5)

where ŷk is corresponding predicted labels for the kth train-
ing/test batch, yk is the true label, and nτ is the size of train-
ing/test batch. In order to optimize the L, all parameters are
optimized by Adam [63] at the same time.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first introduce four hyperspectral imagery
datasets used in experiments and then evaluate the proposed
CACNN approach by a series of experiments. Three widely
used quality metrics are utilized to evaluate the performance of
classification methods, i.e., the overall accuracy (OA), the av-
erage accuracy (AA), and the Kappa coefficient (κ). Before our
experiments, quantitative measures are obtained by averaging
20 random sampling runs.
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TABLE II
NINE GROUND REFERENCE CLASSES IN THE AVIRIS IP DATASET

Fig. 4. AVIRIS IP dataset. (a) RGB composite image of three bands. (b)
Ground reference map.

A. Hyperspectral Imagery Datasets

To evaluate the performance of the proposed approach, four
hyperspectral imagery datasets have been considered in our
experiments.

1) The first dataset is the Indian Pines (IP) image acquired
by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS). This image, with size of 145 × 145 pixels,
contains 220 bands covering the wavelength range of 0.4–
2.5 μm, and the spectral and spatial resolutions are 10
nm and 17 m, separately. The ground truth contains 16
classes and some of the classes have fewer label samples.
Therefore, 9 classes of samples with the largest number
are selected, as shown in Table II. The false-color image
and the ground reference map are shown in Fig. 4. In our
experiments, there are 200 bands retained by removing 20
water absorption bands.

2) The second dataset is the University of Pavia (UP) image
acquired by the Reflective Optics System Imaging Spec-
trometer (ROSIS). The ROSIS sensor collects 115 bands,
covering the wavelength range from 0.43 to 0.86 μm. This
image contains 610 × 340 pixels, with very high spatial
resolution of 1.3 m per pixel. There are 9 ground reference
classes of interests, as shown in Table III. The false-color
image and the ground reference map are shown in Fig. 5.
In our experiments, we work with 103 spectral bands after
removal of noisy bands.

3) The third dataset was also gathered by the AVIRIS sensor
over the region of Salinas Valley (SA), CA, USA and
with 3.7 m per pixel spatial resolution. The Salinas scene
consists of 512 × 217 pixels and contains 16 ground

TABLE III
NINE GROUND REFERENCE CLASSES IN THE ROSIS UP DATASET

Fig. 5. ROSIS UP dataset. (a) RGB composite image of three bands. (b)
Ground reference map.

reference classes, as shown in Table IV. The false-color
image and the ground reference map are shown in Fig. 6.
In the experiments, 204 bands were used after removing
20 water absorption bands.

4) The fourth dataset is the University of Houston (HT)
image acquired by an ITRES CASI-1500 sensor, covering
a 0.38–1.05 μm spectral range with 48 bands at a 1-m
ground sampling distance. This image is one of the multi-
modal optical remote sensing datasets released by the 2018
Data Fusion Contest of the IEEE Geoscience and Remote
Sensing Society (GRSS) [64]. These datasets available on
the website3 were acquired by the National Center for
Airborne Laser Mapping (NCALM) at HT on February
16, 2017, covering the HT campus and its surrounding
urban areas. For the considered hyperspectral imagery, its
original image size is 4172 × 1202 pixels and a subimage
with size of 601× 596 is selected. This subimage contains
12 ground reference classes of interests, as shown in
Table V. The false-color image and the ground reference
map are shown in Fig. 7.

3Online. [Available]: http://hyperspectral.ee.uh.edu/?page_id=1075

http://hyperspectral.ee.uh.edu/{?}page_id$=$1075
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TABLE IV
16 GROUND REFERENCE CLASSES IN THE AVIRIS SA DATASET

Fig. 6. AVIRIS SA dataset. (a) RGB composite image of three bands. (b)
Ground reference map.

TABLE V
12 GROUND REFERENCE CLASSES IN THE ITRES CASI-1500 HT DATASET

Fig. 7. ITRES CASI-1500 HT dataset. (a) RGB composite image of three
bands. (b) Ground reference map.

B. Experimental Settings

In this subsection, we will introduce the parameters used in
our experiments. The learning rate is initialized by 0.0012 and
decays every 5000 iterations by multiplying 0.99, which is to
avoid the loss oscillating near the optimal value. Batch sizes
are set to be 80 and 2000 for training and test, separately. We
use a neighborhood window (S is fixed to 11) for 10 principal
components (B is fixed to 10) as the input of CACNN for four
datasets. As shown in Fig. 8, we will select the appropriate
number of iterations for each data set based on training loss and
accuracy. So the CACNN model is performed on IP, PU, SA,
and HT datasets with 2000, 8000, 12000, and 10000 iterations
for training.

C. Experiments With the Data Sets

Several related methods are compared to show the perfor-
mance of the proposed CACNN approach. These methods can
be divided into two categories: traditional machine learning
based methods and deep learning-based methods. One is the
classical SVM using Gaussian radial basis function kernel.
The other includes five representative methods based on deep
learning, Two-CNN, SPDF-SVM, 2-D CNN, 3-D CNN, SSRN,
and pResNet. They are used as the comparison methods since
these deep networks all use spectral-spatial techniques to extract
high-level features.

Four different experiments are employed to demonstrate the
performance of the proposed method as follows.

1) In our first experiment, the proposed CACNN method is
compared with the standard SVM, Two-CNN, 2-D CNN,
3-D CNN, SPDF-SVM, SSRN, pResNet, and FFDN clas-
sification methods using a training set made up of 200
available labels per class and use the rest as test sets for
the IP, UP, SA, and HT datasets. In all the mentioned
deep learning methods except Two-CNN, all datasets are
processed with PCA algorithm and then 11 × 11 window
and 10 spectral bands are used as input.

2) In our second experiment, OA obtained by the CACNN is
compared with other spectral-spatial methods, in particu-
lar Two-CNN, 2-D CNN, 3-D CNN, SSRN, pResNet, and
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Fig. 8. Training loss and accuracy as a function of the number of iterations for IP, UP, SA, and HT datasets. (a) For IP. (b) For UP. (c) For SA. (d) For HT.

Fig. 9. AVIRIS IP dataset. (a) SVM. (b) Two-CNN. (c) 2-D CNN. (d) 3-D CNN. (e) SPDF-SVM. (f) SSRN. (g) pResNet. (h) FFDN. (i) CACNN.

Fig. 10. ROSIS UP dataset. (a) SVM. (b) Two-CNN. (c) 2-D CNN. (d) 3-D CNN. (e) SPDF-SVM. (f) SSRN. (g) pResNet. (h) FFDN. (i) CACNN.

FFDN by considering different training percentages on IP,
UP, SA, and HT datasets. Specifically, we use 1%, 3%, 5%,
8%, and 10% training data and set the input patch size of
11 × 11× 10 for 2-D CNN, 3-D CNN, SSRN, pResNet,
FFDN, and CACNN.

3) In our third experiment, first, we design a comparative ex-
periment to explain why we use lightweight_dense_block
(Conv_Block) instead of original_dense_block. Then, to
demonstrate that NonLocalBlock and Conv_Block could
improve classification performance in CACNN approach,
we design this experiment to validate.

4) In our fourth experiment, in term of training time, network
parameters and FLOPs, the experiment compares many
different deep learning approaches.

D. Results and Analysis

1) Experiment 1: Figs. 9–12 show classification maps ob-
tained by different methods associated with the corresponding
each dataset. From Figs. 9–12, it can be seen that the classifi-
cation obtained by SVM is not satisfactory since some noisy

estimations are still visible. Among deep learning methods, 3-D
CNN performs better than 2-D CNN for the reason that the
former can extract high-level spatial-spectral feature than the
latter. Compared with 2-D CNN and 3-D CNN, the classification
maps obtained by SPDF-SVM, SSRN, pResNet, and FFDN
are better since deep convolution with good feature extraction
method are applied. The best classification map is obtained
by CACNN because it considers correlation of spatial-spectral
features and hierarchical features between convolution layers.
In these methods, original methods including Two-CNN, SSRN,
and pResNet aim at extracting spectral-spatial feature using the
different patch size and bands as input. To make the test fair,
we apply PCA on all compared methods (beside Two-CNN) in
the same manner to reduce spectral bands. For the classification
map of SSRN, pResNet, FFDN, and CACNN, it is not easy to
find out which classification map is best. For red region (Grapes
category) of Fig. 11, We can see that the CACNN method handles
this category better. Similarity, for gray region (Sidewalks cate-
gory) and red region (Major thoroughfares category) of Fig. 12,
more accurate classification to this two categories is obtained by
CACNN.
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Fig. 11. AVIRIS SA dataset. (a) SVM. (b) Two-CNN. (c) 2-D CNN. (d) 3-D CNN. (e) SPDF-SVM. (f) SSRN. (g) pResNet. (h) FFDN. (i) CACNN.

Fig. 12. ITRES HT dataset. (a) SVM. (b) Two-CNN. (c) 2-D CNN. (d) 3-D CNN. (e) SPDF-SVM. (f) SSRN. (g) pResNet. (h) FFDN. (i) CACNN.

TABLE VI
CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS ON THE IP DATASET

TABLE VII
CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS ON THE UP DATASET



4798 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

TABLE VIII
CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS ON THE SA DATASET

TABLE IX
CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS ON THE HT DATASET

Tables VI–IX present classification results for IP, UP, SA, and
HT datasets, corresponding to our first experiment. As shown in
Tables VI–IX, it summaries the global and class-specific accu-
racies of these methods mentioned above. From the table, it can
be seen that other methods using spectral-spatial features yield
higher classification accuracies when compared with SVM.
For the SPDF-SVM and 3-D CNN, they are implemented by
extracting spatial-spectral features, which is helpful to improve
the classification performance. Therefore, the accuracies of them
are more than 2-D CNN and Two-CNN. SSRN, pResNet, and
FFDN are recent state-of-the-art spectral-spatial classification
methods. Among these methods, CACNN gives the highest
global accuracies. Compared with SSRN, pResNet, and FFDN,
most classification accuracies of each dataset are very close.

However, for Grapes (C8) of Table VIII, Sidewalks (C8) and
Major thoroughfares (C9) of Table IX, CACNN approach gets
top classification accuracy. The classification results from Ta-
bles VI–IX and Figs. 9–12 confirm the validity of CACNN.

2) Experiment 2: This experiment is designed to analyze the
classification performance with different training percentages.
Fig. 13 shows results obtained in our second experiment, where
different training percentages are tested using IP, UP, SA, and HT
datasets. In particular, Two-CNN, 2D-CNN, SSRN, pResNet,
FFDN, and CACNN are tested considering 1%, 3%, 5%, 8%,
and 10% of the labeled data for training. Specifically, in IP
dataset, OA obtained by CACNN is only weaker than the best
result got by SSRN. However, as the number of training labels
increases, OA obtained by CACNN tends to be got by SSRN.
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Fig. 13. OA as a function of the number of training samples for IP, UP, SA, and HT dataset. (a) For IP. (b) For UP. (c) For SA. (d) For HT.

TABLE X
COMPARSIONS OF THE CACNN METHOD USING ORIGINAL_DENSE_BLOCK AND LIGHTWEIGHT_DENSE_BLOCK, INVOLVING PARAMETERS, CONSUMING TIME

(MINS), AND OVERALL ACCURACY OA(%) OVER FOUR DATASETS

TABLE XI
CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS ON FOUR DATASETS, “USE_NO,” “USE_NONLOCAL,” “USE_CONV_BLOCK,” AND “USE_BOTH”

DENOTE PROPOSED CACNN MODEL WITHOUT NONLOCALBLOCK AND CONV_BLOCK, PROPOSED CACNN MODEL ONLY USING NONLOCALBLOCK (WITHOUT

CONV_BLOCK), PROPOSED CACNN MODEL ONLY UTILIZING CONV_BLOCK (WITHOUT NONLOCALBLOCK), PROPOSED CACNN MODEL INCLUDING THIS TWO

MODULES, RESPECTIVELY

Next, compared with other approaches in UP, SA, and HT
datasets, it can be seen that our proposed CACNN achieves a
good classification result. From Fig. 13, classification results
confirm that the CACNN approach has stronger generalization
ability.

3) Experiment 3: There are two parts in this experi-
ment. The training set is made up of 200 labeled data
per class and the input patch size is 11 × 11 with 10
spectral bands. The first part is to illustrate the advan-
tages of using lightweight_dense_block in CACNN with the
experiment. In Table X, “Lightweight_dense_block” and
“Original_dense_block” separately denote in CACNN using
lightweight_dense_block and original_dense_block. From the
Table X, it can be seen that there is little difference in OA
between the two approaches on four datasets, but “Origi-
nal_dense_block” takes far more time and network param-
eters than “Lightweight_dense_block.” So we select to add
lightweight_dense_block (Conv_Block) in CACNN to ensure
the stability of OA while reducing network parameters and
time consumption. The other part is to validate the efficiency
of NonLocalBlock and Conv_Block in CACNN model by the
experiment. In Section II, we have verified effectiveness of this
two Blocks from theoretical viewpoint. In the following part, we
will certify the validity of this two blocks with the experiment.

TABLE XII
TRAINING TIME(MINS) ON FOUR DATASETS BY DEEP LEARNING METHODS:
TWO-CNN, 2-D CNN, 3-D CNN, SSRN, PRESNET, FFDN, AND CACNN

In Table XI, “Use_no,” “Use_NonLocal,”
“Use_Conv_Block,” and “Use_both” denote proposed
CACNN model without NonLocalBlock and Conv_Block,
proposed CACNN model only using NonLocalBlock (without
Conv_Block), proposed CACNN model only utilizing
Conv_Block (without NonLocalBlock), proposed CACNN
model including these two modules, respectively. By compared
“Use_no” with “Use_NonLocal,” it can be seen that accuracies
of including NonLocalBlock experiment are higher than without
NonLocalBlock. Then, we can achieve the similar results by
comparing results of the other two experiments. According
to comparison experiments mentioned above, we confirm
the validity of NonLocalBlock on improving classification
performance from the experimental viewpoint.
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TABLE XIII
PARAMETERS AND FLOPS ON IP DATASET BY DEEP LEARNING METHODS: TWO-CNN, 2-D CNN, 3-D CNN, SSRN, PRESNET, FFDN, AND CACNN

From Table XI, by compared “Use_no” with
“Use_Conv_Block” and “Use_NonLocal” with “Use_both,”
it is obvious that the Conv_Block as an integral part of
CACNN to improve classification performance. According to
the comparison experiment mentioned above, the effectiveness
of Conv_Block on improving classification performance is
verified from experiments.

4) Experiment 4: This experiment is designed to demonstrate
the CACNN on computational efficiency. All experiments are
conducted with python language and tensorflow framework,
and results are demonstrated on a PC equipped with an Intel
Core i5 with 2.8 GHz, memory 8G, and Nvidia GeForce GTX
1060 3G graphics card. Table XII demonstrates the training
time by deep learning methods on four datasets. As shown in
XII, due to fewer iterations on IP dataset, CACNN uses less
training time. In addition, CACNN consumes moderate training
time on UP dataset, while consumes more training time on
SA and HT datasets due to use more number of iterations.
From the above analysis, CACNN is moderate on computational
efficiency. Parameters and FLOPs on IP dataset by deep learning
methods are shown in Table XIII. CACNN using deep network
and several branches results in more network parameters and
FLOPs.

IV. CONCLUSION

This article has proposed a deep collaborative attention net-
work for HSI classification by combining 2-D CNN and 3-D
CNN. This novel approach consists of three main steps, using
2-D CNN and 3-D CNN to extract spectral-spatial information,
utilizing NonLocalBlock to emphasize spatial correlation fea-
tures and Conv_block to extract high-level abstract correlation
information, and applying hierarchical layer feature fusion to get
discriminative features. And it has obtained better classification
accuracies and strong generalization performance. We explore
and discover that NonLocalBlock and Conv_block exploited
in CACNN model is beneficial to improve classification per-
formance. Although results obtained by the proposed approach
are very encouraging, further enhancements such as extracting
more efficient spectral-spatial correlation features and exploring
the fusion strategy with more generalization ability should be
pursued in future developments.
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